
Software Engineering Properties of Functionally Enabled Languages

Georgios Gousios
Department of Management Science and Technology

Athens University of Economics and Business
Athens, Greece

Email: gousiosg@aueb.gr

Abstract—A new trend in programming languages and sys-
tem design is the use of constructs derived from the functional
language field. Startups requiring fast product turnover and
large corporations looking for increased maintainability are
exploring the use of new, purely functional (such as Erlang
or Haskell) or functionally-enabled (such as Scala and Ruby)
languages, on the basis of decreased complexity and higher
productivity. Despite the apparent increase in their use, the soft-
ware engineering properties, including the alleged advantages,
of such languages are largely underexplored. In this paper, we
discuss the issues that prohibit the use of classic complexity
and productivity metrics and present the rationale behind a
new set of metrics that targets this increasingly important set
of languages.

Keywords-Functional Languages, Software Engineering,
Metrics, Complexity, Productivity

I. INTRODUCTION AND MOTIVATION

Arguably, the bulk of code today is written in the impera-
tive style. This fact has led software engineering researchers
to put particular emphasis on the study of the properties of
this programming paradigm. Over several years of efforts, a
large body of knowledge has been assembled [1], consisting
of metrics, quality and cost models and a plethora of tools,
while the interplay of development processes and structured
software is one of the hot topics of current research efforts.

Due to a variety of reasons, including the advent of
multicore architectures, the rising rate of information pro-
duction [2] and the necessity to reach the market fast, cur-
rently, large corporations and start-ups alike are investigating
alternative programming and information storage models.
At the same time, a number of languages that combine
the functional and object-oriented paradigms or are purely
functional have emerged and are beginning to capture the
interest of developers. Moreover, popular scripting languages
that have already incorporated functional characteristics
form the basis of large scale web sites and have delivered
novel mechanisms to fast web development. The result
of the combination of new programming needs with the
availability of new tools allowed functional programming
ideas to proliferate.

Functional programming has been an active field of re-
search for more than 50 years, at least since the publication
of McCarthy’s seminal paper on Lisp [3]. In the mean
time, the mainstream programming paradigm has shifted

Table I
METRICS OF LANGUAGE USAGE FROM OHLOH.NET, INDICATING

INCREASING USE OF FUNCTIONALLY ENABLED LANGUAGES.
MEASUREMENTS ARE APPROXIMATE AND DEPEND ON VOLUNTARY

REGISTRATION OF PROJECTS WITH THE MEASUREMENT SERVICE.

Metric PHP Scala Python Ruby Haskell F# Erlang
Number of commits (×103)
Jun 08 52 800 52 18 700 20 700
Jul 10 44 1600 42 18 500 200 1200
Lines of Code (×106)
Jun 08 51 0,01 18 9 0,04 0,001 0,03
Jul 10 49 0,3 15 9 0,02 0,01 0,05
Number of contributors
Jun 08 3800 55 4000 1200 90 5 50
Jan 10 3700 140 3100 900 50 25 90

from assembly programming to Fortran, then to structured
programming and finally to object orientation. Despite being
one of the favourite research topics of theoretical language
designers, the concepts underlying functional programming,
even though simple in theory, represent a major departure
from what most programmers use in every day practice.
Side effect free programming, variables that cannot really
vary, lack of shared state, monads and pattern matching can
confuse at first even battle-hardened object-oriented software
designers; however, the very same concepts allow functional
programs to be short and concise, while enabling them to
be inherently parallelisable, a very important feature in the
multicore era.

During the last few years, we are witnessing a slight but
noticeable shift towards functional programming. Scripting
languages, notably Python and Ruby, pioneered the intro-
duction of functional concepts, such as list comprehensions
and lambda functions, to mainstream programming. A new
wave of programming languages, developed to overcome
the expressiveness and complexity limitations exhibited in
mainstream languages, have promoted functional constructs,
such as type safe pattern matching, higher order func-
tions and single assignment variables, to first class citizens
(Scala). New, purely functional, languages have emerged to
fill in the remaining gaps (F#), often introducing significant
advancements in their field of specialisation (Erlang). We
collectively refer to those languages with the term function-
ally enabled.

