
Foundations and Trends® in
sample
Vol. xx, No xx (xxxx) 1–147
© xxxx xxxxxxxxx
DOI: xxxxxx

Open Source Software:
A Survey from 10,000 Feet

Stephanos Androutsellis-Theotokis1, Diomidis
Spinellis2, Maria Kechagia3 and Georgios Gousios4

1 Patision 76, Athens, GR-104 34, Greece, stheotok@aueb.gr
2 Patision 76, Athens, GR-104 34, Greece, dds@aueb.gr
3 Patision 76, Athens, GR-104 34, Greece, mkehagia@dmst.aueb.gr
4 Patision 76, Athens, GR-104 34, Greece, gousiosg@aueb.gr

Abstract

Open source software (OSS), the origins of which can be traced back to
the 1950s, is software distributed with a license that allows access to its
source code, free redistribution, the creation of derived works, and unre-
stricted use. OSS applications cover most areas of consumer and business soft-
ware and their study touches many disciplines, including computer science,
information systems, economics, psychology, and law. Behind a successful
OSS project lies a community of actors, ranging from core developers to pas-
sive users, held together by a flexible governance structure and membership,
leadership and contribution policies that align their interests. The motivation
behind individuals participating in OSS projects can be, among others, social,
ideological, hedonistic, or signaling, while companies gain from their access
to high-quality, innovative projects and an increase in their reputation and vis-
ibility. Nowadays many business models rely on OSS as a product through the
provision of associated services, or in coexistence with proprietary software,
hardware, services, or licensing. The numerous OSS licenses mainly differ

on how they treat derived software: some contain provisions that maintain its
availability in open source form while others allow more flexibility. Through
its widespread adoption, OSS is affecting the software industry, science, engi-
neering, research, teaching, the developing countries, and the society at large
through its ability to democratize technology and innovation.

Contents

1 Introduction 1

1.1 Open Source Software and Other Types of Software
Distribution 3

1.2 Research, Related Disciplines, and Publications 5
1.3 Organization of this Paper 7

2 History and Evolution 9

2.1 The Early Years 9
2.2 Unbundling of Software from Hardware 12
2.3 The Early Years of Unix 12
2.4 Workstations, Networking and the Hacker Culture 13
2.5 Notable Events in OSS History 14
2.6 OSS Meets Proprietary Software 16
2.7 OSS Becomes Mainstream 17
2.8 Mainstream OSS Applications 20

3 Projects 21

i

ii Contents

3.1 Open Source vs Proprietary Software Projects 22
3.2 Project Success 24
3.3 Representative Examples 28

4 Communities 29

4.1 Actors 29
4.2 Leadership 33
4.3 Governance Processes 35
4.4 Coordination Challenges and Mechanisms 38
4.5 Evolution 42

5 Production Process 44

5.1 Modular Development Methodology 45
5.2 Requirements Definition 47
5.3 Incorporation of New Features 49
5.4 Code Integration 49
5.5 Release Management 50
5.6 Technical Infrastructure and Collaboration Facilities 54
5.7 Assessing Open Source Software Projects 56
5.8 Concerns 57

6 Licensing 59

6.1 Concepts and Definitions 60
6.2 Open Source Software Movements 62
6.3 License Types 62
6.4 License Selection 68
6.5 Concerns and Risks 70

7 Business Models 72

7.1 Strategic Advantages and Impact of Moving to OSS 73
7.2 Prerequisites, Deciding Factors and Concerns 75
7.3 The Open Source Software Ecosystem 78
7.4 Main Business Models 80

Contents iii

8 Adoption and Reuse 84

8.1 Adoption vs Reuse 84
8.2 Criteria for Reuse 86
8.3 Adoption Drivers 87
8.4 Concerns 91
8.5 Software Reuse Process 94

9 Motivation 97

9.1 Motivational Aspects for Individuals 99
9.2 Motivational Aspects for Businesses 103

10 Impact and Outlook 106

10.1 Impact on the Software Industry 106
10.2 Impact on Society 108
10.3 Tackling Global Challenges 112
10.4 Concerns, Research and Outlook 113

A Representative Applications 121

A.1 Systems Applications 121
A.2 Dekstop 124
A.3 Entertainment 125
A.4 Graphics 126
A.5 Education 126
A.6 Scientific and Engineering 127
A.7 Publishing 127
A.8 Software Development 127
A.9 Content Management Systems 130
A.10 Business Applications 131

References 132

1
Introduction

Open Source Software (OSS) is software distributed with a license allowing
access to its source code, free redistribution, the creation of derived works,
and unrestricted use. The history of open source software can be traced back
to the 1950s SHARE user group, the academic distribution of Unix, and the
GNU project.

Open source applications cover most areas of consumer and business soft-
ware. Prominent application areas include systems infrastructures like oper-
ating systems and databases, software development, personal productivity,
desktop, entertainment, graphics, publishing, education, scientific, engineer-
ing, content management, and business software.

The organization of open source development projects often differs from
proprietary ones in terms of their organizational structure, membership, lead-
ership, contribution policies and quality control. Lean, distributed, and often
informal operations make it easy to start or participate in an OSS project,
but also isolate projects from market pressures allowing many to languish or
fizzle.

Behind a successful OSS project lies its community. Its actors range from
core developers to passive users. Although a community’s governance struc-
ture is typically flexible, many processes and mechanisms align the interests

1

2 Introduction

of the community’s members. Initiative, teamwork, communication, and co-
operation are generally more important than in business software develop-
ment.

The key defining element of open source software is its license, which
must satisfy a list of important requirements. There are numerous open source
licenses, and they mainly differ in how they treat derived software: some
contain provisions that maintain its availability in open source form, while
others allow more flexibility. Selecting an appropriate license for a new open
source project is important, as is studying an open source project’s license
before incorporating it into a proprietary system.

Nowadays many business models rely on open source software, either
as a product or through the provision of associated services. Revenue can
be obtained from the complementarity of a proprietary product with an open
source one, support and training, subscriptions, and advertising. The strategic
dimensions behind a move to open source software include not only oppor-
tunities related to marketing and innovation, but also risks associated with a
loss of profits and the lowering of competition barriers. On a tactical level
an open source-based business model can lower development costs, enable
end-user customization, but will also demand new organizational structures, a
higher short-term investment, and the continuous nurturing of an open source
ecosystem.

Open source software can be reused as a (low cost) product, as an adapt-
able component, or as code and other elements that are morphed into another
system. Increasingly, open source systems form complete stacks used as in-
frastructure for other applications. In specific categories, such as web appli-
cations, the adoption level of open source software is near or even higher
than that of proprietary offerings. The impacts and effects from open source
adoption affect an organization’s bottom line, its management, the software’s
quality, and the software development process.

An often asked question regards the motivation behind individual and or-
ganizational participation in open source projects. The incentives for individ-
uals can be social, political, ideological, hedonistic, as well as the allure of
a flexible, stress-free, and bleeding edge technological environment. Compa-
nies seem to gain from their participation as well, through privileged access
to a high-quality product and its development process, as well as exposure
to user-driven innovation, higher reputation and visibility, human capital im-

1.1. Open Source Software and Other Types of Software Distribution 3

provement, and improved employee morale.
The emergence of open source software is fueling the economy as a whole

through its widespread adoption as a cheap alternative to pricey proprietary
products and as a driver behind many successful e-business ventures. Open
source is also directly affecting specific sectors: the software development
industry through competition and new business opportunities; hardware de-
velopment through lower cost and barriers of entry, consumer-led innovation
and policy enforcement difficulties; academia through valuable opportunities
for research and student involvement in real-world applications, as well as the
availability of software tools and the provision of pioneering new courses.

The future of OSS appears to be as exciting as its past. It can lead to
new design, production, marketing, and business models, as well as ways to
develop large complex software systems in an organic manner. Challenges
lie ahead, and problems still need to be overcome, so the potential for future
research on OSS is large. For instance, the comparison between open source
and proprietary products and processes is still an area lacking solid empirical
evidence. More important however is the ability of open source development
models to democratize technology and innovation.

1.1 Open Source Software and Other Types of Software
Distribution

Up to the late 1980s most packaged software was almost exclusively sold
and distributed as a complete and finished product (a so called “precompiled
binary”), which was installed on a user’s computer and then ran [24].

With the evolution of software development, computers and the internet,
new models and types of software distribution appeared. These differed in as-
pects such as the degree of openness of the software product (i.e. how much
information about the inner workings of it is exposed to the user), the pos-
sibility for the end user to modify it or use parts of it in other, derivative
software works, and the cost and licensing model.

According to the classification put forward by the Free Software Founda-
tion (FSF) [76] and elaborated by Perens in reference [181], the main types of
packaged software distributions used are the following:

4 Introduction

Proprietary or commercial software is typically distributed in binary
form only, with the source code closed, i.e. not available to the public. Pay-
ment is required and the terms of use are very restrictive, not allowing modi-
fication or redistribution.

Public domain software lies at the other end of the spectrum. The authors
of this type of software give up all copyright, the source code is freely avail-
able for modification or redistribution, and no fees are required. In fact it
is even allowed to obtain public domain software and re-distribute it under
other, non-open licensing schemes, or even remove the author’s name and
treat it as one’s own work.

Freeware and shareware products do not require upfront payment and can
generally also be duplicated, as is the case with public domain software, how-
ever modifications are typically not allowed as the source code is not dis-
tributed with the product.

The difference between Freeware and Shareware is that with Shareware
only limited usage of the product is allowed without payment, either for a
fixed evaluation period, or with reduced functionality. Shareware is generally
regarded as more of a marketing concept than a licensing option.

Open source software is the distribution and licensing approach that is the
topic of this survey. The main characteristics of OSS are outlined within the
Open Source Definition1 and can be summarized as follows.

• Free distribution: No licensing fees are charged for this type of
software.

• Source code availability: The source code is distributed together
with the product.

• Modifications and derivative works: The users of the software can
modify the source code to create derivate software products, or
reuse (parts of) the source code in other products. However this
may be subject to specific restrictions dictated by the OSS license
used.

1http://www.opensource.org/docs/osd. Note: All internet URLs in this survey, including in
the references section, were last accessed in March ’10.

http://www.opensource.org/docs/osd

1.2. Research, Related Disciplines, and Publications 5

• No discrimination: Either against persons, groups or fields of en-
deavour.

• Licensing: OSS products are copyrighted, and distributed with a
particular license that outlines the terms of their use. There are
various OSS licensing options, which differ in their degree of per-
missiveness and other aspects.

One of the most important aspects of an OSS license is whether any deriva-
tive work that is based on the source code of this particular software product
can be distributed under different licensing schemes (either OSS or propri-
etary), or whether it is only allowed to be distributed under the same license
as the original product.

The OSS licenses enforcing the latter condition are known as restrictive, or
“copyleft” licenses, and their goal is to ensure that the source code will remain
available to the public. The different types of OSS licenses are discussed in
more detail in Chapter 6 and summarized in Table 6.1.

OSS development is based on the formation of large, open and distributed
communities of developers who are guided by a common belief in the free-
dom of software and information, and who follow collaborative practices
such as sharing information, helping others, and studying and peer-reviewing
each other’s work. Such developers are motivated by their own interest in the
project and the urge to learn from it, and they are rewarded by the acknowl-
edgement of their contributions, the resulting reputation they gain, and the
success of the project itself.

1.2 Research, Related Disciplines, and Publications

The study of OSS is inherently multidisciplinary, encompassing various re-
search and scientific disciplines [78]. In the following list, as well as in Ta-
ble 1.1, we provide indicative examples of research efforts spanning two or
more research fields, including OSS:

• Computer and information system sciences study the technical as-
pects of OSS development [201, 163, 200].

• Management and organizational sciences deal with the manage-
ment, organizational and governance aspects of OSS project [164,
127].

6 Introduction

• Social science addresses areas related to the communities formed
around OSS efforts, their motivation, behaviour, and evolu-
tion [229, 48, 176].

• Psychology delves into issues relevant to the individual partici-
pants in OSS projects, what drives and motivates them, and how
they are rewarded [254, 138, 16, 69].

• Economics studies the business models that OSS projects are based
on, the involvement of corporations in OSS efforts, as well as the
ecosystems and collaborations built around them [146, 17, 110].

• Law focuses on the various legal, licensing and copyright issues
around OSS distribution [149, 148, 203].

• A multitude of other scientific fields (such as medicine, biology,
and engineering) benefit by using OSS products, and by applying
OSS ideas and methods in their domain [10, 28].

Interest in OSS spans many professional areas and domains, including
software development, business, research and government. In Chapter 10 we
discuss in more detail the impact of OSS in all these domains of our society
and global economy. We feel that this survey provides not only an overview of
the field, but also considerable practical information for those wishing to get
involved in OSS as developers or project members, by adopting OSS in their
products, or by gaining insight from the OSS practices, ideas and experience.

Within this survey there are numerous references to works from many
different scientific domains and disciplines. We highlight some in Table 1.1,
which itemizes some of the most informative relevant works, grouped by
subject. We separate empirical studies, surveys and overviews, and articles
focusing on specific subjects. We also recommend:

• the collected works in [54, 67],
• the 2004 theme issue of IEEE Software [216], the 2004 issue of

Research Policy [239], the 2006 issue of Management Science
[240], the 2010 special issue of the Journal of the Association for
Information Systems [42], and

• the proceedings of the International Conference on OSS, and the
FLOSS ICSE Workshop.

1.3. Organization of this Paper 7

Empirical studies Surveys / Overviews Specific topics

Project communities
[53][127] [229]
[46][109][128]

[133][170]
[21][70][205]

Motivations
[22][75][101]

[102][137][138]
[238]

[21][190][257]
[11]

Success factors [21][37]

Software development [163][218]
[200][179]

[66][67][201]

Innovation and future [75][238][71] [235][240][232]

Adoption and reuse [98] [222] [216]

Business models [204] [248] [21][205][72]

Licenses [140][146][148]

Generic [56]
[51][54][83]

[94][185][245]
[129]

Table 1.1 A collection of informative publications on different aspects of Open Source Software.

1.3 Organization of this Paper

In this survey we aim to cover most aspects of OSS, including technical, so-
cial, organizational, economic, and legal, as well as provide an outlook to the
future of OSS by identifying current shortcomings and research directions.

In particular, Chapter 2 overviews the history and evolution of OSS, from
the first free software development efforts to the latest OSS business and fi-
nancial models.

Chapter 3 deals with the organization of OSS efforts into projects, their
comparison with proprietary software development efforts, and particular
characteristics and potential indicators for project success.

In Chapter 4 we examine in more detail the characteristics of the com-
munities that are formed around OSS projects, the different actors and par-

8 Introduction

ticipants, the leadership and governance mechanisms that are employed, and
their evolution.

Chapter 5 focuses on the more technical aspects of OSS, and in partic-
ular the software development practices and processes. It presents the main
characteristics of OSS software development and how it differs from other
domains.

Chapter 6 on the other hand analyses the legal and licensing perspective,
which is crucial as it characterises the permissiveness and often the impact
of each OSS effort. We briefly outline the main OSS movements, the differ-
ent licensing options and we provide some guidance into selecting the most
appropriate licensing scheme depending on an OSS project’s characteristics.

In Chapter 7 we focus on the economic and financial nature of OSS

projects, and what business models can be adopted to extract business value
from an OSS effort. We discuss the business ecosystems that are formed
around successful OSS efforts, and the various roles that companies and orga-
nizations can play within them.

Chapter 8 then focuses on the important issue of adoption and reuse of
OSS software into other products and domains. It examines the criteria for an
OSS product to be a good candidate for reuse, the process of adopting and
reusing OSS code, and benefits but also the potential risks and concerns that
accompany this practice.

In Chapter 9 we discuss the motivational aspects for engaging in an OSS

effort, both for individuals and for businesses and organizations.
We conclude in Chapter 10 with an overview of the impact that the OSS

process and ideology has had on the software business and our society, clos-
ing with a discussion of the current research directions, and where they may
lead the future of OSS.

2
History and Evolution

The concept of open or free software is old. Its roots lie in the 1960s and
1970s, when early computers were used in universities for research, and soft-
ware programs were freely circulated among scientists. Building upon each
other’s software and giving back the modifications was considered a normal
communal practice and became a feature of what was known as “hacker cul-
ture” hacker being a term used in communities of programmers to character-
ize skilled and passionate programmers (although later it also acquired a neg-
ative significance by the public). Raymond [186] and Bretthauer [24] provide
excellent historical prespectives of the early days of the hacking movement.

In the following paragraphs we briefly trace the evolution of OSS through
the main systems, events, applications and movements that shaped it. Fig-
ure 2.1 outlines this information, while figure 2.2 offers a more diagramatic
view of the transformations of the OSS landscape as one event, movement or
initiative led to another, reaching the current state of the OSS domain.

