
Enabling Real-Time Feedback in So�ware Engineering
Enrique Larios Vargas

Software Improvement Group
e.lariosvargas@sig.eu

Joseph Hejderup
Delft University of Technology

j.i.hejderup@tudelft.nl

Maria Kechagia
Delft University of Technology

m.kechagia@tudelft.nl

Magiel Bruntink
Software Improvement Group

m.bruntink@sig.eu

Georgios Gousios
Delft University of Technology

g.gousios@tudelft.nl

ABSTRACT
Modern software projects consist of more than just code: teams
follow development processes, the code runs on servers or mobile
phones and produces run time logs and users talk about the soft-
ware in forums like StackOver�ow and Twitter and rate it on app
stores. Insights stemming from the real-time analysis of combined
software engineering data can help software practitioners to con-
duct faster decision-making. With the development of CodeFeedr,
a Real-time Software Analytics Platform , we aim to make software
analytics a core feedback loop for software engineering projects.
CodeFeedr’s vision entails: (1) The ability to unify archival and cur-
rent software analytics data under a single query language, and (2)
The feasibility to apply new techniques and methods for high-level
aggregation and summarization of near real-time information on
software development. In this paper, we outline three use cases
where our platform is expected to have a signi�cant impact on the
quality and speed of decision making; dependency management,
productivity analytics, and run-time error feedback.

ACM Reference Format:
Enrique Larios Vargas, Joseph Hejderup, Maria Kechagia, Magiel Bruntink,
and Georgios Gousios. 2018. Enabling Real-Time Feedback in Software
Engineering. In Proceedings of 40th International Conference on Software
Engineering: New Ideas and Emerging Results Track, Gothenburg, Sweden,
May 27-June 3 2018 (ICSE-NIER’18), 4 pages.
https://doi.org/10.1145/3183399.3183417

1 INTRODUCTION
Decisions in software engineering are typically made in dynamic
circumstances [3]. The main e�ect of the changing nature in soft-
ware development projects is that the time dimension has to be
taken into account explicitly. For that reason, feedback is consid-
ered to be one of the most crucial features of dynamic decision
tasks and a valuable resource that, if used properly, can facilitate
the decision-making process [9].

In an era where many �elds of economic production strive for
higher e�ciency through data-driven decision making, software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5662-6/18/05. . . $15.00
https://doi.org/10.1145/3183399.3183417

production has yet to live up to the challenge. Modern software
projects are more than just the code that comprises them: teams
follow speci�c development processes; the code runs on servers
or mobile phones and produces run time logs; users talk about the
software in forums like StackOver�ow and GitHub and rate the
product in app stores, in blog posts and on Twitter; the software is
part of a collection of similar applications and depends on external
code or API's to deliver its functionality. To optimize the delivery
and the user experience of software, modern organizations need to
integrate and combine hundreds of metrics in real-time.

While tools and methods for extracting data from software de-
velopment processes, products and ecosystems, do exist, three key
aspects are missing: integration, composition and real-time operation
[8]. As a result, it is challenging for organizations to capitalize on
the wealth of data that software projects produce. Consequently,
software analytics are seldom integrated as a feedback loop in
software projects.

To remedy this situation, we propose the introduction of real-
time software analytics as a core feedback loop for software teams.
Our hypothesis is that the implementation of CodeFeedr, a Real-
time Software Analytics Platform, will represent a signi�cant contri-
bution in the �eld of software engineering in the following aspects:
(1) speeding up decision-making by reducing the time between
action and feedback or viceversa, (2) allowing the monitoring of
software development infrastructure in real-time and relating pro-
ductionmeasurements with development actions, (3) supporting the
integration of a multitude of data sources that comprise a modern
software project, and (4) enabling stakeholders to create up-to-
date customized information views of the software development
work�ow.