As Table I shows, the use of functionally enabled lan-

guages is on the rise. However, as functional programming
has not caught mainstream attention yet, even though it does
make an appearance in specialised fields such as financial
engineering [4], [5], it has been living below the radar
of software engineers. Indeed, very little research, if any,
has been carried out on how software is written with the
functional or the object-functional paradigm. Both in the
scientific literature [6], [7], [8] and in opinion writings [9],
[10], the consensus is that functionally enabled languages
allow experienced developers to express algorithms more
intuitively and result in significantly more concise and
maintainable code. As the problem has not been explored
yet, some authors beg to differ [11, Chapter 12].

In this work, we discuss the shortcomings of the cur-
rent state of software engineering research in the field of
functional and functionally enabled languages (which, in
our definition, also includes popular scripting languages).
We formulate a set of open research questions and provide
indications of how those could be potentially answered.
Our aim is to study whether functionally enabled languages
keep up to the promises made by their designers, namely
whether their functional characteristics improve developer
expressiveness and reduce code complexity. In studying
those attributes, we will also devise new ways of assessing
code complexity in the presence of functional constructs and
methods for comparing the productivity between program-
ming paradigms.

II. CHARISTERISTICS OF FUNCTIONALLY ENABLED
LANGUAGES

Functionally enabled languages include, or allow the
straightforward definition of, special syntactic constructs that
are seldom part of generic imperative programming lan-
guages. In this section, we analyse the syntactic constructs
that renders the development with functionally enabled lan-
guages unique and examine their effect on current software
engineering practices. Based on the observations made, we
also formulate a set of research questions and propose ways
to explore them.

Syntactic constructs are those elements of a programming
language that enable programmers to express abstract com-
putations in series of steps. Syntactic constructs are either
directly implemented at the language level (for example,
loop constructs in imperative languages, pattern matching in
functional languages) or composed by combining lower level
syntactic constructs (e.g. monads). A unique characteristic
of functionally enabled languages is that they allow the
composition of powerful constructs due to their support
for abstracting computation descriptions from computation
implementation, through the use of high order functions. The
following list presents a collection of syntactic constructs
that are unique to functional programming and form part, in
various degrees, of many functionally enabled languages.

• Higher Order Functions are constructs that can receive
functions as input and/or produce functions as a result.
Higher order functions are used to provide generic
computation primitives that work irrespective of the
underlying data and computational details.

• Lambda Functions are the basic constructs of λ-
calculus, the theoretical basis of functional program-
ming [12]. In programming languages, they are im-
plemented as anonymous functions that are passed
as arguments to higher order functions or perform a
computation in place of their definition.

• Closures are functions defined within the body of other
functions and which share variables with their enclos-
ing counterparts. They are often used as parameters
to generic high order functions in order to make a
computation specific to a context.

• List Comprehension is a syntactic construct that allows
the definition of a list based on existing lists and
a filtering function. It is used to dissect data or to
initialise copies of lists.

• Pattern Matching is a technique for processing data
based on its structure or contents. It is used as a method
of dispatching certain operations based on characteris-
tics of processed data structures.

• Immutable Variables are variables which cannot be
assigned after initialisation. In most common functional
languages, variables are by default immutable. This en-
ables side effect free execution, since function calls can-
not affect program state, which consequently enables
lock-free parallelisation of programs adept to divide and
conquer strategies (most data parallel programs).

• Monads are high level composable computation de-
scriptions that are used in functional environments to
contain computations with side effects 1. Monads form
the basis for safe sharing of program state in pure
functional languages.