2.1 The Early Years

The beginning of OSS is associated with the appearance of the first large com-
puter systems. As programmers invented programming tools, techniques and

9

10 History and Evolution

SHARE and USE

FSF/GNU/GPL

MIT/PDP1

IBM/701 DEC/PDP8
DEC/PDP11

MIT/CTSS
MULTICS

ARPANET
UNIX

BSD

Berkeley obtains UNIX
BSD

2BSD
3BSD 4.3

NetBSD
FreeBSD

OpenBSD4.2

BASIC SUN

X-window system

GNU

Emacs

FSF

GPLv1

GPLv2
GNU/Linux

GNU Hurd

Cygnus
Linux

RedHat

OSI
OSI Founded

Mozilla

MySQLab

Apache

TeX
Perl
PostgreSQL

PHP
Gimp OpenOffice

KDE
GnomeSendMail

Eclipse

Early systems OSS Applications

Events & Milestones

Major movements

20001950 1960 1970 1980 1990 2010

HomeBrew

Firefox

Lions'
MIT
Athena

ACM Collected Algorithms

DECUS

USENIX / STUG

JAVA
IBM PC

GPLv3

Kermit
R-project

gcc Postgres

SourceForge

First entry in collection

DECUS Founded

USENIX founded

IBM s/w-h/w
debundling

AT&T
Unix V7

netlib
Netcape OSS

Solaris
Open-

630 entries 900 entries

Minix

Fig. 2.1 The history and evolution of OSS. Main systems, applications, events and movements.

applications to render them productive and useful, they freely shared them
among themselves, often contributing to each other’s efforts.

Although the first commercial computer put on the market that required
programming was IBM’s 701 in 1952 [245], it was MIT’s acquiring of the
first PDP-1 in 1961 that gave rise to the hacker culture that is still recog-
nizable today. This was the heart of MIT’s Artificial Intelligence Laboratory.
Later came DEC’s PDP-8 in 1965, followed by the innovative PDP-11 in 1970,
which was much more affordable and had good enough performance both for
universities and corporate research [198].

These early computer systems established the need for multiuser support,
and the solution proposed by MIT in the early 1960s was the Compatible
Time-Sharing System (CTSS). This was followed by a joint endeavour be-
tween MIT AT&T’s Bell Labs and General Electric in 1964 to build the Mul-
tics system, which was expected to be released with its source code openly

2.1. The Early Years 11

50s 60s 70s 80s 90s 00s 10s

- First large computers
- All software freely
 distributed among
 scientists

- Commercial
 interest in S/W
- IBM unboundles S/W
- S/W turns toward
 closed distribution
- AT&T closes UNIX
- S/W becomes
 explicitly OSS

Stallman,
GNU,FSF

Berkeley,
BSD Unix

TeX

GNU/ Linux

NetBSD

RedHat

X11

Perl

Emacs

GCC

PHP

Mozilla

KDE

mySQL

OpenOffice
Apache

FirefoxPostgres

Gimp

- Increased interest in OSS,
- New economic models
- Hybrid licensing
- Open sourcing products

Netscape

Tanenbaum,
Minix

USE

ACM Calgo
DECUS

SHARE

ARPANET

- Global OSS community
- Hacker culture
- S/W development intensifies

OpenSolaris

OSS
distributors

First community
organisations

Sendmail

Emergence of
proparietary

software firms

MIT AI Lab

applications

operatin
g systems

O
pe

n
so

ur
ce

so
ft

w
ar

e
P

ro
pr

ie
ta

ry
so

ft
w

ar
e

OpenBSD

FreeBSD

Minix

Suse

Debian

Mandrake
...

: Dual license

...

Torvalds,
Linux

OSI/OSD

Perens,
Raymond

Fig. 2.2 A diagramatic view of the evolution and transformation of the OSS domain.

available to the public. The project ran into problems, but this led two Bell
Labs researchers, Ken Thompson and Dennis Ritchie, to work on a new type
of operating system (which later became Unix), whose brief history and basic
operating principles are described in a seminal paper [188].

From the very beginning the communities of users that revolved around
the development and use of open software felt the need to organize them-
selves, often in ways resembling current OSS project communities.

Some of the first such instances were the SHARE user group of IBM and
the Univac Scientific Exchange (USE) in the 1950s and 1960s, which were ran
by volunteers to facilitate the distribution of software [64]. Similarly DECUS,
founded in 1961 as a society for users of Digital Equipment Corporation’s
computers, promoted the open exchange of user-developed software; initially
through listings and later through magnetic media [55].

12 History and Evolution

The ACM Collected Algorithms,1 initiated in 1960, archives software as-
sociated with papers published in the Transactions on Mathematical Soft-
ware, as well as other ACM journals. It is a family of publications including
a collection of around 600 software algorithms that were freely distributed
for non-commercial use.2 It is one of the first organized instances of public
distribution of software source code and algorithms.

Sharing software and building on each other’s work was still the only way
known to the software community.

2.2 Unbundling of Software from Hardware

Up to the 1970s software was commonly distributed for free by hardware
manufacturers, who were “bundling” it with their hardware as one product
and including the cost of the software with the hardware. However, as soft-
ware evolved and became more complex, so did the cost of developing it.
An emerging software production industry was competing with this trend,
seeking to sell their software independently.

A series of antitrust suits filed against IBM in 1969 resulted in a change
in IBM’s pricing policies and the offering of computer programs for a charge
[195], thus paving the way for proprietary software development. Software
then started being sold, often under restrictive licenses.

Six years later Bill Gates, having created a BASIC interpreter for the Altair
8800 microcomputer, found himself fighting to establish a presence on what
would later become the home and personal computer software market. In an
open letter to hobbyists [82], Gates argued that the notion of sharing soft-
ware without paying for it was hurting software developers, and that royalty
payments were critical for the development of high-quality software.

Both events, by restricting the availability of software, sowed the seeds of
the OSS movement.

2.3 The Early Years of Unix

Ritchie and Thompson published the key ideas underlying the Unix operating
system in 1974 [188]. Coincidentally, a 1956 “consent degree’ prohibited

1http://calgo.acm.org
2http://www.acm.org/publications/policies/softwarecrnotice

http://calgo.acm.org
http://www.acm.org/publications/policies/softwarecrnotice

2.4. Workstations, Networking and the Hacker Culture 13

AT&T, the legal entity behind Unix, from engaging in any business other
than the furnishing of common carrier communications services. As a result,
Unix was supplied royalty-free and without any formal support [198, pp. 56–
60]. The combination of Unix and the C programming language developed
by Ritchie proved very popular, and spread very quickly to a large number
of university and research computer labs (the “Hackerdom”, as dubbed by
Raymond [186]).

With the source code in their possession, users including programmers,
students and researchers were able to use Unix as a tool for learning, enhance
it to cover their particular needs, and extend it to support their specific hard-
ware. With no formal support from AT&T users were forced to collaborate
and share ideas, information, programs, and bug fixes [198, p. 65].

A related movement sprang out of Kernighan and Plauger’s work to pop-
ularize Unix’s programming tools by publishing a book with readable and
concise implementations of some key utilities [122]. The tools’ source code
was made available in executable form by the book’s publisher [122, con-
tents page]. Programmers in universities and computer vendors collaborated
to enhance those tools and port them to various architectures, and in 1978
they formally grouped together as the Software Tools User Group [198, pp.
78–90].

In 1976 John Lions, an Australian computer scientist, published the com-
plete source code of the 6th Edition Unix kernel together with a commentary
of it [150]. It is considered an excellent description of the high-quality Unix
kernel code, and for years it was the only public documentation available.

Although the first versions of Unix were freely distributed, as AT&T re-
alised its value as a commercial product it decided to distribute Version 7 in
1979 with a license that restricted access to the system’s source code [198, p.
151]. A side-effect of this was that Unix could no longer be used in univer-
sity courses for teaching (and similarly the Lions book was no longer allowed
to circulate). This was the main reason Andrew Tanenbaum later decided to
develop the Minix operating system, as discussed in Section 2.5.

2.4 Workstations, Networking and the Hacker Culture

The late 1970s and 1980s saw the flourishing of two key drivers of OSS devel-
opment, namely computer networking [184] and personal workstations (see

14 History and Evolution

Ceruzzi’s account of the influence of both technologies on hacker culture de-
velopment in reference [30]). Both allowed the exchange and distribution of
information as well as software between programmers at a new, global scale,
boosting worldwide collaboration and productivity. Programmers and hack-
ers from many parts of the United States and the world became connected,
forming a networked group with its own culture, discussions, norms of be-
haviour, slang, and eventually beliefs and ethics .

Two notable OSS distribution efforts that were made possible by network-
ing advances are

• the Usenet newsgroups net.sources (1982)3 and mod.sources
(moderated—1984),4 which were later renamed into the
comp.sources hierarchy, and

• the email-based netlib repository of software serving the numeri-
cal and scientific computing communities [57].

2.5 Notable Events in OSS History

The increasing trend toward proprietary software further fuelled the emerging
OSS movement, whose advocates felt the need for free, open source operating
systems and applications to be available to the public, leading to several core
development efforts.

The Berkeley Software Distribution The University of California at
Berkeley and Bell Labs collaborated to help Unix flourish between 1974 and
1977. This gave rise to the Berkeley Software Distribution, or BSD, a version
of Unix with improved features, tools and utilities [144]. The BSD was shared
with many research centers worldwide with the provision that they first obtain
a source license from AT&T, thus encouraging them to view and contribute
to the source code.

A second, more advanced version of the BSD was ready in 1978, while
the use of an advanced version of Unix on the new 32-bit VAX machine at
Berkeley led to the 3BSD distribution in 1979 [158].

It was realised at that point that as the research community continuously

3http://groups.google.com/group/net.sources/msg/d2bbe4e01cfd64c6
4http://groups.google.com/group/mod.sources/msg/39c786363ae144c9

http://groups.google.com/group/net.sources/msg/d2bbe4e01cfd64c6
http://groups.google.com/group/mod.sources/msg/39c786363ae144c9

2.5. Notable Events in OSS History 15

modified the Unix system, an organization was required to manage and coor-
dinate the new releases. This role was undertaken by Berkeley, as a result of
its involvement thus far [158].

DARPA also decided to unify its activities at the operating system level,
and chose Unix as the standard to use. The new 4BSD distribution thus came
up in 1980 with a per-institution licensing arrangement, followed by a series
of major releases, such as 4.3BSD the first release to include a full TCP/IP

stack, as well as the more recent NetBSD, FreeBSD and OpenBSD.
During the 1980s, Berkeley and AT&T released their respective new Unix

versions, which gradually became harder to tell apart.

The GNU Project, the Free Software Foundation and the GPL When
the computer systems used at MIT’s AI lab were replaced with new hardware
that ran a proprietary operating system, the OSS programmer community that
had formed around it gradually collapsed. Richard Stallman, a member of the
lab, started looking for an alternative that could make the OSS community
possible again, and this led him to the concept of free software, and in par-
ticular to the decision to create a new, Unix-compatible operating system that
he called GNU (Stalman’s article collection [83] contains many details on the
early history of GNU). In 1985 he released the GNU Emacs editor, which he
distributed for free over the network, or packaged on tape for $150. The GNU

system included code from other projects that were also free software, such
as the GNU Compiler Suite (GCC).

To support the GNU effort, Stallman initiated the FSF in 1985, to pro-
mote “the freedom to share and change software”. He famously explained
that “when I speak of free software, I’m referring to freedom, not price. So
think of free speech, not free beer” [83, Chapter 1]. Most of the income of the
FSF came from the sales of copies of free software and other related services,
and secondarily from donations. Emacs and other free software, as well as
manuals, were sold on tape, and later on other media. Part of this income was
used to hire developers to work on basic GNU projects, such as the shell and
the C library [83, Chapter 18].

One of Stallman’s and the FSF’s concerns was that their work could be
taken and used in proprietary packages. To protect from this, the concept
of copyleft was developed as a mid-way in between public and proprietary

16 History and Evolution

software. This concept was the basis for the GNU General Public License,
released in 1989 [24] (see Section 6.3.1).

The combination of GNU with the Linux kernel developed by Linus Tor-
valds (see below) in 1991, led to a complete GNU operating system [83, pp28].

Minix In 1987 Andrew Tanenbaum of the Vrije University of Amsterdam
released Minix, an open source operating system based on a microkernel ar-
chitecture which he created mostly for educational purposes [224]. Its source
code was made available to universities for study and research. The design
of the Linux operating system is considered to have been influenced by the
Minix design principles, although Linux is not a microkernel per se.

First OSS applications Of the OSS applications that were developed
around that time, some are still in widespread use today, notably the X-
Window System, and TEX.

The X-Window System, developed at MIT but including contributions
from numerous other sites, is the longest living foundation for developing
graphical user interfaces. It is argued that its success was in great part due to
the developers’ willingness to open its source code and distribute it for free
over the network with a very permissive license [186, Chapter 4].

The TEX [125] typesetting system was written by Donald Knuth in 1978,
and rewritten from scratch and published in 1982. It is considered as one
of the most sophisticated typesetting systems. The TEX Users Group (TUG) 5

was founded in 1980 as an organization for users of TEX and people interested
in typography and font design.

2.6 OSS Meets Proprietary Software

The OSS and proprietary software worlds and cultures often met, affected
each other’s course, and sometimes clashed. IBM’s un-bundling of software
from hardware and AT&T’s closing of the Unix source were two such exam-
ples.

In 1975 the Homebrew Computer Club was formed by computer hobby-
ists and enthusiasts. The rule of the club was that anyone could take a copy

5http://www.tug.org/

2.7. OSS Becomes Mainstream 17

of software out, as long as they brought back two copies in the next meeting
[115].

At that time, Bill Gates together with partner Paul Allen had written a
version of the BASIC computer language that became very popular and was
being wildly copied from one user to the other. Practices like this led Gates
to write an “open letter to hobbyists”, in which he addressed the issue of
intellectual property rights and innovation.

This was one of the first cases of confrontation between two different
cultures, which carried on for decades and is still ongoing.

Several years later, OSS started influencing proprietary systems. Various
software vendors added the X-Window System to their proprietary offerings,
and released the end product under a non-disclosure agreement. Paradoxi-
cally, soon most of the users of X-Windows were not running the free MIT

version, but the proprietary versions that came from these software vendors
[83]. OSS however was already establishing itself at an increasing pace.

2.7 OSS Becomes Mainstream

The Emergence of OSS Vendors As OSS became a mainstream phe-
nomenon new companies were formed to benefit from this trend, and many of
the existing proprietary software firms started looking toward the OSS move-
ment, adopting it and often learning from it.

OSS software vendors and distributors appeared, OSS licensing was
adapted to allow for hybrid solutions based on new financial and business
models, new categories of services revolving around OSS were offered, and
proprietary firms started opening (at least partly) their products’ source code.

Founded in 1989, Cygnus Solutions was the biggest vendor of OSS at the
time. It offered technical support services, with the GNUPro Developers Kit
being one of its primary products [225].

At the same time, a multitide of OSS software infrastructures and applica-
tions appeared and gained widespread reputation.

Linux and OSS Distributors Linux is a free Unix-like kernel developed
under the lead of Linus Torvalds in 1991. One difference between the Linux
project and other concurrent efforts was that since its inception, it was based
on a large community of developers whose work was coordinated only

18 History and Evolution

through the internet. Frequent, almost weekly releases ensured that plenty
of feedback was received within days from hundreds of users, and this was
the main quality control mechanism for selecting which code changes to keep
and which to reject [186, 227].

By 1993 Linux was stable enough to compete with many commercial
Unix releases, and hosted more software applications. It was distributed com-
mercially on CD-ROM with enormous success, and it was one of the focal
points of hacking activity on the internet.

The Linux kernel is often bundled with other software, such as the shell
and associated utility programs developed under the GNU effort, a graphical
environment based on the X-Window System with the KDE or GNOME desk-
tops running on top, as well as various application and server programs, such
as the Firefox browser and the Apache web server respectively.

By 1994 6 various Linux distributions were available at small cost, includ-
ing SuSE, Debian, and RedHat. Notably RedHat Software bundled together
hundreds of OSS software packages licensed into a so-called Linux distribu-
tion for retail sale [255].

Licensing Issues and The Open Source Initiative In July 1997, Bruce
Perens, the leader of the Debian GNU/Linux Distribution project, addressed
the problem of many different licenses for software that claimed to be “free”
by proposing the Debian Social Contract and the Debian Free Software
Guidelines (described by their author in reference [181]). Based on these,
together with Eric Raymond who had studied and published work on the free
software phenomenon and culture, they formed the Open Source Initiative
(OSI).7 Their goal was to establish a practical approach to software licensing
and to promote commercial use of OSS [207].

The OSI developed the Open Source Definition (OSD) set of guidelines
for OSS licenses that guarantees several freedoms for software users. The
term Open Source Software, instead of Free Software, was proposed in order
to assuage the reservations of business users. The term was met with resis-
tance by the Free Software Foundation [83, Chapter 14], on grounds of not
appropriately protecting the user’s freedom.