2 THE NEED FOR REAL-TIME FEEDBACK
In the �eld of software engineering, Real-time analytics has been
applied in: (1) Autonomous Systems and (2) Adaptive and Self-
Managing Systems. However, there has been little research done on
real-time feedback analytics applied to the software development
life cycle. In this context, we present three use cases where real-time
feedback analytics can have a signi�cant contribution.
2.1 Dependency Management
Open source software (OSS) libraries in large centralized code repos-
itories such as npm or Maven are increasingly becoming more and
more interconnected and interdependent. A side-e�ect of including
a highly interconnected library in a project, is that the projects
dependency tree of transitive dependencies can quickly grow large
over time. A growing number of transitive dependencies can intro-
duce complexities to conventional dependency management and

https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3183399.3183417

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden E. Larios Vargas et al.

have recently lead to severe security and trust implications. For
instance, the Equifax1 incident leaked over 100.000 customers credit
card information due to a critical security bug in the Apache Struts
library. Equifax was not able to update to a patched version of the
library in time after the vulnerability was known because it was
underestimated the impact. Thus, we identify the following features
to lack in dependency management:
The lack of end-to-end visibility of interdependent libraries.
Dependencies in a dependency tree change and evolve indepen-
dently. A dependency tree may look di�erent after a fresh build
due to the �exible dependency constraints, for example semantic
versioning ranges used in npm. A dependency can automatically in-
clude a more recent version, that may add additional dependencies
to the tree without the developer being aware of it. Further, the
additional dependencies may also be outdated, removed, include
more or new dependencies that may be unstable or have many crit-
ical bugs. These di�erent evolution characteristics have to co-exist
in a dependency tree, making it overwhelming and di�cult for
developers to digest. Moreover, developers have little control over
transitive dependencies and have to accept the decisions or risks
taken by other library maintainers.
Di�culty to evaluate the impact and risk associated with a
dependency. The active use of dependency checkers and monitor-
ing information feeds allow developer teams to keep up-to-update
with bug reports and new releases. This can yield a low signal-to-
noise ratio since it is di�cult to comprehend the bene�ts or the
urgency of updating a dependency to a newer version. For instance,
a dependency may be used through out a software portfolio, a
project may use outdated dependencies that require major re-write
or is in con�ict with other used dependencies.

A received bug report only indicates a�ected versions and not
the actual use of a dependency. This makes it di�cult to know
whether a transitive dependency puts a software project under risk
due to a security bug. Developers need to use subjective judgment
in these scenarios that could have devastating consequences.
Bugor change-impact propagation in an interconnected code
repository. A challenging part for library maintainers is to esti-
mate the damage (e.g breaking changes) made to clients due to
changes made or identi�ed bugs in the library. Understanding how
a library is used in other libraries and applications can help main-
tainers to better understand the risks before making changes. This
could be helpful in the event of a security bug, solving the bug
should be seen as a collaborative e�ort between maintainers and
clients. Therefore, ways to minimize breaking changes for clients
could be achieved by understanding how clients directly or indi-
rectly use a�ected code segment in a library.

The ever-changing nature of centralized code repositories explic-
itly impacts regular software project at the heart of the dependency
level. Therefore, it is important that changes are captured in real-
time and those changes are provided as feedback to developers and
library maintainers. In doing so, we believe that lightweight code
analysis can capture the risk and bug propagation across an ecosys-
tem and in dependency trees at the client-level. For instance, library
maintainers can identify a potential critical bug in the source coude

1https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

if they receive at the refactoring stage as a real-time feedback how
many clients are directly and in-directly a�ected by the changes.

2.2 Productivity Analytics
E�ective software productivity measurement is becoming a crucial
factor for decision-making in the current software development
practices, which have the goal to achieve faster application delivery
using new infrastructure, tools and methods focused on continuous
integration (CI), continuous delivery (CD) or continuous deploy-
ment. This scenario calls for switching towards a near real-time or
just in time approach for measuring productivity.