Table II presents an overview of the features that are
special to functional programming, as they apply to the
most popular functionally enabled languages. The table
shows that functional constructs have proliferated from the
pure functional Haskell language, which predated all other
languages shown in the table, to the other languages as
well. This means that, while typical languages tend to retain
their original orientation, they also have special syntactic
constructs that must be examined separately. For example,
in the case of Scala, while typical object oriented design
patterns can be implemented, their implementation is quite
different from typical object oriented languages, exactly due
to its functional characteristics. Indicative of the fact is the
example in Table II, where Scala’s pattern matching and type

1In functional programming, a computation is said to have side effects
if during its execution, it somehow affects the program’s shared state, e.g.
by writing to a file or raising a runtime exception.

Table II
FUNCTIONAL PROGRAMMING FEATURES IN VARIOUS MAINSTREAM LANGUAGES

Feature Object Oriented Scripting Pure Functional
Scala Python Ruby Haskell F# Erlang

High order functions X X X X X X
Lambda functions X X X X X X
Closures X X X X X X
List comprehensions X X h X X X
Lazy evaluation h h h X h
Pattern Matching X h X X X
Immutable variables X h X X X
Monads h h h X X

X: full support, h: partial support or implemented in library

inference helps reduce boilerplate code by 50% compared
to Java in the implementation of the omnipresent Factory
design pattern. On the other hand, the implementation in
Ruby is smaller than Java but lacks the type safety features
of Scala (one can pass arbitrary values to the create
method at runtime).

The example presented above is indicative; apart from
reduced code size, there are other software engineering
properties that are enabled by functional characteristics.
As an example, immutable variables and side effect free
functions help programs become inherently paralelisable;
problems that can be parallelised are usually more easily
expressed in functionally enabled languages, as there is no
shared state to be guarded with explicit synchronisation.
The lack of shared state also allows easier debugging,
since a function call trace contains all data affected by the
failing operation. Moreover, high order functions enable the
expression of generic computation primitives irrespective of
the underlying data; such programming style has been the
basis of large data processing algorithms, such as Google’s
MapReduce [13] (modelled along Lisp’s map and reduce
list processing high order functions).

III. OPEN RESEARCH TOPICS

A. Programming practices in functionally enabled lan-
guages

Syntactic constructs are used and combined by program-
mers to convert architecture-level designs of systems into
series of executable operations. The organised use of syn-
tactic constructs leads to a programming practice or style, a
repetitive application of specific syntactic constructs to ex-
press certain classes of algorithmic steps. The programming
practices employed in common programming paradigms
have been extensively analysed in the literature [14], [15],
[16]. Functional programming practices are distinctive and
usually only used in special program cases. The research
question that emerges is what types of designs are more
adept to functional solutions and what syntactic constructs
do programmers use to express such designs. To answer this
question, one has to identify and categorise all functional
programming constructs (the list presented above and in

Table II is not exhaustive) by means of a systematic review
and then devise methods to automatically extract them
from existing source code in order to conduct an extensive
exploratory study.

Combining syntactic constructs is not an arbitrary oper-
ation; common design problems call for similar or pattern-
like solutions. Design patterns offer a convenient way to
capture, document and disseminate existing knowledge from
a given area in a consistent and accessible format. In object-
oriented programming, design patterns have been identified
early on and their thorough documentation [14] has lead to
widespread adoption. In this context, an important research
question is whether design patterns exist in source code
developed with functionally enabled languages and, it they
exist, what is the degree of their application in existing
software. To answer this question, one has to work on
identifying related design patterns in both the literature
and in practice and develop a mechanism to automatically
identify them in existing code. An exploratory study will
confirm the existence and document the applicability of the
identified patterns in real programs.

Furthermore, most languages are used in the context of
specific application domains; for example C is used mostly in
systems-level software while Java has almost monopolised
the application server market. What problem domains are
functionally enabled languages good for? How are they used
to solve particular classes of problems? Are the functionally
enabled languages particularly able for specific kinds of
problems? Answers to these questions could be found by
the classifying the relevant literature, to identify documented
uses of functional languages in specific projects, and by per-
forming exploratory case studies on metadata from project
hosting sites.