6A comprehensive history of Linux distributions is provided by Wikipedia:http://en.wikipedia.
org/wiki/Linux_distribution

7http://www.opensource.org/

http://en.wikipedia.org/wiki/Linux_distribution
http://en.wikipedia.org/wiki/Linux_distribution
http://www.opensource.org/

2.7. OSS Becomes Mainstream 19

The Open-Sourcing of Mozilla In 1998, Netscape announced that it would
release the source code of the current version of its Navigator web browser
under the name Mozilla. A licensing team wrote the software license and
Mozilla.org was formed to coordinate the entire project. A group of Open
Source community leaders (including Linus Torvalds and Eric Raymond) met
with the Netscape legal team to discuss the existing licenses. The result was
to craft a new license, the Netscape Public License (or NPL) in an attempt to
protect OSS developers and at the same time promote development by com-
mercial enterprises [100].

The first draft was published for comment by the public on the internet,
and the feedback received led to the design of a new version of the NPL, as
well as the similar Mozilla Public License (MPL).

Mozilla.org set up an organization, accumulated funds and resources and
started functioning.

The Mozilla Firefox browser came about in 2004, multiply licensed un-
der the GPL, LGPL (a version of GPL, see Section 6.3.2) and the MPL at the
developer’s choice [51].

Sendmail and Dual Licensing Sendmail is a major, successful open source
application (it carries most of the world’s email traffic) that was licensed un-
der a dual license, i.e. both open and commercial.

The project started in 1981 at Berkeley by Eric Allman (author of the
ARPANET delivermail application that was part of the BSD) as an open devel-
opment project for a Unix-based mail transfer system. The open source ver-
sion is licensed under an OSI-approved BSD-like license [251]. However the
company Sendmail Inc. was eventually established in 1998 by Allman to de-
velop and sell an enhanced, commercial version of the software that includes,
among other features, a GUI for facilitating installation and configuration.

So two versions of fundamentally the same software were distributed un-
der an open source and a proprietary license. This example was later followed
by other software vendors, such as Trolltech and MySQL AB that commercial-
ized their products, the Qt widget library and the MySQL database respec-
tively, under a dual licensing scheme, enabling them to be very successful
in both the commercial and the OSS application ecosystem. (An account of
the reasons that may lead dual-licensed software to success is provided in

20 History and Evolution

reference [230].)

2.8 Mainstream OSS Applications

A number of operating systems and a multitude of OSS applications emerged
over the last three decades, including systems applications and infrastructure
software, desktop applications, software for publishing, graphics and enter-
tainment, scientific and business applications, and of course a whole range
of tools for software development including compilers, interpreters, editors,
IDEs, and version control systems. In terms of user base many OSS systems
occupy the first or second place in their respective category.

Some of the most notable and successful such applications are outlined in
the Appendix of this article.

3
Projects

This chapter introduces what is commonly referred to as an open source
project. This loose term encompasses a collective effort whose goal is the
production and support of software products. An open source project gener-
ally consists of the following:

• A community of developers, users and other actors, based upon an
organizational and governance structure, driven by specific goals,
and unified by shared values and cultural characteristics.

• Various software production processes for the management, de-
velopment, release and maintenance of the software products.

• Technologies, infrastructures, platforms and tools utilized in the
software production.

• A licensing model that abides by the general OSS guidelines, while
at the same time ensuring the viability and success of the project.

We discuss many of the above aspects of OSS projects (as well as others)
in other chapters of this survey. In this chapter we focus on open source as a
development methodology, and on cross-cutting characteristics and concerns
that distinguish open source projects from proprietary endeavors and affect
their success.

21

22 Projects

OSS projects Proprietary projects
Membership Substantial voluntary participation

Large number
Open to all, voluntary
Virtual boundaries, fluid
Independent community

Paid staff
Limited number
Closed (company)
Bound by contracts
Belongs to company

Decision
making

Core developers or project leader
No formal structure, voting consensus
Meritocratically distributed

Company / organization
Strict and rigid structure
Centralized control

Motivation Intrinsic and extrinsic, social / political Monetary rewards / career
Actors Usually skilled and motivated

Devote part of their time to project
Developers and users

Company employees
Main occupation, full time
No users employed

Table 3.1 Differences usually encountered between OSS and proprietary software projects. Part a: Com-
munities

3.1 Open Source vs Proprietary Software Projects

Several key distinguishing factors highlight the differences between OSS and
proprietary software projects. We compare the two from the following per-
spectives.

Community Issues relevant to the communities formed around the
projects, the different actors, motivation and membership, and decision mak-
ing processes.

Software Production How code changes are managed, the testing pro-
cesses followed, the release management approaches, and the technical en-
vironment and infrastructure.

Business Issues relevant to licensing, business models and decisions, and
how adoption and reuse of the project artifacts is encouraged.

Tables 3.1, 3.2 and 3.3 summarize some significant differentiating factors
under the above three categories. These are discussed in more detail in the
relevant sections of this survey. Note that in these tables we try to present the
average picture, as it is reported in the literature, but clearly there are excep-
tions and this comparison is not representative of every single OSS project.

3.1. Open Source vs Proprietary Software Projects 23

OSS projects Proprietary projects
Environment Decentralized and geographically

distributed
Rare face-to-face communication,
asynchronous means
Scarce project plans or schedules
Non-assigned jobs and tasks, volun-
tary participation and selection
Massively parallel development
No explicit system-level design
No list of deliverables
Process and code open to all
Tasks selected based on developers’
expertise and interestes

Mostly centralized in one or
few locations
Regular face-to-face communi-
cation and meetings
Project planning, scheduling
Work assignmed and coordi-
nated by project leaders
Smaller sized teams
Rigorous design processes
Strict development guidelines
Closed communication
Developers trained and as-
signed specific tasks

Change
management

Implementation and patch submis-
sion before final review

Documentation-level changes
and review before implementa-
tion

Testing
processes

Informal
Peer reviewing
Community and user participation
Strong community involvement af-
ter release

Formal, reporting
By testers, QA engineers
Within company/organization
Mostly completed before re-
lease (or during beta-testing)

Release
management

Frequent releases of minor im-
provements, no fixed dates
Minimal promotion and marketing
Scarce documentation and
community-based technical support

Infrequent major releases on
fixed dates
Promotion and marketing
Documentation and formal
technical support

Table 3.2 Differences usually encountered between OSS and proprietary software projects. Part b: Soft-
ware production

OSS and proprietary software are the two extremes of a spectrum of po-
tential approaches. As a result, a variety of hybrid models emerged that en-
compass elements from both. The goal of these models is to capitalize on the
strong points that each perspective has to offer.

Typically, proprietary and commercial software projects are characterized
by strong emphasis on the user requirements elicitation and design phases,
rigorous documentation, strict scheduling and assessment processes, high
level technical support to the client base, and of course business mechanisms
that facilitate adequate profitability.

OSS on the other hand is mostly characterized by open processes, fluid
and self-organizing communities based on widespread communication, a de-
velopment culture stemming from collaboration, self-assignment of tasks and

24 Projects

OSS projects Proprietary projects
Licensing Some version of copyleft licensing

No cost of acquiring software
Proprietary license, copyright
Software sold at a cost

Business
models

Value-added packaging
Services and Support
Loss-Leader
Widget Frosting
Accessorizing
Dual Licensing

Product, service or hybrid,
Licensing, royalties, mainte-
nance

Adoption /
Reuse

Permitted at all levels, based on
specific license

Incorporation and support of
reused element’s production
processes

Table 3.3 Differences usually encountered between OSS and proprietary software projects. Part c: Busi-
ness

peer-reviewing, participation of the user base in the project, and frequent re-
leases to reflect the outcomes of different development tasks carried out by
independent groups of developers.

3.2 Project Success

We briefly discuss project success from the following three perspectives.

• What prerequisites should a project fulfill in order to have a good
chance of being successful.

• How to ensure the sustainability of a project that has reached a
certain level of success.

• What indicators can be used to distinguish a successful project
from other, less successful ones.

3.2.1 Important Prerequisites for Success

There are certain preconditions that should be taken into account at the first
steps of an OSS project’s organization, and are key to its success. We briefly
discuss the main ones that have been identified in the literature.

Project Starting Points Whether the project is initially conceived in the
mind of one person, or among a group of developers, it starts off as an idea
within a topic of interest. The strength and originality of this idea, together
with any initial hints as to how it may evolve into a software artifact are key to

3.2. Project Success 25

the entire endeavour [78, 36]. Whereas with proprietary software the market
pressures are likely to make projects based on mediocre ideas quickly cease
to exist, with OSS such projects could be allowed to languish for a long period
of time.

The audience that the project will be targeted toward should also be clear
from the beginning. End users, software vendors integrating a component,
system administrators, or other developers are possible users. The project
should identify valid and important needs and provide effective solutions for
them [36, 40], otherwise it may not attract real interest.

Finally, though secondary with respect to other decisions, the natural lan-
guage of the project may play an important role in the exposure it will have
and the user base it will reach [36, 148]. English of course is the language
that appeals to the largest audience.

Community Organization The decision making processes, hierarchical
structure and leadership model for the project community should be decided
upon in a way that reflects the mentality of the project creators. A meritocratic
culture should also be inspired and enforced to the extent possible [79].

Technical Issues An appropriate choice of technical environment and in-
frastructure (operating system, internet connectivity, tools, etc.) [148] as well
as programming languages [36] is important for an efficient software devel-
opment process. With OSS additional issues may include hosting providers
for the project repository (such as SourceForge1 and GitHub 2). Moreover,
the choice of external project dependencies has been shown to affect the suc-
cess of a project under development [95].

Open Source Perspective The choice of licensing scheme [148, 40, 79,
21] and the definition of an effective and reasonable business model [79]
are both issues that should be tackled from the beginning of the project. For
example a license or business model that does not reflect the aims of the
project community in terms of freedom or plans to use the project outcomes

1http://sourceforge.net/
2http://github.com

http://sourceforge.net/
http://github.com

26 Projects

may lead to internal conflicts, forking (see Section 4.3.4), or even demise of
the project after considerable effort has been invested.

3.2.2 Factors in Project Sustainability

Ensuring the sustainability of a project after it has started, and making sure
that it will not stagnate or loose its momentum requires further attention. We
briefly examine the evolution and sustainability of both the software system,
and the project community.

Software System Sustainability As the software evolves to achieve the
identified goals and cover its specifications, its documentation and testing
material has to be constantly developed and adjusted as well [175, 185].
Over time, software maintainability will become an increasingly more com-
plex problem. This phenomenon, defined as “software aging” [178], has been
shown to equally affect OSS and proprietary software in [200, 256, 131]).
Consequently, a clear definition and visibility of the entire software archi-
tecture (a task that is often beyond the scope of individual developers) will
greatly aid the maintenance tasks. This is a particularly sensitive matter for
OSS projects, which are based on a largely distributed developer base, and
have also been criticized for poor documentation quality (see also Section
10.4).

Re-engineering parts of the software may be required as well [200], al-
though due to the distributed development nature of OSS projects this needs
to be carefully coordinated. Operational support of the resulting product (in-
cluding tasks such as configuration management) will also aid in making the
system maintainable in the long term.

Community Sustainability The sustainability of the project community
also needs particular attention. Initially, it is important for the project’s suc-
cess to build a good first impression for the product or service offering. (For
example, Choi et al. show that first impression plays a critical role in attract-
ing more developers [32].) Afterwards, it is crucial to keep a high level of
developer and user satisfaction [37], which can be achieved through continu-
ously evolving and taking advantage of the developers’ skills and competen-
cies [36] and carefully balancing and matching the project development tasks

3.2. Project Success 27

with the skills and areas of interest of the developers. In OSS efforts these
skills and competencies may be the main motivating factors for the devel-
oper’s contributions, as well as an effective safeguard against the possibility
of forking.

The relationships between project members also need to be carefully man-
aged and coordinated, and care has to be taken in maintaining a widely ac-
cepted leadership model,3 while at the same time providing adequate recog-
nition of the achievements and efforts of all community members.

3.2.3 Success Indicators

In identifying projects that stand out as particularly successful, the following
indicators could be used (a more comprehensive study is presented in refer-
ence [143]).

Development Stage A project that has progressed into more advanced de-
velopment stages (e.g. from alpha to beta and then to stable [37], or in a
SourceForge development stage of 4 or higher [168]) is more likely to be a
healthy project, backed by an active community of developers.

Popularity A frequently downloaded project, (e.g. one with a download
ranking of 85% or higher [168]) is likely to be a successful one [206].

Activity and Visibility Frequent and visible development [206] or bug fix-
ing activities are indicators of a healthy and successful project. The availabil-
ity of defect logs, and the average time elapsing between bugs being reported
and fixed are very strong such indicators [168]. A project with accumulating
bug reports that are not acted upon is likely one that is no longer actively
supported.

Tools and Software Environment The software tools that are made avail-
able by the project (e.g. for automated unit testing), the portability of its code
across different platforms, its compatibility with other programs, or signifi-

3See Section 4.2 for more on the role of leadership in OSS projects.

28 Projects

cant efforts to internationalize and localize the project’s user interfaces and
documentation, may also be indicators of a robust project.

3.3 Representative Examples

We have already introduced various OSS applications and projects, and in the
rest of this survey we will examine the characteristics of many of them in
more detail. Examples of successful and popular projects that have helped
shape the OSS domain include the Apache4 web server, the OpenOffice5 pro-
ductivity suite, the Mozilla6 web browser, the MySQL7 relational database
system, the Eclipse8 development platform, Linux9, the GNU tool suite10, and
various BSD11 operating systems.

All of these projects share various common defining characteristics.

• They are supported by large, active communities of developers.
• They abide by strict guidelines concerning their software develop-

ment and governance processes.
• They have set up foundations to manage the projects.
• They are partly financially supported through sponsorships and

donations.
• They include working groups responsible for the promotion of

the project, and the translation of the software into different lan-
guages.

• They organize conferences and workshops to promote the project
results and advances.

• Many contributions come from paid developers.

More details about the above, as well as other projects can be found in the
relevant chapters of this survey, as well as in their online web sites.

4http://www.apache.org
5http://www.openoffice.org
6http://www.mozilla.org
7http://www.mysql.com
8http://www.eclipse.org
9http://www.linux.org
10http://www.gnu.org
11http://www.freebsd.org,http://www.netbsd.org,http://www.openbsd.org

http://www.apache.org
http://www.openoffice.org
http://www.mozilla.org
http://www.mysql.com
http://www.eclipse.org
http://www.linux.org
http://www.gnu.org
http://www.freebsd.org, http://www.netbsd.org, http://www.openbsd.org

4
Communities

Around any successful OSS project an extensive community of people is
formed. This dynamic group features members at different roles, capacities,
degrees of involvement and responsibilities. In this chapter we examine the
structure, elements and characteristics of OSS project communities.

4.1 Actors

Several studies have investigated the community structures [229, 253, 155]
and ad-hoc team formation properties [41, 173, 99] that emerge in OSS

projects as a result of the distributed collective processes required when de-
veloping software. A notable community structure that emerges in most such
studies is the so-called onion model: the project development team is orga-
nized in concentric circles, where the most inner circle includes developers
that have a managerial and leadership role while outer circles have gradually
less control on the project. For instance, in reference [38] the authors study
project success through a survey of SourceForge projects based on the num-
ber of developers, project activity, bug fixing and the number of downloads.
Promotion strategies permit community members to transcend community
roles [58, 114].

29

30 Communities

Development,

maintenance &

documentation

Bug reporting

Code reading

User support

Financials,

prom
otion,

m
arketing,

business devel

Owner
Core developers

Active developersBug reporters

Bug fixers

Active users

Code readersAffilia
ted organisations

Actors

Coo
rd

in
at

io
n,

de
cis

io
n

m
ak

in
g,

m
em

be
rs

hi
p

&

re
le

as
e

m
an

.

Reviewing,

testing

& bug fixing

Coremembers

Activemembers

 Peripheral
members

 Responsi-
bilities

OSS
project

Fig. 4.1 The main actors of OSS project communities grouped as core, active and peripheral members,
and their main roles and responsibilities. Additionally passive users, who can contribute to the projects’
motivation through download and use, complement the entire projects community.

A more detailed view of project organization in concentric circles is pro-
vided in Figure 4.1. The figure analyzes the typical structure of an OSS project
community, highlighting the main actors, how they are grouped in member-
ship categories and what responsibilities they undertake. Note that although
this subdivision of responsibilities and roles may give the impression of a
strict hierarchical organization, the OSS community does not usually perceive
it as such, but rather as a natural extension of the division of labour [19].

The size of the core/active parts of these project communities can vary
significantly, from many projects consisting of a single person to relatively
large projects involving several hundreds of active members, while the num-
ber of core members is typically considerably smaller than the number of
peripheral members. Empirical evidence can be found in studies of large OSS

projects, like Apache, Linux, Mozilla, and Gnome, based on data retreived
from online repositories [162, 129, 163, 128].