We envision that real-time analytics can have a signi�cant con-
tribution in the following challenges in productivity analytics:
Extending the scope of productivity measurement. Most ap-
proaches in this domain use only the outputs generated in the
coding stage, usually in terms of Source Lines of Code (SLOC),
functionalities or story points completed over time. However, we
can get a better understanding of stakeholders’ work by looking at
their interactions at a more detailed level and associating them to a
speci�c stage in the software development.
Absence of environments to improve performance. Meyer
et al. [12] highlights that knowing about the current progress of
work items and time spent in each activity provide with metrics
for self-monitoring and feedback. Additionally, Calvo et al. [4]
a�rms that there is a strong correlation between self-awareness of
one’s current state and person’s performance or behavior. Current
research in this area, such as TimeAware [10], is an example of
how real-time self-monitoring systems can contribute to improve
personal productivity.
The di�culty in identifying developers’ behavior patterns
to enhance productivity.During the software development work-
�ow, multiple tools capture real-time data about stakeholder’s ac-
tivities such as local environments, control versioning systems, CI
servers, testing environments and CD servers. What is missing is
a uni�ed data layer for mining patterns from developers activities
data that can be correlated to productivity factors to help tuning
productivity measurements.
An immediate and more e�ective visibility of the interplay
between code quality and productivity. Source code is contin-
uously changing in terms of enhancements, �xing bugs and new
requirements. It is a challenging task to understand and measure
the impact of changes over time. Furthermore, the possibility of
introducing an unintended fault or defect during those changes
is relatively high. This situation calls for urgent measures to im-
prove source code visualization by aligning near real-time data
from the software delivery pipeline with software quality factors
and productivity analytics metrics.

Assessing productivity using feedback resulted from aggregating
near real-time and archival data can contribute to conduct real-time
operational performance monitoring of software delivery pipelines.

2.3 Run-time Error Feedback
As software evolves rapidly, the need for new methods and tech-
niques that can ensure systems and applications’ availability be-
comes more intense. Software reliability is important for critical
systems, such as medical devices, smart vehicles, aircrafts and so
on, as well as for mobile applications that we use in every day life.

https://blogs.apache.org/foundation/entry/apache-struts-statement-on-equifax

Enabling Real-Time Feedback in So�ware Engineering ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden

Traditional approaches for developing robust programs include:
software veri�cation, prevention mechanisms using programming
languages’ features, as well as debugging, but these techniques are
time-consuming and su�er from false positives.

Next-generation real-time feedback mechanisms are able to e�ec-
tively support the productive development of modern software appli-
cations by reducing execution failures. Systems based on real-time
analytics can give feedback that addresses the following challenges.
Classi�cation of crash causes. To predict and prevent future
execution failures there is a need for grasping knowledge from
crowdsourcing data. Such data include: source code, commits, is-
sues, and crash reports and stem from online sources, such as: �&�
consulting sites (e.g. stackover�ow.com), issue tracking systems (e.g.
Bugzilla, Jira, GitHub, etc.), and so on. Then, there is a need for e�-
cient processing of data from software repositories and crash report
management services for real-time feedback on the classi�cation of
common failure reasons and the prevention from similar failures.

A real-time analytics platform can be used in order to enable
real-time integration analysis of diverse data. Given that these data
are in the form of text, natural language processing techniques (e.g.
similarity metrics, textual analysis, and parsing) can be applied here.
Therefore, such a real-time system can automate the processing of
data from a variety of sources improving decision-making.
Recommendations for the prevention of software crashes.
For preventing software and its consumers from su�ering from
future execution failures, researchers have devised algorithms that
learn from past software failure patterns and predict possible new
crashes. However, currently, it is not easy for developers to use these
theoretical methods. There is a need for more practical solutions.

A real-time analytics system will provide developers with alerts
for possible execution failures while they program new software.
For this, machine learning and software engineering techniques can
be used. Behind the scenes, a predictionmodel can be applied for the
identi�cation of failure prone modules during software production
based on learning the bad and good design and coding patterns
from source code, crash data, and so on. Additionally, applying
program and root cause analysis on appropriate data, an automatic
fault localization method can be used for the e�cient reproduction
and prevention of future software crashes. Thus, a tool such as a
plug-in for an IDE that can give real-time feedback regarding the
quality of software programs, assisting developers to write more
robust software.
Prioritization of bug �xes. Crash reports produced during ex-
ecution failures are very valuable for understanding and �xing
software bugs. However, crash data might include a lot of noise,
be incomplete, and hide important information hindering their
analysis and comprehension. Therefore, several approaches try to
interpret the messages that these reports convey to achieve accu-
rate error recovery. However, nowadays, there is also a need for
�xing software problems as soon as possible.