B. Complexity in functionally enabled languages

The majority of problems that software engineers face
today are, by nature, complex. Software complexity is a term
that encompasses several aspects of software design and
implementation quality. Software complexity usually arises
when applying suboptimal algorithmic and structural designs
on complex problem spaces. Excessively complex code or
systems can lead to faults and consequently complexity

Table III
SINGLETON-BASED FACTORY PATTERN IN JAVA (LEFT) AND SCALA (MIDDLE) AND RUBY (RIGHT).

public interface Car() {...}
public RaceCar implements Car {...}
public NormalCar implements Car {...}
public class CarFactory {

private CarFactory instance ;

private CarFactory () {}

public void getInstance () {
if (instance == null)

instance = new CarFactory();
return instance ;

}

public Car create (String type) {
if (type . equals ("Race"))

return new RaceCar();
else if (type . equals ("Normal"))

return new NormalCar();
else

throw new Exception();
}

}

Car myCar = CarFactory
. getInstance (). create ("Race");

trait Car {...}
class RaceCar extends Car {...}
class NormalCar extends Car {...}
object CarFactory {
def apply(String type) {
type match {
case "Race" => new RaceCar();
case "Normal" => new NormalCar();
case => throw new Exception;
}
}
}
val myCar = CarFactory("Race")

require ’singleton’
class RaceCar < Car
class NormalCar < Car
class Car

include Singleton
def create name

case
when name == "Race"

RaceCar.new
when name == "Normal"

NormalCar.new
else

raise type
end

end
end
myCar = Car.create("Race")

measures have been proposed as fault predictors [17], [18],
[19] or as maintainability estimators [20].

Researchers have long been trying to evaluate complexity
and therefore metrics that assess complexity at various levels
of analysis have been proposed. At the algorithmic level,
McCabe’s cyclomatic complexity [21] examines the control
flow graph of a function and calculates a measurement
of its complexity by enumerating the number of possible
execution paths a program function has. At the module level,
Henry and Kafura’s Information Flow metric [22] relates
a modules complexity to the number of cross-references
between the module and other modules. In a similar fashion,
Sneed proposed and evaluated [23] several inter-module
data flow metrics. Moreover, object oriented languages ex-
hibit additional structural characteristics (i.e. inheritance,
state encapsulation); the Chidamber and Kemerer suite of
metrics [24] provide insights on the structure of object
oriented programs. On the functional languages front, little
research was done [25], [26] and the majority of it consists
of adaptations of existing metrics to the purely functional
language Haskell.

Functionally enabled languages however have special syn-
tactical constructs that are not accounted for in complexity
metrics, especially those evaluating complexity at the al-
gorithmic or structural level. As an example, Table III-B
presents the same simple algorithm (recursive Fibonacci
sequence calculation) implemented in 4 different languages,
3 of which can be classified as functionally enabled. The
Scala and Erlang implementations use pattern matching,
while the Haskell implementation uses list comprehension

and lazy evaluation. In trying to apply control flow based
metrics, such as McCabe’s cyclomatic complexity, to assess
complexity, we hit at least three walls: (i) is pattern matching
functionally equivalent to a branch statement? (ii) The
Haskell version has no branches (the Scala version could be
written similarly), does this mean that its complexity is 0?
and (iii) what is the unit of application (similar to a function
in structured programming) for applying the metric?

The situation also extends to structural metrics, even
though in this case, the primary factor affecting metric
applicability is the unit of information hiding employed
by the language, and not its functional characteristics. For
example, in the case of Scala, and partially Ruby, the
Chidamber and Kemerer metrics could apply unchanged,
as they are both object oriented languages in principle.
Pattern matching (especially, typed pattern matching as in
Scala’s case classes) and side effect free execution (where
state is encapsulated in monads) make structure metrics less
useful in object functional and pure functional environments,
respectively.