The various actor categories are outlined below, while Chapter 5 includes
more details regarding many of their functions in the software production
process.

4.1. Actors 31

4.1.1 Core Members

Often OSS projects are inspired and initiated by one person, the project owner,
as opposed to an already formed community [185, 11]. In these cases, even
if a number of core developers join the effort, the owner keeps setting the vi-
sion and often maintains most of the roles and responsibilities for the project,
including, apart from the obvious technical development tasks, making de-
cisions regarding the direction the project will take, managing the releases
and the licensing schemes to be adopted, and any business models required
to ensure the project viability [19, 145, 21, 129, 174].

In OSS projects that consist of more than a very small number of members,
however, the main strategic decisions about the overall project direction are
the responsibility of a subgroup of active and frequently contributing mem-
bers, often referred to as the core developers [80, 11, 170, 254, 191, 19],
who are generally responsible for a large part of the project outcome
[162, 80, 163, 126]. This “inner circle” of programmers [128] varies in size,
and may also vary in time (e.g. for GNOME the size was at a certain point in
time around 50 developers, for Apache around 15 at a different time [128],
and for FreeBSD 9 [117]).

Core developers typically have voting rights and code commit privileges
[162, 163, 21, 19]. Apart from their valuable technical contributions to the
code, they are also responsible for setting up and/or participating in commit-
tees with more specific responsibilities, most notably the release management
committee. This committee is responsible for deciding what will be included
in future releases of the project. Decisions are made through a voting process
(although in various cases instead of a committee there may in fact be only
one person)[73].

Some of the core developers who are responsible for handling specific
modules or code areas (see Section 5.1) and their related commits are also
known as maintainers [117, 53, 73, 39].

4.1.2 Active Members

The active members of an OSS project consist of active developers and bug
fixers [80, 170, 254, 19, 73].

32 Communities

Active developers are programmers who regularly contribute bug fixes and
code for new features, as well as relevant documentation [11, 170, 254, 19].
They need to have a good understanding of large parts of the source code and
the project architecture [170, 254]. As a result they often constitute the most
important development force, along with core members.

Bug fixers fix bugs reported by bug reporters (or sometimes bugs they come
across themselves), and therefore need to have some understanding of parts
of the source code of the project [11, 170, 254]. Often bug fixers do not have
commit privileges, but they submit a patch to an active developer.

4.1.3 Peripheral Members

Peripheral members have a more sporadic participation in the project, yet
they constitute the majority in OSS project communities [80, 170, 254]. These
members share a common interest in the project and identify with it, and are
in touch through the different communication channels used, thus both bene-
fiting from and contributing to knowledge exchange and build-up. Reference
[258] contains an extensive literature review as well as some relevant empir-
ical findings.

As OSS project communities tend to be of a particularly dynamic nature,
peripheral members who maintain active involvement and consistently offer
valued contributions may be granted greater systems access and more central
project roles by the project’s core members. For a more detailed discussion
of the these role transformations see also [170, 254, 58, 114].

The following are the main categories of peripheral members.

Peripheral developers contribute to the code from time to time, usually
with some localised bug fixes or minor new functionalities, as evidenced by
a number of case studies [170, 254].

Bug and problem reporters identify and report bugs or other issues [80,
11, 170, 254, 19].

Code readers are involved users of the project software with an interest in
the source code, which they study and sometimes also review and comment

4.2. Leadership 33

on [254].

Active users are users of the project software who typically participate in
the relevant fora, offer support to other users [11], and may also occasionally
act as bug reporters or participate in requirements elicitation and testing. For
a discussion of these activities see also [137].

Affiliated organisations or businesses offer various kinds of support, such
as financial, business development, and promotion [68, 11].

4.1.4 Passive users

Although they cannot be considered members of the project community in
the strict sense, the passive users of the resulting software system have an in-
volved attitude toward the project, and may offer their critique and comments
[68, 11, 170, 254].

4.2 Leadership

The OSS project community is organized around and led by a governance and
leadership structure.

4.2.1 Leadership Models

Despite the broad nature of OSS projects, clearly defined and well-structured
governance models are often found in their communities [154, 174], and can
be roughly distinguished in two broad categories: monarchical and federal
[154, 129, 73]. [154] in particular describes a case study that was performed
with focus on the motivation for and coordination of software development
work in OSS projects, and was based on literature reviews, interviews with
OSS developers, and other research findings.

In monarchical (or “star-shaped” [156]) leadership models the initial
project inspirer (and owner) maintains a central role, and the entire project
is based on his/her decisions and visions [154, 129, 73]. A variation of the
monarchical model is the hierarchical model [35]. In larger projects, such as
the Linux kernel, to facilitate fast work turnover, the project leader transfers
portions of its authority to a selected group of core team members; in such

34 Communities

cases, the leadership model effectively resembles that of a military organi-
zation.1 Well known examples of this include Linus Torvalds of the Linux
project [52] (sometimes humorously described as a “benevolent dictator”)
and Larry Wall of Perl [154].

In federal leadership models, the responsibilities are more “democrati-
cally” distributed among the core members of the project.

Examples include the FreeBSD[117], the Apache Group [154], the De-
bian’s Core which consists of the Debian Project Leader and a periphery
of maintainers [197, 156], and Mozilla’s Core Team which consisted of
Netscape Employees [154].

A project’s leadership model evolves as the project matures or when new
requirements emerge [174]. Moreover, the project’s source code structure has
a measurable effect on the potential of a developer to become the project’s
leader. [90].

4.2.2 Skills

The project leadership naturally arises through a meritocratic process, based
on factors such as technical proficiency, knowledge, dedication to the project
goals, as well as the number and importance of the contributions made [21].
In the monarchical model, only leaders that are perceived as outstanding man-
age to generate significant project communities. As a result, trust and respect
are reflected in the formation of the leadership team. In practical terms, both
reputation and peer review processes are utilised [70, 205, 128, 53], whereby
the role of developers includes reviewing the participation and code contri-
butions of other developers (their peers) [156]. For more details see reference
[156], which discusses the relationship between institutions and the projects’
sustainability and evolution both from a theoretical perspective, and empiri-
cally based on the Debian project.

Based on the above observations, and as evidenced by many OSS projects,
important prerequisites for a developer to become a core member of the
project include a perception of fairness and trustworthiness, dedication with-
out ego-based or political bias [145], and active participation and long-term
contributions to the project. Paola Giuri and her colleagues through an em-

1In fact, Linus Torvalds refers to his trusted team of patch integrators as lieutenants

4.3. Governance Processes 35

pirical study of the roles, skill profiles and activities of individuals registered
with OSS projects in SourceForge.net found that a good balance between tech-
nical and social/leadership skills is important [90]. Nevertheless, purely tech-
nical skills and talent are in some cases given more weight [145, 205, 73, 53].
Good communication and social skills are also important and allow for “lead-
ership without coercion” [103], clear communication of the project’s vision
and goals, attracting new members to the project and securing funding and
support [73].

4.2.3 Structure

Ultimately, the organisational structure of OSS projects stems from the com-
bination of (or conflict between) a flat, anarchistic and free nature [185] that
is inherent to the project (as there is no enforcing institution, developers are
geographically distributed, and do not often meet face to face), and a clear,
layered, hierarchical leadership model that the project community agrees on
and tries to impose.

The organisational boundaries themselves are usually open to everyone,
in contrast to traditional organisations, and membership is fluid. This allows
new contributors to enter, and constantly innovative ideas and perspectives to
be introduced to the project [145, 170, 205, 163], forming what are described
as “horizontal innovation networks” [234].

Finally, whatever governance structure ends up being defined and fol-
lowed, it is likely to change with time and need as a result of project evolution
and the actions of individuals [205] (see also Section 4.5).

4.3 Governance Processes

Some of the main governance processes of OSS project communities include
management of membership, allocation of tasks, and decision making.

4.3.1 Membership Acceptance

Membership in OSS projects is generally open to all. However the manage-
ment of acceptance into and level of participation within the various tech-
nical or governance groups, as well as in the core team, is handled either
by the core members of the project (e.g. the Core Team in the Apache project

36 Communities

[70, 163, 205, 154]) or by a designated group (e.g. in the Linux project [154]).
These groups have total authority over admitting members based on their
contributions and on an assessment of their skills, usually through a voting or
consensus procedure (this process can take as long as 6 months in the Apache
project). In more extreme cases members can be demoted or expelled if they
are judged to have misbehaved.

A model that is closer to proprietary software development was followed
in the case of the Mozilla project, as many of the contributing members were
paid by the project for their work, and the project authority and control was
largely maintained by the Mozilla organization [163].

In another example, a “joining script” is followed by candidates to the
Freenet project, whereby a set of significant contributions have to be made,
such as offering technical advice or developing high-quality code, in order to
be accepted as a developer [238].

4.3.2 Membership Promotion

Projects that maintain community membership processes or requirements,
usually prescribe promotion or demotion rules for development team mem-
bers [56, 114, 35]. Such rules may require from project members to actively
contribute to the source code repository during regular intervals [56], to intro-
duce significant (based on the community’s judgement) work [58], and finally
to be a long-lasting outstanding member of the community [35] in order to
join the project’s governance board.

4.3.3 Labour Division

Labour division refers to the allocation of different tasks to developers. Due
to the open and voluntary nature of the projects and communities, this process
is based on trying to balance various often conflicting considerations.

The developer’s preferences are taken into account and, to the extent pos-
sible, respected [185, 163, 170, 21]. Developers can always choose what to
work on in open source, but the project may not accept contributions that are
not solicited/desired. The skills and area of expertise of the developers are
important, and the goal is to couple them with the open tasks requiring work
[21]. However in some cases a more loose approach is followed, where de-
velopers can pretty-much choose what they will work on, and are not strictly

4.3. Governance Processes 37

assigned tasks [205, 170], sometimes leading to a “problem of choice” This
is discussed in reference [46], which presents a stochastic simulation of the
allocation of resources.

The notion of code ownership [163], whereby one developer is mostly
responsible for a module or section of the project, and other developers make
secondary contributions to it, is usually strong. This is usually not a pre-
determined role, but emerges as a result of particular expertise or recognition
in a particular area, whereas in other cases it is actually enforced through the
task allocation process.

Stefan Koch and Georg Schneider, through data retrieved from the Gnome
project’s CVS repository, found that a small number of developers usually
work on the same file [128], which is considered an indication of a high
degree of labour division. The “stigmergic” theory [53], inspired by self-
organization theories, further examines this by arguing that the community
reacts to “stigmas”, or signs in the code base (such as the existence of a spe-
cific code tree), and that the hierarchical nature of the project architecture is
a means of revealing a related hierarchy of preferences among developers.
Finally an association often exists between the degree of collaboration and
the code complexity [53].

The process followed to achieve the desired division of labour and allo-
cation of tasks starts with the pending jobs being communicated to the core
team and the rest of the community, usually in mailing lists, or through bug
and issue repositories. For example, in the Mozilla project the Bugzilla bug
tracking system is used by developers to seek help for issues they are having
with their code. The selection of tasks is based on personal interests, skills
and capabilities, and the allocation of tasks to volunteers follows the consid-
erations described above. It is not possible to force developers to work on a
task if they do not want to. In case a certain task finds no developers willing
to or capable of working on it, the task may be set aside temporarily, at the
risk of the entire project being jeopardised if it is crucial [21].

This form of labour division is not as inefficient as it may sound. Allo-
cating development resources according to the developers’ interest ensures
that only features for which there is genuine interest get implemented, while
elements lacking community support languish and die. This is commonly ex-
pressed in OSS projects through phrases such as “put your code where your
mouth is” or “shut up and code”. A more detailed discussion of the motiva-

38 Communities

tion driving the developer contribution can be found in Chapter 9. Further-
more, when there are no developers willing to work on an essential feature,
this often indicates that the feature’s code base is in a bad shape. A com-
mon outcome in such a situation is a developer stepping in for a complete
rewrite, which benefits the whole project’s code quality. Thus a dynamic pro-
cess helps to ensure that an OSS project’s essential code parts are in a state
where developers can actively maintain them.

4.3.4 Technical Decision Making

The most important decisions related to the project code are made by the core
developer team. Such decisions may include code development orientation,
what to include in future releases, architectural issues, how to handle critical
bugs, etc.

Such decisions are taken through a process of voting and consensus
[163, 90]. Usually any developer can vote or express an opinion (for example
through the project mailing lists), but only the votes cast by the core group are
considered binding [70, 205]. This may lead to disagreements, for example
if the “owner” of a particular part of the code does not agree with decisions
made by the core team.

In these cases the owners may try to exert pressure to the core team to
adopt their opinion [156], but if this fails they may in some cases decide
to abandon the project, or even start a different project adopting their own
approach. This is called “forking”, and it is one of the risks faced by OSS

projects [129] (see also Section 4.4.1).

4.4 Coordination Challenges and Mechanisms

OSS project coordination is subject to a variety of challenges, due to the large
and variable nature of their communities.

4.4.1 Co-operation Challenges

OSS project development and coordination is faced with the following main
challenges.

4.4. Coordination Challenges and Mechanisms 39

Geographically Distributed Development Due to the wide, variable and
decentralised nature of the development community, face-to-face interaction
is rare [163, 205, 21, 197], the multicultural profile of the team may intro-
duce communication difficulties, and language, customs, even different time
zones make coordinated development even harder. The communication dis-
tances have been found to lead to lower development performance and overall
delays [108], though there is also conflicting evidence. In particular, see the
empirical study of the effect the global nature of the FreeBSD project has on
productivity, quality and cooperation [212].

Modularized Code Production Decentralization, and the fact that volun-
tary developers usually cannot devote large amounts of time to the project
[205], result in development tasks being highly modularized [145] and re-
quiring even more careful coordination to avoid “stepping on each other’s
toes” [21]. The notion of “code ownership” helps in this respect, but intro-
duces other risks (see below).

Heterogeneity in Opinions and Aims, and Risk of Forking Conflicts,
differences in opinions and arguments are more frequent than in traditional
projects, due to the difficulties in coordination and communication [156].
These may lead to forking, as discussed above, which may be initiated by
code owners who feel they should have decision making power and believe
that the project is not going in the direction they want [156]. A notorious
example of a forked project is the 386BSD operating system, which forked
into FreeBSD and NetBSD. Later on OpenBSD was forked from NetBSD, and
DragonFlyBSD was forked from FreeBSD. All systems but 386BSD are ac-
tively maintained, have a loyal user base, and regularly exchange technical
advice and code.

Free-Riding A common problem is that of community members not con-
tributing anything to the project, while benefiting from the contributions of
others [61, 130], e.g. through code, solutions to problems, algorithms, design
features etc. that they can use for their own benefit. Note that this is an issue
with project developers and not passive users, who are always welcome and
beneficial to a project’s community.

40 Communities

Handling Code Complexity The complexity of the development process
itself puts considerable pressure on the developers and may lead them to cod-
ing solutions, approaches or styles that are not recommended and may render
the code base hard to debug or maintain [197, 156].

A further challenge is related to two activities that have been termed ex-
ploration (the extension of existing technologies or the development of new
features) and exploitation (the use of already developed knowledge without
changing its nature) [197]. For example, in the Debian project core develop-
ers are mostly responsible for exploratory activities, whereas peripheral de-
velopers mostly focus on exploitation of existing code. Although the two are
not necessarily mutually exclusive, finding the right balance between them is
often a difficult task.

4.4.2 Cooperation Tools and Mechanisms

The lack of a project plan or deliverables schedule [163, 205] means that
the remedies to the above issues are mostly based on either synchronous or
asynchronous communication and cooperation avenues. The most frequent
mechanisms are the following (see also Section 5.6).

• Free-form discussions based on email, or IRC channels
• Structured discussions based on discussion forums, bug tracking

systems,
• Mailing lists
• Newsgroups (USENET)
• Chat rooms for direct communications
• Wikis

4.4.3 Conflict Resolution

OSS project communities are generally characterized by common, perva-
sive “cultural” characteristics [154, 185, 205, 221] (the “hacker” or “geek”
culture) that unify the group of technically oriented and passionate people
through a set of common beliefs (e.g. in the freedom of software and the
choice of work), values (e.g. community and cooperative work) and norms
(e.g. open disclosure and acceptance of outside critique) [61]. However pit-
falls still exist, and conflicts or arguments often need to be addressed and dealt

4.4. Coordination Challenges and Mechanisms 41

with. These are usually the result of issues with compliance (e.g. behaviour,
fairness to other, respect for property rights and discipline), reciprocity (e.g.
with respect to code reviews and help) or social pressure (e.g. hostile emails,
shunning, spam etc.) [205, 70, 162, 204, 154]. Conflicts are thus dealt with
through the following approaches.