A real-time analytics solution can automatically identify pat-
terns in crash data, revealing actual reasons of failures. “Intelligent
tools” that are able to pinpoint critical faults, which should be �xed
soon, can eliminate developers’ e�ort to conduct manual root cause
analysis and guarantee fast as well as precise bug �xing.

Figure 1: Feedback-driven platform architecture.
3 DESIGN GUIDELINES
The three uses cases show a currently unful�lled need of software
projects: an integrated, near-real time, feedback loop based on
software analytics. To �ll this gap, we envision a platform that will
pursue the following design guidelines:
Provide instant feedback. This will enable DevOps teams tomon-
itor their infrastructure in real-time and relate production measure-
ments with development actions.
Integrate all potential data sources that comprise a modern
software project. Contrary to current software big data e�orts
that prioritize source code or repository analysis, CodeFeedr will
integrate all possible data sources, including natural language based
ones. Moreover, it will create a process and a data schema that will
enable other researchers to integrate arbitrary data sources.
Devise novelways of aggregation and summarization of soft-
ware analytics. CodeFeedr will enable various stakeholders (de-
velopers, DevOps, managers) to create up-to-date customized in-
formation views (textual or even graphical).
4 PRELIMINARY RESULTS
To realize our vision of an integrated real-time feedback loop in
software analytics, we present the architecture of the initial im-
plementation of a system to process software engineering data in
real-time. An overview of the high-level architecture is presented
in Figure 1. In the following numbered paragraphs, we explain the
role of each key component for our platform:
1) Stream processing of data sources. To deliver feedback in
near real-time, data needs to be ingested, processed and analyzed
upon arrival and piped-out in an acceptable time frame. Software
processes that trigger events such as commit to a repository, release
of an npm package, stack trace reports in a created JIRA issue or a
security advisory are the �rst-class citizens in the platform. However,
certain software processes focus on learning from past data or
events. This could be abandoned software projects that are no

ICSE-NIER’18, May 27-June 3 2018, Gothenburg, Sweden E. Larios Vargas et al.

longer maintained or learning from past mistakes to improve better
bug resolution. Therefore, it is important to be able to replay such
data or create stateful models of data sets.

These requirements are ideal for event stream processing to de-
liver a near real-time processing of software processes.
2) Software tool as a stream function. Event stream process-
ing frameworks support business-related functionally such as data
aggregation and summarization. In a feed-back driven platform,
many use cases would depend on advanced techniques such as
program analysis to evaluate whether a set of code changes reduces
or improves the code quality to a project before committing the
changes.

The platform should support the integration of current software
tools or techniques as stream processing functions. This implies that
tools that handle tasks such as automatic test suit generation, type
checker and taint analysis will be treated as a function. This also
further entails that certain of these tools need to be adapted to
process events as input data. This is di�erent from processing the
entire projects as input data (i.e. the analysis must be incremental).
3) Dynamic data source and function integration. Software
processes are ever-changing, and so are data sources and software
tools. An identi�ed requirement of our platform is the dynamic
integration of new data sources and processing functions (e.g soft-
ware tools). Further, the data sources and functions should be aware
about each others compatibility such that users can compose their
stream topology of functions and data sources freely. This implies
that data sources and functions need some form of schema or type
information to ensure compatibility. As an example, a function
that processes commit messages from Github should dynamically
recognize and be able to process commit messages from BitBucket.

We are currently building the means to support dynamic recog-
nition of data sources and functions, and also being able to modify
running stream topologies to e.g add Bitbucket data source in an
already running Github commit processing topology.
4) SQL query Interface. SQL being a declarative language de-
signed for static data has an expressiveness that could be ideal for
processing software data. SQL is the most popular query language,
therefore being able to express SQL queries over data streams could
make it useful not only for developers but also stakeholders who
are more acquainted to work with databases. Here is an example of
how a query could be expressed in natural language:

For [all | 100 recent | 50 most discussed] pull requests
on project A, prioritize those that are most important
to [me or my team]

The result would be feedback-driven and continuously updated.
5 RELATEDWORK
Our approach connects two major research domains: streaming
data processing and software repository mining.