Research Opportunities: From the description provided
above, it becomes apparent that a new approach that encap-
sulates the functional characteristics of functionally enabled
languages is required. What we propose is an approach based
on control flow analysis [27]. Control flow analysis is a suite
of analytical techniques that approximate runtime control
graphs of functional and object oriented programs [28].
Recent advances [29] have (theoretically) bridged the gap
between data flow analysis in the object oriented and func-
tional paradigms. While control flow analysis for structured

Table IV
DIFFERENT WAYS OF CALCULATING FIBONACCI SEQUENCES

int fib (int n) {
if (n == 0)

return 0;
if (n == 1)

return 1;
return fib (n − 1) + fib (n − 2);

}

def fib (n: Int) = fib tr (n, 0, 1)

def fib tr (n: Int , b: Int , a: Int): Int =
n match {

case 0 => b
case => fib tr (n − 1, a, a + b)

}

Standard recursion in C Pattern matching and tail recursion in
Scala

fib (0) −> 0 ;
fib (1) −> 1 ;
fib (N) when N > 0 −>

fib (N − 1) + fib(N − 2).

fib :: [Int]
fib = 0 : 1 : [a + b |

(a , b) <− zip fib (tail fib)]

Pattern matching in Erlang List comprehension and lazy evaluation in
Haskell

programming is a relatively simple task, in the object ori-
ented and functional paradigms dynamic dispatch and high
order functions, respectively, do not allow the construction
of accurate control flow graphs, the basis for metrics such as
McCabe’s complexity. By applying such tools, and expand-
ing accordingly a researcher could investigate the complexity
of the control flow in functionally enabled languages, as the
analysis will go beyond the employed syntactic constructs.
If the call graph is reconstructed or approximated, a possible
complexity metric could simply count the number of states
in the call graph, per unit of execution or per unit of
information hiding.

An alternative approach would entail the construction and
parsing of a program’s parse tree, using tools from the
language’s compiler or interpreter suite. In that case, a com-
plexity metric would be more straightforward to calculate,
for example by counting the number of statements that a
compiler considers as branches in the program’s abstract
syntax tree. This method however is language and compiler
specific, potentially lacking the generality of the former one.

After the implementation of the complexity evaluation
algorithm, it must be validated, while its usefulness must
be demonstrated and evaluated. For validation, we advocate
cross examination of the metric results by experienced
developers in a controlled experiment setting. The use-
fulness of a metric can be evaluated empirically. Using
a suitable method, for example the Goal-Question-Metric
approach [30], a researcher can formulate a set of research
questions that use the results of the metric to predict a
behaviour of the system. A good starting point would be
the correlation of the metric results at the module level with
the number of bugs affecting the module.

C. Productivity and estimation with functionally enabled
languages

One of the most commonly cited reasons for developing
a project with a functionally enabled language is that of
increased productivity over an imperative language. The con-
sensus is that functional constructs enable faster and cleaner
algorithmic expression, while they help cut on boilerplate
code (e.g. field accessors, structure initialisation) found in
imperative languages. Moreover, functionally enabled lan-
guages are considered to exhibit increased statement density
and therefore the programmer can do more with a statement
in comparison to procedural languages. While such claims
are omnipresent, to the best of our knowledge, they have not
been evaluated scientifically.

Productivity is a recurring discussion in all processes that
involve inputs and outputs. In economic terms, productivity
is the ratio of output to input, the output of a process divided
by the effort required to produce it. In [31], programmer
productivity is defined as the ratio of the delivered source
lines of code to the total effort in man-months required to
produce the delivered program. Input and output in software
engineering processes are frequently addressed with output
usually measured in lines of code [31], [32], [33]. As the
lines of code metric cannot be determined safely before the
end of the project, function point analysis usually comple-
ments it. Even though lines of code is a ubiquitous measure
of work volume, its use for productivity measurements is
not without criticism. The arguments against it included its
inability to cater for semantic differences across languages,
the fact that not all statements are of the same complexity
and the fact that software developers today do a lot in the
context of a software project apart from coding.

Related to productivity is the issue of project estimation.