Rules and Institutions Generally accepted rules, guidelines and protocols
are often employed [130, 21, 205, 156] that encompass the common notions
of validity, describe responsibilities, rules, processes such as voting, commu-
nication, code submission, notification of new issues, and licensing issues.
Examples include the Debian Social Contract2 and Free Software Guide-
lines [156].

Monitoring and Reputation Some projects include procedures to share
information about the actions of developers [130], such as the volume of con-
tributed code, members that are inactive over a long period of time, or code
changes that resulted in a build failure. Reputation mechanisms may be used
to reward good work and correct behaviour [154, 205], and maintain or attract
developers, while peer review and supervision, as well as parallel debugging
[128], are also widely employed [205].

Hierarchy and Authority Authority, at all levels, plays a role in the avoid-
ance and resolution of conflicts either through applying governance proce-
dures, or through regulation and control [156, 130]. Quorum voting systems
can be set up (e.g. in Apache) [163, 205], while the administration hierarchy
and code ownership structure also impose control over the intensity of con-
troversies, as they are based on trust and experience and are therefore usually
respected [156].

When required, sanctions or different forms of punishment, usually to
do with their participation in (or expulsion from) different groups, may be
applied to shape the developers’ behaviour [130].

2http://www.debian.org/social_contract

http://www.debian.org/social_contract

42 Communities

4.5 Evolution

There are conflicting theories regarding the adequate size of the project’s de-
velopment community. There are those who believe that “given enough eye-
balls, all bugs are shallow” [185], whereas others caution us of the risk of “too
many cooks in the kitchen” [160]. And although it is generally believed that
an increased number of developers does not lead to a proportional increase
in productivity, studies such as Koch’s [126], which analyses both small and
large, successful and failed projects and their programmers using version-
control data, have shown that the attraction of a larger number of participants
in OSS projects is generally beneficial.

In any event, the project’s sustainability depends on the evolution of its
community [128, 47]. We thus briefly overview the processes and require-
ments for membership augmentation and retention.

4.5.1 Membership Augmentation

Many OSS projects have a specific marketing and promotion agenda [172],
which usually involves publicizing the projects’ attractive features and the
benefits it may bring to new members. These may include job opportunities
and knowledge acquisition [37, 167], and specialization in particular areas of
development work [221].

New members are also likely to be more attracted to projects that
are healthy and successful. Indicators of this may be frequent releases
[103], good project management and communication avenues [221], and a
strong development community (good programmers attract good program-
mers [18]).

Important attractive factors also include open access to mailing lists and
involvement in the project for new members [37] as well as a pleasant envi-
ronment and a culture of providing support and mentoring to new members
[137, 5, 167, 221].

4.5.2 Membership Retention

Equally important to the augmentation of the community with new members
is the retention of the current ones. This favours projects that maintain an at-
mosphere of fun and motivation [172, 5] (see also Chapter 9), and place em-

4.5. Evolution 43

phasis on trust, quality of communication between members [221], a sense of
membership and identity [167, 221] and a categorization of roles that relates
recognition of the members’ contribution [167].

Fairness and reciprocity are also important and affect the willingness of
volunteers to contribute [204]. These can be enhanced through reputation [37,
221] as well as reward and penalty [205] mechanisms.

The community must be kept balanced in terms of the required participa-
tion in different roles, in order to be kept sustainable [170, 162].

Finally members should be allowed to engage in relationships with out-
side entities such as customers or vendors, and not be given the impression
that they are “locked” inside the project and not free to leave the community
if they wish to [205].

4.5.3 Technical Requirements

There are also a series of more technical requirements that favour the evolu-
tion of an OSS project community. The interaction between developers, and
especially new ones, should be facilitated through the use of shared reposi-
tories with clearly defined access rights [167], as well as the use of content
meta-data marking to make it easier to search [1]. The code should be con-
stantly maintained so that it is fresh, sanitized and well documented for new
developers to extend [1, 103]. And finally, within a variable and distributed
development community a more modular codebase and architecture is easier
to work with than a monolithic one [6]. In this last article the authors devise a
model to show that the architecture of a codebase affects developers’ incen-
tives to work within the framework of the open source development process,
and thus argue that it can have a major impact on the sustainability and value
of such processes.

5
Production Process

The software production process within an OSS project depends on the
project’s organization, governance, community structure and goals. As has al-
ready been stated, not all OSS projects are the same, and therefore they don’t
all adopt the same software production processes. However if we focus on
established, successful projects with communities of considerable sizes, we
can identify some common distinguishing characteristics and traits. These are
the focus of this chapter.

The open and collaborative nature of OSS project communities, with pub-
lic contributions, freely distributed documentation, and wide participation in
technical and managerial decisions, offers significant opportunities for learn-
ing and skills development (known as the “technology spillover” effect [19]),
as well as practices such as massively parallel debugging [93], whereby de-
velopers utilize and peer-review each other’s code1.

Various phases of the OSS software development cycle also exhibit spe-
cific characteristics. The requirements definition and elicitation phase can in-
vole both end users (who are closely related to the project community) and
project developers, often resulting in more direct understanding of user needs

1 Practices such as this have been found to result in improved code quality [129, 157, 231], although this
view has been repeatedly questioned in empirical studies [77, 200, 179, 152, 214, 49].

44

5.1. Modular Development Methodology 45

and requirements, or problems that need to be addressed. The incorporation
of new features and the integration of newly developed code follows spe-
cific multi-stage procedures including prototyping, voting, reviews and test-
ing within specially set up developer groups. Finally the management of re-
leases, including timing, procedures, packaging and distribution, which usu-
ally includes the project source code, is also undertaken by developer entities
collaborating at different roles and responsibilities.

The OSS development process is also characterized by increased modular-
ity, which is key in producing a clear and understandable design and allows
autonomous, contained, and independent contributions by separate groups
of developers. As the community participates in product development deci-
sions, technological considerations and innovation are taken into account and
incorporated in the end product. Often technologically superior alternatives
are chosen, even if they are not economically the most favorable solutions. A
risky experiment with a new promising, or even controversial, technology is
at most one branch away from the main project trunk.

Table 5.1 summarizes some key differences between software production
within an OSS project and a proprietary software development firm. These are
expanded upon in the following paragraphs.

5.1 Modular Development Methodology

Empirical studies, such as the one on the design structure of Mozilla and
Linux by Alan MacCormack and his colleagues [152], have shown that a
fundamental characteristic of many OSS projects and development method-
ologies is the decomposition of the system design into separate modules.
Modularity characterizes a system whose parts can be designed and imple-
mented independently, but will work together to support the whole [6]. The
compatibility of the different modules is ensured by a set of horizontal archi-
tectural design rules. There is a trend for more modular design in proprietary
software products as well, and it can be argued that to some degree this is the
result of learnings taken from the OSS domain.

Various degrees of modularity and coupling between components are pos-
sible, with monolithic designs at one end of the spectrum, and loosely coupled
ones at the other.

The core architecture of many large OSS projects can generally be de-

46 Production Process

Open Source Software Proprietary Software
Developer community organization

Individuals or large, open, variable commu-
nity
Widespread ad hoc collaboration
Enthousiastic, motivated, hacker culture
No conflicts of interest
End-user involvement high

Company employees
Hierarchical organization
Corporate culture
Potential conflicts, friction
End-user involvement low (but rising)

Governance and project management
Informal management structure
Decisions taken through code contributions,
voting, discussions, disagreements
Responsibilities and tasks allocated through
fluid, informal procedures
Possibilities for tasks without developers,
forking, duplicate efforts

Strict hierarchical management
Decisions taken by management
Responsibilities and tasks strictly assigned by
management
Organized control of resource allocation and
effort management

Software development procedures
Innovation and technological considerations
more than financial ones affect decisions
Massively parallel debugging and peer re-
viewing processes
Design modularity and loose coupling are
critical
Requirements arising from project commu-
nity and associated users
Documentation sometimes not formally de-
veloped, sometimes of lesser quality
Usability issues not always addressed, user
interfaces sometimes poor

Decisions mostly economically driven
More isolated efforts, source code not shared
Design modularity more optional
Requirements arising primarily from the mar-
ket and formal studies
More rigorous documentation enforced by
company standards
Considerable emphasis on usability and user
interfaces

Technical infrastructure
Needs infrastructure for collaboration, com-
munication, distributed development
Internet-based repositories used

Distributed development infrastructure not al-
ways critical
Code and documentation held within com-
pany limits

Project evaluation and monitoring
Project status assessment involves project and
community health, evolution, contributions,
code quality, and resolved issues

Project status assessment based on lists of
tasks, functionalities to be implemented, open
bug reports, and expended effort

Software release and distribution
Frequent releases, loose release planning,
feedback from community seeked
Web-based and community-based distribu-
tion channels

Rigorous release plan, infrequent releases
Software directed to market through standard
sales channels

Table 5.1 The main difference between the software production process followed within an OSS project
and a proprietary software firm.

5.2. Requirements Definition 47

scribed as a platform that supports modules that are essential to the system,
and a set of distinct modules on top of it. For example, in the Linux operating
system the kernel is part of the platform, and the device drivers are indepen-
dent modules [6, 93].

At the time of writing, version 2.6 of the Linux kernel included almost
2500 loadable kernel modules, supporting device drivers, file systems, sound
hardware, networking, cryptography, processor architectures, compression,
and security. Indeed, one of the key success factor of Linux is considered to be
the efficient modularity of its design [226]. At one extreme end the Eclipse in-
tegrated development environment consists entirely of plug-in modules [81].

Apart from the general advantages of a modular design, the following
features make it particularly important for OSS projects.

• The design is clear, distinct and understandable [152].
• There is loose coupling between different modules and develop-

ment tasks, which allows work on a given module to be carried out
without affecting other modules in the design [152]. This offers
more autonomy and requires less interaction between contributors
(as shown at least in the case of the GNOME development [84]).
As dependencies are minimized, development can take place at a
global scale, around the clock [212] with minimal effects on prod-
uct quality (as shown in the case of the Windows Vista develop-
ment cycle [15]).

• It attracts more voluntary contributions (as opposed to monolithic
codebases [6, 152]). Individual code contributions can be small
and contained, while still allowing their sum to be very valuable
[116, 183]

• It promotes synergies and cooperation opportunities [19].
• Experimentations and exploratory implementation attempts can

be accommodated more safely, and changes and improvements
can be performed without jeopardising the overall system [6].

5.2 Requirements Definition

The first step in the software production process consists of the requirements
elicitation, analysis and definition (the requirements usually stem both from

48 Production Process

the developers’ interests and the users’ needs), analysis and definition. In
order for OSS projects to be sustainable and successful, requirements of two
types should be considered [201, 84].

Technical requirements are the typical requirements that the design and
implementation of any software project is based on, and include the desired
functional and non-functional characteristics and features of the resulting
product. The project leaders will usually outline these in a vision statement,
and they may be subsequently enriched with post-hoc features during the de-
velopment and evolution of the project, as a result of interaction with users
and testers, or based on the input received by the project community.

Environment requirements do not refer to the actual technical artifact,
but to the nature of the project and the community surrounding it. For an OSS

project to be able to retain the interest of its development community, it must
provide constant motivation and incentives for participation through vehicles
such as research interest, challenging technical problem-solving aspects, and
involvement in new technologies that may allow new career opportunities
(see also Section 9). It is doubtful that projects lacking such characteristics
will be able to maintain the required momentum and retain their developer
base.

The participants in the requirements elicitation phase of the project are
mostly developers and documenters, but may include other peripheral mem-
bers and volunteers, investors and other stakeholders who have an interest
in the project, potential customers or prospective end-users, scientists, etc.
[201, 231, 189, 84, 72].

In general the requirements elicitation in OSS projects requires less in-
teraction with external end users, as they are mostly understood within the
project community [72]. Indeed often the developers intend to be users of the
system themselves, and have specific needs and requirements that need to be
addressed. Moreover, requirements in OSS projects are usually not formally
documented [202]; it is very common for requirements to be lurking in email
documents, TODO lists in the project’s repository or bug reports and feature
requests in the project’s issue tracking databases [163].

The sources of information from which the specifications will stem usu-

5.3. Incorporation of New Features 49

ally include technical reports and system documentation, mailing lists, news-
groups and discussion forums, as well as accounts of developer’s own needs
and perspectives [201].

5.3 Incorporation of New Features

The incorporation of new features into the project usually follows a proce-
dure that may involve creating a short description or even a proof-of-concept
prototype, voting to select among different candidate features, gathering spe-
cific requirements and finally designing and implementing them (see also
[201, 84, 4]).

The initial requirements emerge through interactions between the project
developers, users and other members, while the feature selection and pri-
oritization process is mostly a responsibility of the core team and the code
maintainers. Final validation is achieved through the actual implementation
of the new features.

5.4 Code Integration

The procedure typically followed for integrating new pieces of code in the
repository is outlined below (see also discussions in [51, 163, 162, 84, 117,
72, 56]).

Code Reading and Familiarisation The developer first studies the existing
relevant code in the project repository.

Development and Testing The developer carries out the required code
modifications, and runs tests to verify their implementation. This is done in
the developer’s private workspace. Submitting untested changes that disrupt
the project’s build (compilation process) or even the software’s operation is
strongly avoided (and particularly frowned upon [73]).

Systematic testing is usually not formally prescribed in most OSS projects,
with the exception of some very large and complex ones [220, 56].

Patch Submission If the developer does not have commit privileges, the
code changes are submitted to a core developer or maintainer for review and

50 Production Process

eventual integration to the project’s code base. This is often done through
email or through some distributed version control system (see also Section
5.6).

Review and Pre-Commit Testing The core developer or maintainer re-
views the code changes and performs further testing before committing the
changes to the code repository. Even developers with commit privileges may
publish or submit their code for third party review if they are performing a
tricky or critical change, or if they are working on unfamiliar code. Some
projects, such as FreeBSD, formally assign a mentor to new members of the
developer team, and make it the mentor’s responsibility to sign-off the new
developer’s code [56]. Others, such as Linux, employ a multi-level gover-
nance hierarchy [35] for gradually reviewing patch submissions.

Code Commitment The (core) developer commits the changed code to the
project’s version control system repository. This often triggers various ancil-
lary actions that promote collaboration and code stability [59], such as run-
ning automated tests or code quality checks, automatic emailing of the change
on a mailing list, updating information in the project’s issue database (based
on information that associates the commit to an identified issue [246]), and
informing users who had registered their interest on the given issue about the
change.

Once the patch is accepted into the core repository, it will be ready for
inclusion in the next release.

Figure 5.1 schematically illustrates the above procedure.

5.5 Release Management

The release of new versions of the project software, including new features,
functionality or bug fixes, are crucial moments of the project life-cycle. Var-
ious elements of the release management process can also be found in the
development of proprietary projects. Our description in this section serves
mainly to document the adoption of commonly accepted best practices by
OSS projects. An important differentiating factor between the release man-
agement of OSS and proprietary projects, is that the source code (and often
even the binary executable form) of an OSS project is typically available as a

5.5. Release Management 51

developer

mentor

peer
reviewers

core developer/
maintainer

Project
code

repository

1. checkout

2. develop

3. peer review

4. submit

5. commit

Fig. 5.1 Illustration of the typical procedure followed for the integration of newly developed code in an
OSS project.

snapshot of its current state.
Therefore, release management in OSS is often simply the strengthening

of various attributes like reliability targets, extent of permitted changes, doc-
umentation, and public relations. Specifically, many OSS projects don’t base
their release on targets for a predefined feature set or target date. Instead, they
often aim at generating a stable release by closing all pending critical bugs,
prohibiting disruptive changes, documenting the improvements over the pre-
vious version, and announcing the new version’s availability.

5.5.1 Time for Release

A new release usually takes place under the following conditions (see also
[51, 73]).

• A sufficiently important number of bugs has been repaired.
• A significant number of new features has been added to the

project.
• Important documentation updates are available for the users.

52 Production Process

• Certain promotional or political reasons dictate it (e.g. to present
a new feature at some event, or to attract funding or commercial
interest).

• A fixed release schedule has been previously agreed on.

5.5.2 Responsibilities

The responsibility for the release is usually shared between two entities: The
project core team, or code owner, and an appointed release manager [51, 73,
84, 56].

The core team is responsible for deciding the release time and has the final
say on what features will be included in the release. They will then proceed
to appoint a release manager, i.e. a project member that will be responsible
for the planning and coordination of the release. Usually the selection of re-
lease manager is based on previous experience with the project as well as
appropriate technical and communication skills.

5.5.3 Release Procedure

The procedure followed during a release, under the supervision and coordi-
nation of the release manager, consists of the following phases.

Release Stabilisation This usually consists of three main steps (see also
[56, 73, 220, 117, 65, 7]).

(1) All new code patches that are relevant to the release are merged
into the code stream to be released.