The software repository mining community identi�ed early on
the need for platforms to analyze data from software repositories
on a large scale, for instance, Kenyon [2] and Boa [6]. Additionally,
Microsoft developed Codemine, a software development data an-
alytics platform for collecting and analyzing engineering process
data, its constraints, and organizational and technical choices [5].
However, all those projects have in common the integration of
important archival data sources; and, they do not aggregate any

information apart from source code, issues and emails. Furthermore,
they also do not use real-time analysis in their data sources.

In the �eld of mining software repositories (MSR), it is important
to mention three cases that inspired our work in the development of
CodeFeedr: (1) GHTorrent’s [7] approach to follow GitHub’s event
stream processing for events happening in real time on all project
repositories across GitHub, instead of mining the repository histo-
ries in a static way. On the other hand, (2) CodeAware’s [1] e�ort
to provide an integrated mechanism for giving early feedback to
engineers and to automate follow-up actions. This approach uses a
sensor-actuator-based ecosystem for distributed and �ned-grained
artifact analysis. Furthermore, (3) data-driven requirements engi-
neering [11], in which software practitioners could systematically
use explicit and implicit user feedback describing user experiences
in an aggregated form to support requirements decisions.
6 CONCLUSION
The development of CodeFeedr, a Real-time Software Analytics
Platform represents our vision to tackle current challenges for mod-
ern software projects. Our platform enables a real-time feedback
loop environment in order to: (1) speed up decision-making, (2)
monitor software development infrastructure in real-time and (3)
create up-to-date customized information views of the software
development work�ow.

CodeFeedr’s architecture facilitates integration, aggregation,
analysis and summarization of software analytics data as streams.
These features will enable software practitioners to cut across pro-
duction/run time layers in order to optimize software delivery,
performance and quality.
REFERENCES
[1] Rui Abreu, Hakan Erdogmus, and Alexandre Perez. 2015. CodeAware: Sensor-

based Fine-grained Monitoring and Management of Software Artifacts. In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 2
(ICSE ’15). IEEE Press, Piscataway, NJ, USA, 551–554.

[2] Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael Godfrey.
2005. Facilitating Software Evolution Research with Kenyon. SIGSOFT Softw.
Eng. Notes 30, 5 (sep 2005), 177–186.

[3] Janet E. Burge, John M. Carroll, Raymond McCall, and Ivan Mistrik. 2008.
Rationale-Based Software Engineering. Springer-Verlag, Berlin, Chapter 5, 67–76.

[4] Rafael A. Calvo and Dorian Peters. 2014. Positive Computing: Technology for
Well-Being and Human Potential. The MIT Press.

[5] Jacek Czerwonka, Nachiappan Nagappan,Wolfram Schulte, and BrendanMurphy.
2013. CODEMINE: Building a Software Development Data Analytics Platform at
Microsoft. IEEE Softw. 30, 4 (jul 2013), 64–71.

[6] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-large-scale Software
Repositories. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 422–431.

[7] Georgios Gousios. 2013. The GHTorent Dataset and Tool Suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236.

[8] Georgios Gousios, Dominik Safaric, and Joost Visser. 2016. Streaming Software
Analytics. In Proceedings of the 2nd International Workshop on BIG Data Software
Engineering (BIGDSE ’16). ACM, New York, NY, USA, 8–11.

[9] Jose H. Kerstholt and Jeroen G.W. Raaijmakers. 1997. Decision Making: Cognitive
Models and Explanations. Routledge, Abingdon, Oxon, Chapter 12, 205–217.

[10] Young-Ho Kim, Jae Ho Jeon, Eun Kyoung Choe, Bongshin Lee, KwonHyun Kim,
and Jinwook Seo. 2016. TimeAware: Leveraging Framing E�ects to Enhance
Personal Productivity. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). ACM, New York, NY, USA, 272–283.

[11] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe. 2016. Toward
Data-Driven Requirements Engineering. IEEE Softw. 33, 1 (jan 2016), 48–54.

[12] Andre Meyer, Laura E. Barton, Gail Murphy, Thomas Zimmermann, and Thomas
Fritz. 2017. The Work Life of Developers: Activities, Switches and Perceived
Productivity. IEEE Transactions on Software Engineering 43, 12 (dec 2017), 1178–
1193.