The problem can be roughly explained with the following
question: Given a software project description, how can
we estimate its cost and duration? The prevailing current
practice involves the use of pre-calibrated regression models
with estimated size measures as sole input. Examples of
such models include COCOMO [34] and SLIM [35]. Both
models have been calibrated with data from existing projects
and moreover COCOMO in its second iteration includes
configuration support for a large set of project parameters.
However, both models are very sensitive to the language
used for the implementation. Specifically, COCOMO II ex-
plicitly defines lines of code as logical statements, which
in the case of functionally enabled languages, are believed
to be considerably more dense. Moreover, the same model,
uses a static conversion matrix between function points and
lines of code, again signifying the effect of the programming
language on the prediction result. There is no written report
of the application of either model on the prediction of
systems developed with functionally enabled languages.

Research Opportunities: Discovering a method to objec-
tively measure the expressiveness of functionally enabled
languages is a very important research question. One way
to tackle it would be to compare functional statements with
functionally equivalent statements in generic languages. On
the small scale, a researcher will need to identify functional
syntactic constructs and re-implement them with generic
procedural code. After confirming the applicability of the
approach, the researcher will need to conduct a large scale
analysis of existing software to quantify the extend of source
code savings (if any).

A complementary approach entails the evaluation of how
many lines are required to develop a function point, in a
way similar to how COCOMO interchanges function points to
source lines of code using pre computed equivalence tables
for several programming languages. This approach requires
access to rich process data (requirement documents, among
others) for projects developed with functionally enabled lan-
guages and therefore it may not be applicable to data freely
available for empirical research. Industry reports would be
of great importance on that front.

Finally, in order to examine whether programming with
functional languages is indeed faster, a controlled experi-
ment with real developers could be very useful. The experi-
ment should be designed to employ professional developers
to work on a non-trivial algorithmic implementation in a
limited timeframe, initially using their language of choice
and then (after having fully understood the problem) using
a functionally-enabled language they have never used before.
The aim would be to measure whether the functionally en-
abled language will enable them to write faster or will make
debugging faster. A questionnaire could then be used after
the experiment to further elicit the developer’s experience.

IV. RESEARCH DESIGN

The proposed work is part of a research project that
aims to shed light on why and how functionally enabled
languages are gaining traction. Our interest in the project
derives from the field of software engineering. The project’s
high level goal is to investigate how concepts derived from
functional programming affect software development today.
To achieve the stated goal, we will examine two major, and
in many ways orthogonal, programming techniques, object
orientation and functional programming, in order to establish
(or not) the relative strengths of the functional paradigm.
To examine real cases, we will use existing freely available
OSS, written in popular functionally enabled languages, such
as Ruby, Scala and Erlang.

To tackle the research problem, we decompose it in the
following units of work:

1) Establishment of the functional programming concepts
and idioms in use by existing and emerging languages.

2) Identification of how those concepts are used and com-
bined with other paradigms in practice, i.e. the patterns
of combining functional and imperative programming.

3) Assessment of the effect of functional concepts on
software and algorithmic design. Does mixing func-
tional and imperative concepts help in reducing soft-
ware complexity and thereby increase maintainability?

4) Assessment of the effect of functional concepts on
programmer productivity. Is it really “faster” to write
software in the functional style?

5) Recommendations based on the knowledge acquired
from the previous steps. What did we learn and how
can we apply it in real projects?

Our research effort will be mostly empirical, as we
will examine existing systems and practices. To tackle the
first work item we will perform a systematic literature
review [36]. The majority of the remaining work consists of
observational studies. We plan to conduct several large scale
exploratory case studies to establish the measurements re-
quired for tackling work items 2 and 3, and also confirmatory
case studies, possibly in collaboration, to answer specific
details of work item 3. Moreover, to answer the question of
whether functionally enabled languages are faster to develop
with, we plan to perform a controlled experiment with live
subjects.

To investigate our hypotheses, we will use freely available
data from the OSS ecosystem. A large number of both
trivial and non-trivial systems written in functionally enabled
languages, including the implementation of the languages’
libraries, exists in various open repositories, such as Google
Project Hosting (>1000 projects available), GitHub (> 5000
projects available) and SourceForge (> 500 projects avail-
able). Using methods described in our earlier work and
elsewhere [37], [38], we will mirror both product data
(source code repository) and process data (email archives

and/or bugs, depending on availability). This work will be
performed early on in the project’s cycle.