(2) The code stream is “frozen”, meaning that no new features can
be added to it. Different degrees of freezing can be applied, for
example a soft freeze will allow minor changes, whereas a hard
freeze will not allow any changes except critical bug fixes that
need to be included.

(3) A final review approval is given for the release go-ahead.

Packaging and Format The material to be released can be packaged in dif-
ferent formats, that may include single self-contained archives, compressed

5.5. Release Management 53

source code, binary packages, or patch files (addressed to users of the pre-
vious versions of the software). The necessary files with installation instruc-
tions, copyright and licensing information, along with a list of changes ad-
dressed by the current release are also included in the package. A link to the
release location on the version control system server can also be supplied.

Naming The naming and numbering of the release is important as it con-
veys information about its contents and its relation to previous releases, de-
velopment streams, etc. This is particularly relevant in the modularised and
parallel development environment of OSS projects, as it allows organizing and
keeping track of changes in a hierarchical manner (and doing this in accor-
dance with the project’s version control system) [73].

Based on their degree of maturity, releases are commonly categorised as
pre-alpha (not feature complete), alpha (for testing purposes), beta (further
testing before release), and release-candidate (ready to release unless fatal
bugs emerge).

The stage of development is further characterized as stable (assumes that
there are no significant undocumented problems) or unstable (includes en-
hancements that have not undergone thorough testing, or more changes are
expected). In contrast to proprietary software projects, many users of OSS

systems decide to run software from the unstable (development) branch, in
order to be the first to use new features and bleeding edge technologies, and
also to assist debugging and testing a project they want to help.

The numbering of the releases also follows widely agreed-on mecha-
nisms, to declare the main development trunk that the release originates from
and the relevant brunches and sub-branches, as well as the development stage.

Pre-Release Testing A final pre-release testing phase takes place within the
project community, and may involve selected end-users and volunteers. This
goes beyond the basic functionality and includes all new features and installa-
tion scripts. Based on the development stage and the feedback received from
this testing phase, the release manager will then decide whether to make the
release available to the public.

54 Production Process

Distribution The new release is most commonly distributed from the
project’s main distribution server as well as possibly secondary servers (mir-
rors). Alternatively it can be distributed through peer-to-peer file sharing net-
works, or even among end-users who forward it to each other [1].

5.6 Technical Infrastructure and Collaboration Facilities

Due to their wide geographic distribution, the large number of developers and
other active members involved, and their constant evolution and enhancement
with new features and functionalities, OSS projects depend crucially on the
right technical infrastructure to support collaboration and development tasks.

We briefly overview the software tools and systems that are most fre-
quently utilized.

5.6.1 Version Control Systems

A version control system (VCS) is crucial for keeping track of the evolution
of the project code and documentation in the decentralized OSS project envi-
ronment. Such systems may be centralized or decentralized. Two commonly
used centralized (and OSS) VCS systems are CVS2 and Subversion.3 Their
cross-platform clients can concurrently access and modify the project files
providing features particularly appealing to OSS, such as support for peer re-
views and conflict resolution, multiple development branches, data mining,
automated notifications, etc.

Decentralized VCSs (such as BitKeeper,4 Git,5 Mercurial,6 Bazaar,7 etc.),
use local repositories on the client systems. These offer better scalability, and
more direct member interaction. Centralized VCS’s offer more controllable
security and privacy, accessibility to history, and better repository manage-
ment capabilities [177], however several projects are moving to distributed
VCS solutions [161].

See [7, 209, 73, 161] for more on the use of VCSs in OSS projects.

2http://www.nongnu.org/cvs/
3http://subversion.apache.org/
4http://www.bitkeeper.com/
5http://git-scm.com/
6http://mercurial.selenic.com/
7http://bazaar.canonical.com/

http://www.nongnu.org/cvs/
http://subversion.apache.org/
http://www.bitkeeper.com/
http://git-scm.com/
http://mercurial.selenic.com/
http://bazaar.canonical.com/

5.6. Technical Infrastructure and Collaboration Facilities 55

5.6.2 Issue Tracking Systems

Issue tracking systems allow the project members to report bugs, request en-
hancements and new features, and keep track of pending jobs. Responsibili-
ties for different issues or bugs can be explicitly assigned to specific project
members. All of these issues are accessible to the relevant members, and can
also be automatically communicated through mailing lists. A complete his-
tory of the handling and status updates, including comment exchanges in the
form of discussions, are also supported for each issue and maintained by the
system. Some systems even allow project members and users to “vote” for
fixing a particular bug or implementing a feature. This allows the prioritiza-
tion of issues according to the view of the project’s users.

The current status of issues can be determined at any time, and lists of
pending issues (usually prioritized according to their status, urgency or im-
pact to the project) can be produced and distributed within the project com-
munity.

Bugzilla8 is probably the most widely used such system (also in pro-
prietary development environments). Other systems include GNATS,9 and
Trac10.

5.6.3 Support for Technical Discussions and Communications

The considerable amount of remote communication and collaboration that
takes place among OSS project members is usually based on three types of
systems and infrastructures.

Synchronous communication applications, such as instant messaging
and IRC, allow real-time discussions and instant responses to questions, thus
boosting the turnaround time for problem resolution, while at the same time
helping establish more informal relationships between the project members.

Asynchronous communication is usually based on mailing lists, Usenet
groups, discussion forums and blogs. These allow a more structured form of

8http://www.bugzilla.org/
9http://www.gnu.org/software/gnats/index.html
10http://trac.edgewall.org/

http://www.bugzilla.org/
http://www.gnu.org/software/gnats/index.html
http://trac.edgewall.org/

56 Production Process

communication, which also leaves behind a history trail that can be searched
in the future. Such methods can be used either for technical or non-technical
issues, as well as for the broadcast and discussion of ideas and opinions, or
the creation of an informal repository of information related to the project.

Web-based dissemination platforms such as wikis and the project’s web
site usually include varying amounts of user documentation, technical data,
and organizational information.

5.6.4 Repositories and hosting facilities

Often OSS projects are hosted on web-based repositories that can be either
of a generic nature (such as SourceForge11 and GitHub12) or thematic (such
as Java.net,13 CPAN,14 and CTAN,15). These provide various facilities such as
file storage, documentation authoring and presentation, mailing list hosting,
on-line forums, source code browsing clients, a build farm of diverse oper-
ating systems and processor architectures, version control systems, an issue
tracking database, and downloading support [51, 34, 192, 73].

Hosting OSS projects in such widely known sites offers the projects con-
siderable visibility and promotion. On the other hand, projects hosted on in-
dependent web sites have a more distinct presence and are more autonomous.

5.7 Assessing Open Source Software Projects

As with any software development effort, but even more so for OSS projects
due to their distributed nature, it is important to be able to assess their status
and health from the technical and software production perspective. Various
software engineering criteria, metrics and tools can be used to evaluate the
project, the artifact, as well as the development process.

Project status and health The quality of the project can be examined at
an abstract level, e.g. by considering issues such as its testability, simplicity,

11http://sourceforge.net/
12http://www.github.com
13http://java.net/
14http://www.cpan.org/
15http://www.ctan.org/

http://sourceforge.net/
http://www.github.com
http://java.net/
http://www.cpan.org/
http://www.ctan.org/

5.7. Assessing Open Source Software Projects 57

readability and self-descriptiveness [218, 210].
Additionally, software engineering methods have been used in empirical

OSS studies concerning community issues such as project structure, gover-
nance, coordination and cooperation (see for example [220, 128, 126, 84, 97,
152, 183, 58, 193, 246, 160, 113]).

Project evolution From a dynamic point-of-view, the types and frequency
of contributions made to the project can provide an indication of how active
the project is. These can be tracked through the project VCS and issue tracking
systems, or alternatively by directly comparing source code versions [183,
118, 113]. Similarly, the changes in the project architecture can provide an
indication of the project’s evolution [92].

Design and architecture Various metrics based on the design structure
[152], including its object-oriented nature [97, 139] can give a measure of
the quality of the project design and architecture. A wide range of known
software engineering metrics16 have been used in various OSS studies (see
also [92, 162, 163, 218, 113]).

Software One can also focus on the software artifact itself, and examine the
adequacy of its functionality, reliability, usability, efficiency, maintainability
and portability, based on the project specifications, to reveal exemplary or
poor coding practices [210, 215]. Specific characteristics of low-quality soft-
ware can also be used as signs of a project that may end up in trouble (see
[210] for various such cases). A variety of tools for software quality assess-
ment are available for both researchers and developers.

Open source projects additionally constitute ideal cases for performing
studies and analyses as above, as they provide researchers with a plethora of
public data through version control and issue tracking systems, mailing lists,
documentation, and the code itself. This data can be analyzed and mined by
using or constructing appropriate software tools and platforms [92, 218, 97,
56, 113, 199, 215].

16Such as Chidamber and Kemerer’s metrics for object-oriented systems, McCabe’s cyclomatic complex-
ity, and Halstead’s Volume [119], to mention but a few.

58 Production Process

5.8 Concerns

Concerns have also been expressed regarding the OSS software production
process.

The informal organisation and management of the OSS development pro-
cess may result in problems such as an inability to achieve the necessary
match between resources (mostly developers) and tasks [46]. If the develop-
ment process is not carefully directed, it may lead to either developer redun-
dancy and duplicate efforts, or incomplete efforts and unimplemented tasks.
Additionally, extensive reuse of code by large numbers of developers requires
very careful coordination, and may make large-scale changes very painful in
terms of synchronisation with the source.

The loose planning and scheduling approach of OSS [93] may also cause
difficulties. The frequent release schedule [117, 103, 73] may motivate users
and improve code tracking, however it may also lead to unstable code, and it
is not necessarily consistent with the development of complex and demanding
new features [117].

OSS is also considered to suffer from poor documentation [23], and in
some cases a lack of tools for tasks such as requirements management, project
management, metrics and estimation of project health, scheduling, and suite
design [46].

Finally, the OSS community structure and organization may also entail
some risks. The danger of forking [16, 60] due to differences in the priorities
or perspectives of core team members or incompatibilities between participat-
ing developers can lead to code base splitting and unmaintained code, while
developers may also be tempted to keep parts of their work proprietary rather
than contribute to the public project in a so-called “war of attrition” [18].

6
Licensing

Open source software can be freely used, modified or distributed, provided
certain restrictions are observed regarding its copyright and the protection of
its status as OSS. These rights and restrictions are expressed through the soft-
ware’s license, i.e. a contract between the software owner(s) (the licensors)
and its prospective users (the licensees) [51]. OSS licenses come in different
flavors, but in general they make available the software source code and they
permit the creation of derivative works as well as the non-exclusive commer-
cial exploitation of both the original and the derivatives [140].

The licensor of the OSS software (typically the owner or author) may be
a single developer, a group of developers, or an organization, and holds the
copyright to the software [196]. By assessing and combining factors such as
the motivations behind their work, the project’s characteristics, its intended
audience and its likely success, the licensor decides whether to make their
work available under an open source license, and if so what type of license to
employ [148].

The licensee, on the other hand, is either an end user of the OSS, or some-
one who has embedded it in their product or application, which is then further
distributed or licensed [196].

59

60 Licensing

6.1 Concepts and Definitions

Before discussing the different types of OSS licenses, we briefly introduce
the background concepts delineating the degrees of freedom available while
distributing the product of any intellectual activity, including software.

6.1.1 Intellectual Property, Copyrights and Patents

The term intellectual property is used to encompass a wide range of areas
of law, including copyrights, patents and even trademarks [83]. These are
all means used to encourage private investment in research, technology and
innovation, by ensuring that innovators will be able to get individual returns
for their work.

Copyright is a form of legal protection that can be applied to a wide range
of intellectual works, including software. Often copyrighted software allows
no access to the source code, and is distributed with a licence agreement
that severely restricts the copying, modification or further distribution of the
covered software. However the software’s authors may also choose to publish
the source code by placing it under a software license that conveys the rights
of the parties accessing the source [236].

Patents are written descriptions of inventions, used as property claims
covering the core ideas and their use [83], so that only the inventors can ex-
tract economic returns from them. Patents constitute permissions on the use
of an idea, granted to the authors for a limited amount of time [149]. Apply-
ing for a patent is a process that may take years, and involves a substantial
financial investment [83, 236, 101, 51].

Since software code can be easily copied and reproduced, many com-
panies argue for its strong patent and copyright protection. However, oth-
ers express considerable concerns about the use of such protection, claiming
that the software community and society in general benefit less from this
restrictive approach, relative to keeping the knowledge that the innovators
have created free and available to all [101]. In particular, the Free Software
Foundation, a non-profit advocacy group, states that the use of patents will
severely undermine the free software movement [51, 26]. The concern of the
FSF and other members of the OSS community is that most OSS projects lack
the financial and institutional resources required to investigate patented prior

6.1. Concepts and Definitions 61

art that may cover their work, and to defend themselves against patent liti-
gations, which are notoriously costly [26]. Furthermore, there are significant
differences between different countries in patent law, especially for software
[51], which poses an additional difficulty for the typical global OSS project.
In general, excessive patent protection has been criticized throughout many
scientific and technological fields, as it can impede the development of scien-
tific research and render access to crucial resources (such as medicins) more
difficult or costly [10].

6.1.2 Public Domain

In contrast to patented software, collaborative models that allow many mem-
bers to freely and actively participate in a project or development effort has
been referred to as free revealing [185]. OSS projects are characteristic exam-
ples of this. Control of knowledge, innovation, or in this case source code is
thus relinquished, and so they become public domain goods [236].

By labelling software as Public Domain the owner declares that there is
no copyright protection and no distribution or licensing restrictions. Anyone
is free to copy, modify, distribute or sell the software, without any permission
being required [26, 51, 141]. Even if parts of a public domain software prod-
uct are incorporated into a copyrighted work, then that copy of the material
will be covered by the copyright, but the original work is still in the public
domain, free and available to all [73].

There is a major misconception equating OSS with public domain soft-
ware [181]. OSS is not public domain software. It is copyrighted and dis-
tributed under a license — just a license that gives the users more rights than
they are typically used to.

6.1.3 Open Source and Copyleft

Open source lies in between allowing a software work to fall completely in
the public domain (thus relinquishing any notion of ownership), and protect-
ing it under copyright or patent law. All open source software licenses share
two characteristics: They waive the right to earn license fees from distributing
the software, and they incorporate the condition that the source code will be
made available to licensees.

Copyleft (a play on the word copyright) is a form of open source licensing

62 Licensing

that grants the right to reproduce, adapt or distribute software. However, it
imposes the restriction that any derivative work will be released under the
same license. In this way the software and the freedoms applied to it become
inseparable [83].

Copyleft licenses are therefore a subset of OSS licenses, further distin-
guished according to how restrictive they are, and often labelled as strong-
copyleft or weak-copyleft.

6.2 Open Source Software Movements

Two main movements and organizations that promote OSS and certify li-
censes as open source or free software are the Free Software Foundation (FSF)
and the Open Source Initiative (OSI).

The FSF was founded in 1984 by Richard Stallman of the GNU project,
and introduced the GNU General Public License (GPL), as well as the term
copyleft. The FSF advocates that “free software is a matter of users’ freedom
to run, copy, distribute, study, change and improve the software”. Indeed the
main goal of the FSF is to keep software free by allowing others to build on
one’s code, and return their changes to the community [141, 83].

The term Open Source was coined in 1997 by Eric Raymond and Bruce
Perens, who also wrote the Open Source Definition,1 consisting of ten crite-
ria for determining whether a license is open source or not [181]. The OSI

was subsequently formed in 1998 as Netscape decided to release their web
browser’s source code to the public. This decision created concern among the
developers’ community as their creative work would circulate freely, and it
was not yet clear what the term free meant. In an attempt to explain the con-
cept, Stallman famously said they should “think of ‘free’ as in ‘free speech’,
not as in ‘free beer”’ [83, Chapter 1].

6.3 License Types

Table 6.1 summarizes the main OSS licence categories, their relationship to
other software license types, their main features and some representative ex-
amples that will be discussed in more detail.

1http://www.opensource.org/docs/osd

http://www.opensource.org/docs/osd

6.3. License Types 63

Z
er

o
co

st

D
is

tr
ib

ut
io

n
al

lo
w

ed

N
o

us
ag

e
re

st
ri

ct
io

ns

S
ou

rc
e

co
de

av

ai
la

bl
e

S
ou

rc
e

co
de

m
od

if
ic

at
io

ns

D
er

iv
at

iv
e

w
or

k
ca

n
be

 p
ro

pr
ie

ta
ry

L
in

ki
ng

 w
it

h
pr

op
ri

et
ar

y
w

or
k

OSS license examples

Freeware

Public domain

O
S
S

Proprietary

R
ig

ht
s

re
se

rv
ed

Non-copyleft
(permissive)

Weak copyleft

Copyleft
(restrictive)

BSD mod
MIT/X11
Apache v2
AL v2

MPL (additional restrictions**)
NPL (use of code in Netscape)
SISL (minor details)
SPL (like MPL)
IBM CPL (choice of law)
EPL (patent lawsuit language)

G P L

R
ig

ht
s

ab
an

do
ne

d

 * Except under special licensing conditions - ** Provision in v1.1 to allow alternative license choice

C
an

 b
e

re
li

ce
ns

ed
by

 a
ny

on
e

GPL
compatible

BSD orig (advertising)
AL V1(pattent termination)

L-GPL

Not GPL
compatible
(reason)

Yes Yes Yes Yes Yes Yes

YesYesYesYesYesYes

Yes Yes Yes Yes Yes Yes

Yes Yes

Yes

No No No

No

No

NoNo

No

No No No

No *

No *

No

No

Yes Yes Yes Yes Yes

N/A

N/A

N/A

N/A

Yes Yes Yes

Table 6.1 A categorisation of OSS license types, their main properties, and some characteristic examples.
Based on material from [207, 249, 26, 203, 181]. Original source: [121] — ©2010 IEEE.

6.3.1 The GPL and Copyleft Licenses

The GNU2 Public License (GPL) was created in the mid 1980s by Richard
Stallman and its terms provided much of the foundation for free software de-
velopment. A key feature of this license, which contributed to its widespread
adoption, is the license’s “viral” nature, as it enforces the source code of any
derivative work from a GPL-licensed software to also be released under the
GPL. As a result, developers working on GPL projects are assured that their
code will never be used in proprietary software [94]. This is the essence of
the notion of copyleft.

Furthermore, while the license allows the creation of derivative works,
it does not allow the creation of derivative licenses from the GPL [140, 181].
The only stipulation on pricing is that anyone requesting the source code may
be charged for the physical cost of the copy [94].

Large swaths of open source software to date have been distributed un-
der the GPL [72]. Examples include the Linux operating system kernel, the
GNU Emacs Editor and C Compiler, among many others. According to a
2005 study 68% and 69% of all projects hosted by Freshmeat.net and Source-
Forge.net respectively (two prominent online OSS repositories) were licensed

2GNU is a recursive acronym, standing for “GNU’s Not Unix!”.

64 Licensing

under the GPL [26].
GPLv3, released in 2007, also inlcuded patent protection clauses. Until

then, patent protection was only implicitly provided by the GPL. These new
clauses were aimed at explicitly protecting OSS developers from the risk of
being sued by companies distributing code under the GPL for patent infringe-
ments.

6.3.2 The Lesser-GPL and Other Weak Copyleft Licenses

The GNU Lesser General Public License (LGPL), 3 also known as the Li-
brary GPL, is a derivative of the GPL proposed by the FSF, intended for use
mainly with software libraries. Its main differentiator from the GPL is that
an unmodified LGPL licensed program or library can be incorporated within
a proprietary program, or more generally one that is not licensed under the
LGPL.

For example, if a library licensed under the GPL is incorporated into a
proprietary program, and the two are distributed together, this would be a
violation of the GPL as the distributed program and the library would be con-
sidered a derivative work subject to the limitations imposed by the GPL [140].
The goal of the LGPL is to overcome this obstacle.

This gives rise to the notion of weak copyleft, i.e. a less restrictive ap-
proach to licensing OSS. Weak copyleft permits the use of the covered code
within larger works covered by other licenses. It therefore establishes a mid-
dle ground between the GPL license that does not allow this combination of
licenses, and the more permissive non-copyleft licenses that freely permit this
(see Section 6.3.3).

The FSF has developed the LGPL as a strategy to defend the ground of
free software libraries against incursion by libraries licensed under less re-
strictive terms, such as the Apache license. By allowing their distribution
with proprietary software, these libraries increase their chance of becoming
widely adopted, and thereby furthering the FSF’s goals. However, the FSF en-
courages the use of the more restrictive GPL license in cases where a library
offers a unique advantage not found in competing libraries licensed with less
restrictive licenses.4

3http://www.gnu.org/copyleft/lesser.html
4http://www.gnu.org/licenses/why-not-lgpl.html

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/why-not-lgpl.html

6.3. License Types 65

The NPL/MPL Licenses , proposed by Netscape in 1998, also share the
weak copyleft approach. Netscape’s intention was to allow its source code
to be used in larger, proprietary derivative work, but at the same time ensure
that any modifications to their code would be contributed back to them and
the rest of the community [94]. To that end, Netscape proposed a beta ver-
sion of the Netscape Public License (NPL) for public comment and, based on
feedback received, they refined it into a second license, the Mozilla Public
License (MPL5) [140, 94].

Similar to the LGPL, the MPL allows the creation of larger, derivative
work, including proprietary code that is not required to be published in source
code form. Still, any changes to the original source code must be made avail-
able to the community [94]. Some particularities of the MPL license are dis-
cussed in Section 6.5.

The Artistic License The Artistic License (AL) was created by Larry Wall
in 1991 for Perl, as he felt that the terms of the GPL (under which Perl was
released until then) were too restrictive. The goal of the AL was to allow Perl
to be used in commercial packages [94].

Its name is due to the intention to allow the initial developer to maintain
“artistic” control over the licensed software and derivative works created from
it [140]. Specifically, it allows the programmer to do anything they want as
long as the changes are published and described in the source code, or all
executables are renamed and the differences are documented, thus allowing
the original author to maintain artistic control [94].

The AL is very similar to the GPL, but being a weak copyleft license it
doesn’t require distributing derivative works under the same terms [251].

Other Weak Copyleft Licenses Various other licenses have been proposed
that embrace the weak copyleft approach, including the Sun Industry Stan-
dards Source License (SISSL),6 the Sun Public License (SPL),7 the IBM Com-
mon Public License(CPL) 8 and its derivative Eclipse Public License (EPL).9

5http://www.mozilla.org/mpl
6http://www.opensource.org/licenses/sisslpl.php
7http://java.sun.com/spl.html
8http://www.ibm.com/developerworks/library/os-cpl.html
9http://www.eclipse.org/legal/epl-v10.html

http://www.mozilla.org/mpl
http://www.opensource.org/licenses/sisslpl.php
http://java.sun.com/spl.html
http://www.ibm.com/developerworks/library/os-cpl.html
http://www.eclipse.org/legal/epl-v10.html

66 Licensing

6.3.3 The BSD and Other no Copyleft Licenses

The BSD license was originally used for the release of significant portions
of a Unix-related code by the University of California. Since then, a fair
amount of open source software is distributed under this license. It allows
covering derivative works under different terms or licenses, as long as the
necessary credit is given to the original work.

Being one of the main no-copyleft licenses, it imposes no requirements
on developers working with source code released under a BSD license. In
contrast to weak copyright licenses, there are no incentives or requirements
to contribute the modifications back to the community [94]. Originally it in-
cluded a clause requiring that all acknowledgments of previous contributors’
work be retained, however this clause was objected to and dropped in 1999.

Finally the BSD license also includes a no-endorsement clause saying that
the names of the originators and contributors cannot be used to endorse prod-
ucts derived from the source code [94].

The Apache License is a derivative of the BSD license used by the Apache
Software Foundation.10 A rewriting of this gave rise to version 2.0 in 2004. It
is very similar to the BSD and MIT/X11 licenses. It makes clear however, that
the licensing of derivative works under other licenses is permitted so long as
the terms of the Apache License v2.0, are complied with (this is implied but
not specifically spelled out in the MIT and BSD Licenses).

The Apache License furthermore helps in the distinction between open
source and closed source software development. Licensees are free to take
their derivative work and license it under a different license. If, however they
choose to label their addition to the work as a Contribution, then they are
effectively agreeing to license it under the same terms that are applicable to
the original work [140].

The MIT/X11 License is another no-copyleft license, which actually pre-
dates the BSD (it was written in 1987 for the X Window System source code).
The two licenses are very similar with the main difference being that the
MIT/X11 does not include the no-endorsement clause.

10http://www.apache.org/licenses/

http://www.apache.org/licenses/

6.3. License Types 67

6.3.4 Other Software Licenses

Licenses for Documentation Similar to OSS, licenses have also been cre-
ated for technical documentation and publishing [140].

A typical example is the GNU Free Documentation License (FDL),11 used
for manuals, textbooks or other documents. It grants to everyone the freedom
to copy and redistribute the material, with or without modifications, either
commercially or non-commercially [83]. Another similar license is the Open
Publication License (OPL).12

Creative Commons The Creative Commons Corporation13 is a not-for-
profit organization founded in 2001 and currently based at Stanford Univer-
sity Law School. It offers ways for authors to license their work openly [10].
It expands the open source model beyond software, to literature and the arts,
and offers a variety of Creative Commons Licenses through which the authors
effectively surrender most rights on their work.

These licenses are essentially a contractual undertaking between the cre-
ator and Creative Commons. Copyright is granted to the Creative Commons
for 14 years and is renewable for one additional 14-year period [140].

Non-OSS Licenses In contrast to all OSS licenses discussed previously, the
main characteristic of licenses that do not fall under the Open Source Defi-
nition is that there is no distinction between the distribution of original and
derivative work [140].

The Sun Community Source License (SCSL)14 is such an example devel-
oped by Sun, that tries to incorporate some of the benefits of OSS in propri-
etary products. A difference between this and OSS licenses is that Sun im-
poses a compatibility requirement, whereby any modifications to the licensed
work must undergo a compliance certification by the licensor [140]. Further-
more, commercial use of code licensed under the SCSL may require royalty
payment.

Another example, the Microsoft Shared Source Initiative15 was created

11http://www.gnu.org/copyleft/fdl.html
12http://www.opencontent.org/openpub/
13http://creativecommons.org/
14http://java.sun.com/j2se/1.5.0/scsl_5.0-license.txt
15http://www.microsoft.com/resources/sharedsource/default.mspx

http://www.gnu.org/copyleft/fdl.html
http://www.opencontent.org/openpub/
http://creativecommons.org/
http://java.sun.com/j2se/1.5.0/scsl_5.0-license.txt
http://www.microsoft.com/resources/sharedsource/default.mspx

68 Licensing

in 2001 when Microsoft provided limited access to some of its source code.
It was critiqued for lacking the transparency and simplicity of open source
licenses [140].

6.4 License Selection

Various considerations will affect the decision over what license to apply to
an OSS project or program (reference [63] contains a concise guide).

First of all, it is generally advised to go with one of the existing and empir-
ically tried licenses, rather than draft a new one [94, 73]. Using a well-known
and trusted license will give the users confidence and clarity regarding what
uses of the software are allowed. On the contrary an obscure, overly compli-
cated and rarely used license will probably create confusion and ambiguity.
Additionally, constructing a license from scratch requires a lot of experience
and knowledge of legal matters, so it is not generally advised.

Furthermore, in various cases the choice of license may be limited by
pre-existing software used in the project, and its own licensing scheme. For
example, if pre-existing BSD-licensed software is used, the project team has
the freedom to select any license, provided they respect any requirements
regarding notifications and disclaimers. But if GPL-licensed software is used,
then the only option would be to use the GPL for the resulting project as well.

Provided there is freedom of choice, the most important factor is the per-
missiveness of the license, i.e. to what extent it allows derivative work to be
licensed under other schemes [140]. Other factors may include the following
(see also the overview in reference [203]).

Topic and Audience It is argued that software aimed at developers, system
administrators, or more generally technically proficient audiences, as well as
projects on topics that target sophisticated peers, are more likely to be li-
censed under permissive licenses. The reasons include the strong community
appeal of such software, as well as the fact that developers involved in these
projects are often motivated by career enhancement opportunities, and will
therefore be favorable to licenses that allow them to demonstrate their skills
to a wide range of audiences, including users of commercial software.

6.4. License Selection 69

Dependencies on Existing Work Compile time dependencies on existing
projects may dictate the type of license a project will use. Projects having
compile time (source code) dependencies on GPL software (for example, a
driver in the Linux kernel) must adopt the license of the pre-existing software
as they comprise derivative work. (Alspaugh et al. [3] provide a metamodel
derived proof of this.) This requirement is mitigated if the existing software is
a runtime dependency (i.e. the dependency may be loaded dynamically while
the main program is running), in which case the derivative work clause may
not apply.

Environment and Operating System Projects based on commercial plat-
forms and operating systems are likely to employ more restrictive licenses.

Industrial Involvement If companies have a significant involvement in the
project, then they are likely to be reluctant to adopt a strong copyleft license.

Commercialization Goals If the option of including the project’s software
in some commercial project is considered, then a non-GPL license that will
permit this will be required.

Protection from Copying If a project feels that it needs to protect its code
from other groups that may copy it and utilize it in their own products, then
a license that would prevent this, or at least require that they return to the
community their changes, would be preferable.

Attitude The degree of restrictiveness of the license may also depend on
whether the developers and project communities believe in the right to redis-
tribute one’s work under licenses of their choice or in the goals of the free
software movement.

Motivation Various studies [69, 203, 33] analyze theoretically and empiri-
cally how the developers’ possible intrinsic and extrinsic motivations (e.g. the
problem solving challenge, recognition by peers, monetary incentives and fu-
ture employment) may affect their choice of license for their software.

70 Licensing

It is generally found that more permissively licensed projects attract more
highly skilled programmers who may want to maintain intellectual rights for
their work, or simply for ego gratification, and stimulate more contributions.
More restrictive licensed projects, on the other hand, ensure access to every-
one’s contributions and are favoured by communities with less free-riding
[63]. For a broader discussion of motivation see Chapter 9.

6.5 Concerns and Risks

Various concerns have been voiced regarding the adoption of various OSS

licensing schemes.
One such concern is that the use of licenses that allow the combination

of open source and proprietary software effectively undermines the concepts
that the OSS movement advocates [129]. Furthermore, it allows a competitor
of a non copyleft licensed project to take the source code and build a propri-
etary, non open source product [63]. An example of this is Apple basing its
Mac OS X on parts of the FreeBSD operating system.

Combining OSS released under different licenses also requires attention to
compatibility issues [153, 251]. As a general rule, OSS released under diverse
licenses can be combined to yield an outcome under a license at least as
restrictive as the original ones. However there are exceptions to this rule, and
the particularities of each license need to be carefully taken into account.
For example software under the MPL license (see Section 6.3.2) cannot be
redistributed under licenses that imposes restrictions not present in MPL. As a
result, MPL software is, in principle, incompatible with GPL. However even in
this case, a provision exists in the MPL license that allows a program or parts
of it to offer a choice of another license as well,16 thus partially overcoming
this restriction.

Unlike proprietary software, projects under OSS licenses are, in various
degrees, also unprotected from forking danger [140]. The GPL license hinders
the danger of forking a proprietary project by enforcing that the derivative
work will remain under the GPL. But under other licenses, and mainly non
copyleft ones (such as BSD and Apache), the community is unprotected from
developers forking off and continuing with non-OSS development. Often the

16http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

6.5. Concerns and Risks 71

community relies on the reputation of the developers for avoiding this, as well
as on other measures discussed in Section 4.2.

Commercial software development firms may feel that there is a risk in-
volved in incorporating OSS code in their products, due to the lack of clar-
ity in some definitions [25, 26]. As discussed previously, some OSS licenses
only allow the reuse of software if the derived work is also under the same
license (most notably GPL). But the definition of derived work may not be
clear enough to dictate how the original OSS software could be used.

For example, it has been suggested by some that if a GPL-licensed pro-
gram has a runtime dependency to a proprietary library (or vice-versa), the
result would not need to be licensed under the GPL, as the two programs re-
tain distinct existences. However the FSF does not accept this position, and
has argued that in such cases the LGPL should be used instead [26].

Possible strategies around this may include clearly separating, at the ar-
chitectural level, the pieces of the resulting software product that rely on OSS

code from other parts, and license the former as OSS and the latter as pro-
prietary [103, 196]. But in any event, the use of legal advice would be rec-
ommended [25], or alternatively “packaging companies” can be employed to
serve as intermediaries between the OSS community and the proprietary soft-
ware house to undertake various technical responsibilities, as well as legal,
licensing and intellectual-property rights issues [196]. Alternatively, permis-
sion may be explicitly requested from the OSS project owners to include part
of the code within a proprietary product [103].

7
Business Models

An organisation’s decision to move into the OSS domain must be based not
only on technological and social considerations, but also on an evaluation of
the business perspective and impact of such a decision.

The OSS business model, and in particular the revenue logic behind devel-
oping and distributing OSS, is not one of the most obvious to perceive. How-
ever, as various business model analysis frameworks indicate [166], the rev-
enue logic is just one part of the entire picture. Product and business strategy,
including the types of services offered, the development of core competences
and competitive advantages, the company’s market approach, the creation of
value chain positions, or the exploitation of specific customer communities,
are just as important. A move into OSS can therefore be considered as a strate-
gic maneuver rather than just the formation of a new revenue stream [187].