A large part of the proposed work involves experimen-
tation with existing software systems. For that, we will
build on our previous work [39] on large scale empirical
software engineering experimentation and will extend the
Alitheia Core platform [37] to support the languages that we
will work with. Apart from benefiting from Alitheia Core’s
deep analytics on software repository data, thus obtaining
a historical and social network perspective, our work will
also benefit from an easily extensible repository of data
originating from several hundred of OSS projects and the
future developments of the platform.

V. CONCLUSIONS AND FUTURE WORK

Functionally enabled languages form an emerging trend in
software development, for reasons that reportedly have to do
with faster development turnover and more straightforward
multiprocessor programming. Despite the increasing volume
of software being written in such languages, their properties
have not been investigated by the software engineering
community. In this paper, we provide the first account of the
issues that emerge when trying to apply traditional software
engineering tools (e.g. complexity and productivity metrics)
on functionally enabled languages, along with potential
solutions.

To the best of the author’s knowledge, the proposed work
is the first to study the emerging trend of writing software
in functionally enabled languages. As such, we believe that
we will be able to uncover interesting facts and answer
the questions of why developers are increasingly preferring
those languages for new projects. Our focus will be on
performing large scale studies in order to assess the current
state of practice and construct a solid shared body of code
for experimentation with such languages, similar to the one
in we constructed in previous work.

Currently, we are investigating ways to implement the
complexity metric, as described in Section III-B.

REFERENCES

[1] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, Eds.,
Guide to the Software Engineering Body of Knowledge. IEEE
Computer Society, 2004.

[2] P. Lyman and H. R. Varian, “How much information 2003?”
University of California at Berkeley, Tech. Rep., 2003.

[3] J. McCarthy, “Recursive functions of symbolic expressions
and their computation by machine, part I,” Commun. ACM,
vol. 3, no. 4, pp. 184–195, 1960.

[4] Y. Minsky and S. Weeks, “Caml trading — experiences
with functional programming on Wall Street,” Journal of
Functional Programming, vol. 18, no. 4, pp. 553–564, Apr
2008.

[5] S. Frankau, D. Spinellis, N. Nassuphis, and C. Burgard,
“Commercial uses: Going functional on exotic trades,” Jour-
nal of Functional Programming, vol. 19, no. 1, pp. 27–45,
Jan. 2009.

[6] J. Hughes, “Why functional programming matters,” Computer
Journal, vol. 22, no. 2, pp. 98–107, 1989.

[7] P. Hudak and M. P. Jones, “Haskell vs. Ada vs. C++ vs. AWK
vs. ...an experiment in software prototyping productivity,”
Yale University, Dept. of CS, New Haven, CT, Tech. Rep.,
Jul 1994.

[8] K. W. Ng and C. K. Luk, “A survey of languages integrating
functional, object-oriented and logic programming,” Micro-
processing and Microprogramming, vol. 41, no. 1, pp. 5 –
36, 1995.

[9] P. Graham, Hackers and Painters: Big Ideas from the Com-
puter Age. O’Reilly Media, 2004.

[10] J. Spolsky, Joel on Software. Apress, Aug 2004.

[11] D. Spinellis and G. G. (editors), Beautiful Architecture:
Leading Software Engineers Explain How They Think. Se-
bastopol, CA: O’Reilly Media, Inc, 2009.

[12] A. Church, “A set of postulates for the foundation of logic,”
Annals of Mathematics, vol. 33, no. 2, pp. 346–366, 1932.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in Proceedings of the 6th Sym-
posium on Operating Systems Design and Implementation,
2004, pp. 137–150.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software. Ad-
dison Wesley, 1994.

[15] B. Meyer, Object-oriented software construction, 2nd ed.
Prentice-Hall, 2000.

[16] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen,
and K. Houston, “Object-oriented analysis and design with
applications,” 2007.

[17] S. H. Kan, Metrics and Models in Software Quality Engineer-
ing. Addison Wesley Professional, 2003.

[18] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 897–910, Oct. 2005.

[19] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Mur-
phy, “Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process,” in ESEC/FSE ’09: Proceed-
ings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. New York,
NY, USA: ACM, 2009, pp. 91–100.

[20] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using met-
rics to evaluate software system maintainability,” Computer,
vol. 27, no. 8, pp. 44–49, 1994.

[21] T. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, pp. 308–320, 1976.

[22] S. Henry and D. Kafura, “Software structure metrics based
on information flow,” IEEE Trans. Softw. Eng., vol. 7, no. 5,
pp. 510–518, 1981.

[23] H. Sneed, “Understanding software through numbers: A met-
ric based approach to program comprehension,” Journal of
Software Maintenance: Research and Practice, vol. 7, no. 6,
pp. 405–419, 1995.

[24] S. Chidamber and C. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, Jun 1994.

[25] K. den Berg, “Software measurement and functional program-
ming,” Ph.D. dissertation, University of Twente, June 1995.

[26] C. Ryder and S. Thompson, Trends in Functional Program-
ming. Kluwer Academic Publishers, September 2005, ch.
Software Metrics: Measuring Haskell.

[27] J. Midtgaard, “Control-flow analysis of functional programs,”
University of Aarhus, BRICS Report Series RS-07-18, De-
cember 2007.

[28] O. Shivers, “Control flow analysis in Scheme,” in PLDI
’88: Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation. New
York, NY, USA: ACM, 1988, pp. 164–174.

[29] M. Might, Y. Smaragdakis, and D. Van Horn, “Resolving
and exploiting the k-CFA paradox: illuminating functional vs.
object-oriented program analysis,” in PLDI ’10: Proceedings
of the 2010 ACM SIGPLAN conference on Programming
language design and implementation. New York, NY, USA:
ACM, 2010, pp. 305–315.

[30] V. Basili, C. Caldiera, and D. H. Rombach, “Goal question
metric paradigm,” in Encyclopedia of Software Engineering.
New York: John Wiley and Sons, 1994, vol. 2, pp. 528–532.

[31] C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal, vol. 16,
no. 1, pp. 54–73, 1977.

[32] K. D. Maxwell and P. Forselius, “Benchmarking software-
development productivity,” IEEE Softw., vol. 17, no. 1, pp.
80–88, 2000.

[33] J. Asundi, “The need for effort estimation models for open
source software projects,” in 5-WOSSE: Proceedings of the
fifth workshop on Open source software engineering. New
York, NY, USA: ACM, 2005, pp. 1–3.

[34] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, D. J. R. Ray Madachy, and B. Steece, Software
cost estimation with COCOMO II. NJ: Prentice-Hall, 2000.

[35] L. H. Putnam, “A general empirical solution to the macro
software sizing and estimating problem,” IEEE Trans. Softw.
Eng., vol. 4, no. 4, pp. 345–361, 1978.

[36] B. Kitchenham, “Procedures for performing systematic re-
views,” Software Engineering Group, Keele University,
United Kingdom and Empirical Software Engineering, Na-
tional ICT Australia Ltd, Australia, Tech. Rep., 2004.

[37] G. Gousios and D. Spinellis, “A platform for software en-
gineering research,” in MSR ’09: Proceedings of the 6th
Working Conference on Mining Software Repositories, M. W.
Godfrey and J. Whitehead, Eds. IEEE, May 2009, pp. 31–40.

[38] A. Mockus, “Amassing and indexing a large sample of version
control systems: Towards the census of public source code
history,” in MSR ’09: Proceedings of the 6th IEEE Intl.
Working Conference on Mining Software Repositories, M. W.
Godfrey and J. Whitehead, Eds., 2009, pp. 11–20.

[39] G. Gousios, “Tools and methods for large scale software
engineering research,” Ph.D. dissertation, Athens University
of Economics and Business, Athens, Greece, July 2009.