In this chapter we first focus on the diverse types of strategic advantages
that adopting OSS can offer, and the impact these may have at the business
level. We then discuss what prerequisites are necessary to make such a move
successfully, and some of the concerns that should be taken into account and
weighed. We describe specific elements and characteristics of different OSS

business models, and the ecosystems of companies, organizations and other
players that are formed around them.

72

7.1. Strategic Advantages and Impact of Moving to OSS 73

7.1 Strategic Advantages and Impact of Moving to OSS

The adoption of OSS practices can offer various strategic advantages, and it
can impact a company or organization’s business model in various ways.

The move from selling commercial software to distributing OSS may be
performed partially, or in steps. Possible strategies include offering source
code with a closed license that has an expiration date [187], or converting
previous versions of a product to OSS while selling the latest version as closed
source [94].

As Joel West found in three case studies [248], the software can be offered
as a partly open solution, thus providing value to the customers but making it
difficult to be directly exploited by competitors. One way of achieving this is
by using a restrictive license. Alternatively only certain parts of the software
product can be offered as OSS, while retaining full control of the most critical
layers (an example of this is Apple’s Mac OS X operating system).

The degree and way in which a software vendor may decide to open
source their offering may depend on its placement within the market and with
respect to other products. Wijnen-Meijer and Batenburg found through litera-
ture reviews, interviews and surveys that a product with a large market share
leading an ecosystem of complementary products, or a product with distinct
technical capabilities, is less likely to be open-sourced [250].

Table 7.1 summarizes the business and strategic advantages of moving
into OSS, which are discussed in more detail below. We group these into three
categories: Advantages resulting from the user base and community that is
formed around OSS products; advantages resulting from the special market
and competition placement offered by OSS; and advantages more directly
related to production costs and revenue streams.

7.1.1 User Base and Community

There are cases where large user communities can be quickly built by con-
verting to OSS, often with minimal sales and marketing expenses [243]. Exist-
ing markets can be broken into or reshaped [187, 77], and significant market
shares can be acquired . An example is the Netscape company, which opened
the source code of the Netscape browser to increase its user base with respect
to its competitor products.

74 Business Models

User base and
community

Market placement and
competition

Revenue stream and
financials

User base development
Information about market
Innovation dissemination
Productivity increase
Access to customer needs
External developers use
Access to new skills and
practices

Approach restricted markets
Increase reputation
Attack competitors
Preempt development of
closed standards
Embrace underdog mentality
Escape from vendor lock-in

Enable new services
Increase demand for com-
plementary services
Reduce development costs
Lower break-even points
Introduce new revenue
streams

Table 7.1 Summary of business and strategic advantages of moving into OSS.

Through OSS development, information is collected dynamically about
products, services, customer needs and ultimately the market itself [20, 77].
Joachim Henkel, based on large-scale surveys and interviews, also found that
OSS development also creates opportunities for setting industry standards and
enabling compatibility with other products or systems [107].

At the same time, it also offers a powerful means of disseminating inno-
vation and research results throughout the community [77, 250]. Making the
source code of a product available is expected to lead to greater innovation,
provided that a critical mass of developers will find interest in it and will be
attracted to it [135].

Development productivity can be significantly increased by leveraging the
talent and expertise found within the OSS community, as discussed through
the OSS product and process transformation framework proposed in [72].

The close interaction of the OSS development process with the user and
customer base often allows the customer needs to be taken into account in the
design and customisation processes [20]. This gives a competitive edge with
respect to the proprietary software development approach.

Finally a move into OSS allows small companies that employ a minimal
number of developers to benefit from a large pool of external developers and
their technical skills and expertise, to participate in practices such as peer
reviewing that result in better software products, and to be exposed to inno-
vation that they could not otherwise afford to create internally [20, 230, 106].

7.1.2 Market Placement and Competition

OSS can be an effective way of approaching restricted or limited commu-

7.2. Prerequisites, Deciding Factors and Concerns 75

nities where traditional market strategies do not work [77]. Customisations
and adaptations to the particular needs of these niche markets offer additional
revenue streams.

Furthermore, the OSS approach can be used to attack competitors by of-
fering similar products at substantially lower cost (or completely free). A
typical example of this is the OpenOffice suite1 [77]. Joel West, in his three
case studies we mentioned earlier in this section, found that this practice can
also preempt the development of closed proprietary standards by rivals [248]

Often OSS products compete with non-OSS products offering similar func-
tionalities and solutions. The non-OSS products have the advantage of more
resources, advertising and public relations, but an “underdog mentality”, as
well as help from the developer community can help the OSS product to a
considerable degree [135].

Finally customers also appreciate the fact that with OSS they are not sub-
ject to “vendor lock-in”. This was found to positively affect user and customer
loyalty both in the literature and through surveys and interviews [250].

7.1.3 Revenue Stream and Financials

When open-sourcing a proprietary software product, there are indirect effects
that include an increased demand for other products and services that com-
plement or support the main offering. This can lead to an improvement of a
company’s profitability, market placement and reputation due to better qual-
ity, support, and customization possibilities [250].

The ratio between fixed and total development costs is reduced, lowering
break-even points for new ventures and reducing overall risk [20]. The overall
development cost is also decreased [250, 22, 134, 12, 235, 191, 60] through
the distributed processes that involve external development support (see also
Section 5).

7.2 Prerequisites, Deciding Factors and Concerns

The move from closed to OSS distribution requires careful consideration. Di-
verse software products, companies, or markets require corresponding ap-
proaches, and it may be that in some cases opening the software code or

1http://www.oracle.com/us/products/applications/open-office/index.html

http://www.oracle.com/us/products/applications/open-office/index.html

76 Business Models

licensing structure may not be a wise move.
For example, software products focusing on cost leadership, or with a

horizontal functional scope, are better candidates for moving to OSS than
those offering added value through their sophistication or advanced features
[250]. Software with a broad, horizontal scope that is geared toward a mass
market is more likely to attract attention and outside developers, and is thus
better suited for open-sourcing [43].

The market position of a software product is also an important factor in
this decision. For example, open-sourcing a product that has a large market
share, that is at the forefront of the state-of-the-art in terms of technical ca-
pabilities with respect to its competition, or that has an ecosystem of other
products and services depending on it, is unlikely to lead to any gain for its
vendor [250].

The decision on whether to open-source a product should also include the
following stages and considerations.

Evaluate the Market for the Target Product Consider both commercial
and other OSS offerings, or combinations of the two. Determine whether there
is market interest for the product to become open-source [9].

Determine Development Community Interest Consider how likely is it
for a community of developers to form around the product and provide their
skills, expertise and development effort once it is open-sourced. Forums,
mailing lists and other communication channels can offer such insight [9].

Decide what Parts of the Product to Open-Source It is possible to only
open a part of the product source code, and keep the rest proprietary. Rea-
sons may be trade secrets or algorithms that are better not publicized, part of
the source being shared with other products, and dependence on third party
technologies with different licensing schemes [103].

Balance Short Term Switching Costs Technical switching costs may in-
volve backward-compatibility of the new OSS versions, or customers being
unwilling to embark in the new OSS direction, and instead switch to other
products [20]. Additionally, new personnel may need to be hired, and if there

7.2. Prerequisites, Deciding Factors and Concerns 77

is not enough familiarity with OSS practices it may be required to outsource
part of the processes such as installation, configuration, and maintenance
[230].

Consider New Processes, Infrastructure and Environment Forming an
OSS project and community will change the way a company or organisa-
tion does software development. It will require specific technical infrastruc-
ture (such as distributed revision control systems and an openy accessible
issue-tracking system — see Section 5.6), processes (see Chapter 5), and an
appropriate environment supporting issues such as a formation of an open,
collaborative community, free information flow, new governance models and
managerial skills, labor division, and support for a geographically distributed
team [243, 248, 230, 106, 107].

Accessing the OSS community, managing OSS information that is avail-
able on the internet, and dealing with licensing issues and customers, are
additional organisational routines that will need to be supported [20]. Before
embarking in the OSS direction it is important to verify that these elements
can be developed and supported.

Ensure the Correct Mentality is Present OSS development requires a par-
ticular mentality and culture that may not be present within the company, and
will need to be developed. There may be resistance by non-OSS ideologists
[107]. The culture of respect for developers’ intellectual rights, as well as the
need to match their skills and capabilities with the project requirements may
be missing, as evidenced through surveys and interviews [230, 248].

Ways to overcome these issues may include participation in other OSS

projects or events, selection of licensing that is most likely to attract a de-
velopment community, or allow company employees to get involved in other
OSS projects before making the switch [145, 44].

Tolerance for the inevitable free riding, as well as the understanding that
by opening one’s code certain advantages will be offered to competitors will
also need to be developed.

Sanitize Code Though it may seem a secondary, technical step, mak-
ing sure that the code is ready for public distribution can be a daunt-

78 Business Models

ing task involving rewriting or adding comments and documentation, re-
implementation of certain functionalities in better ways, and removal of parts
that are only intended for internal viewing [103]. This is important, as the
source code is likely to be scrutinized (even by automated tools), and will
form part of the company’s new image.

Select Appropriate Business Model As described in Section 7.4, various
business models can be adopted and the most appropriate one may depend on
a wide range of considerations.

Select Appropriate License As discussed in detail in Section 6, there are
many licensing approaches, with varying degrees of permissiveness as well
as other characteristics.

Decide on Marketing Approach Building awareness for an OSS product
can be challenging, as new channels of communication will need to be tapped
into or created, and new communities of users will need to be approached.

7.3 The Open Source Software Ecosystem

Business models based on OSS may involve many industry players cooperat-
ing at diverse roles to form an ecosystem. We briefly introduce the types of
companies, groups or organizations that can be involved in such an ecosys-
tem, and then examine the approaches through which profitable business can
be based on these cooperations.

OSS developers and project communities form a diverse group of people
with a shared interest and passion in both a specific project or product, and
in the concept of making it open to the community so that anyone can make
improvements or add functionality to it. They are organized in a community
that is formed around the project, either as independent individual developers,
or within corporate boundaries.

Software distributors focus on the business of system integration, pack-
aging, quality assurance and services [187]. Typical examples are the various
Linux operating system distributors (notably RedHat and SuSE). Their role in

7.3. The Open Source Software Ecosystem 79

OSS is important, as they package the software into different distributions, en-
hance it with middleware applications, and offer technical support and other
value-added services such as training for specific tasks. They gain revenue
due to the large number of transactions they are involved in, and they also
gain reputation from their participation in the OSS movement.

Software producers and vendors can benefit from OSS by incorporating
OSS into their product offerings. They can either use existing source code
within products they develop, or they can adopt entire OSS products and in-
clude them in their list of offerings, subject to licensing restrictions. In any
event, they lower their total production costs. Additionally, they can offer
complementary services and technical support to users of third-party OSS

products (similar to what distributors do). Finally they can also choose to
open the source of (part of) their own products (e.g. Sun and Java, Netscape
and Mozilla). Such a move has been found to result in many benefits includ-
ing increase in revenues and/or reputation. Their choice of license depends
on their business development strategy.

Hardware producers and vendors can incorporate OSS, such as drivers
and applications, to support their hardware (examples include IBM and HP).
They can also use OSS in embedded software platforms, such as set-top boxes,
broadband routers, mobile phones, and GPS navigators (the TiVo digital video
recorder, and Android-based mobile phones are two notable examples).

Third party service providers provide technical support, assistance, and
value-added services, similar to (and sometimes in competition with) projects
and distributors [135].

End users of the software products are generally categorized as home or
enterprise users, the latter usually being more willing to pay for detailed prod-
uct documentation and value added services such as technical support [43].

Others business types may be involved in the OSS ecosystem, including
companies producing accessories to be marketed along with OSS software

80 Business Models

products to the OSS community, or other types of organizations with a belief
or stake in the OSS paradigm that may wish to offer support or sponsorships.

7.4 Main Business Models

In the following paragraphs we describe the main OSS-related business mod-
els encountered within the OSS ecosystem. Figure 7.1 summarizes the types
of players that are most usually involved.

B
u

si
n

es
s

m
od

el
s

OSS ecosystem players

OSS de
ve

lop
ers

 an
d p

ro
jec

ts

Sof
tw

are
 di

str
ibu

tor
s

Sof
tw

are
 pr

od
uc

ers
/ve

nd
or

s

Hard
ware

 pr
od

uc
ers

/ve
nd

or
s

3r
d-

pa
rty

 se
rv

ice
 pr

ov
ide

rs

Con
su

mers

Othe
rs

Value-added packaging

Services and support

Loss-leader model
Widget frosting

Accessorizing

Dual licensing

Brand licensing

Software franchising

Financial support

Fig. 7.1 The typical OSS business models, and the OSS ecosystem players that are usually involved in
each.

7.4.1 Value-Added Packaging

A variety of value-added products and services can be bundled together with
the core OSS product [94]. Typical services may include system installation
and integration, technical support, while commercial utilities and applications
can also be packaged [44]. A typical example company in this role is RedHat,
which facilitates the complex task of installing and configuring the diverse
components of the GNU/Linux operating system [72].

7.4. Main Business Models 81

Technical support, customization and upgrade services are mostly tar-
geted toward enterprise customers, and may include long-term agreements
[135].

Software version support services may include identifying and providing
the most recent, stable and safe version of a certain OSS product, as well as
offering special premium or advanced versions through some subscription
mechanism [134, 135].

Finally, packaging may also be offered in terms of physical distribution
and delivery of the OSS product, e.g. in CD-ROMs and printed documentation
sent over regular mail [135, 245].

7.4.2 Services and Support

Services and support forms a similar business model to value-added pack-
aging, but is targeted toward more independent services and support-based
solutions.

A subscription-based model can offer users the ability to manually check
for software updates and new releases, access to discussion forums for tech-
nical support, as well as access to paid consultants and contractors to help
with specific tasks [243]. Examples include the SuSE (acquired by Novell)
Linux Enterprise Desktop, and RedHat with the JBoss application server. This
model provides a predictable revenue stream for the providers, and the option
to engage such services only when necessary for the customers. Post-sales
training and support can also be provided, along with additional documenta-
tion and manuals [243, 134, 154].

Finally independent consulting services can be offered regarding the
strategic aspects of decisions and investments related to OSS [94, 243]. Some-
times the software providers also undertake this consultant role, benefiting
from their reputation to offer these services and increase their revenue [250].

7.4.3 Loss-Leader Model

In the so called “loss-leader” model, some software offering is distributed
freely as open source, in order to attract interest and fuel demand for some
other, linked, proprietary software. This practice creates a community of de-
velopers and users around the product and increases the vendor’s reputation
[245].

82 Business Models

The proprietary software may be an advanced version of the OSS product
(e.g. the open sourced Sendmail versus the proprietary Sendmail Pro), or it
may be a set of additional related functionalities and products (e.g. GUIs,
toolkits, frameworks and languages offered on top of open-source integrated
development environments) [250].

7.4.4 Dual Licensing

As discussed previously, various vendors allow their customers to select
what license they want to apply to the use of their software. A free, OSS li-
cense such as GPL is usually offered for non-commercial applications, and
a proprietary license for commercial ones [243]. Alternatively, extensions
of a certain OSS offering may be covered by a non-OSS license, at a cost
[250, 243, 94, 135].

Commercial versions of OSS applications may include additional features
and capabilities. The advantages of the company and product’s presence in
the OSS community are used to boost the sales of the commercial versions.

Examples of dual licensed software include Qt2 and MySQL.3

7.4.5 Widget Frosting

Widget frosting is a term for embedding OSS software into hardware prod-
ucts [243, 94], such as a kernel, printer drivers, compilers, operating systems
or applications [245]. This offers the hardware vendor all the gains of OSS

development (large developer pool, more customer involvement, peer review
and other reliability measures and, possibly, also increased customer loyalty)
[187]. Software licensing costs are also reduced [250]. Examples of this strat-
egy include the TiVo set top box, which runs a Linux kernel [8], and the
One Laptop Per Child Foundation’s XO laptop, which is based on the Fedora
GNU/Linux distribution [243].

7.4.6 Brand Licensing

In brand licensing, one company charges other companies for the right to use
their brand names and trademarks. The brand reputation thus gained in creat-

2http://qt.nokia.com
3http://www.mysql.com

http://qt.nokia.com
http://www.mysql.com

7.4. Main Business Models 83

ing a successful OSS product is sold to other companies that create derivative
products [154]. For example, although Sun (now Oracle) released a GPL-
licensed implementation of the Java platform, the Open Java Development
Kit, in 2006, it retained control of the Java trademark certifying implemen-
tation suites as fully compatible with its specification. It therefore used the
Java brand’s power to align other companies implementations with the “write
once, run anywhere” strategy.

7.4.7 Accessorising

A variety of physical accessories accompany OSS software, ranging from
books, manuals and documentation, to more ancillary items such as T-shirts,
mugs, and stickers (fuelled by the particular culture surrounding the OSS

development community). Companies obtain considerable revenue from the
sale of these items [187, 94, 243, 245]. A notable example is the O’Reilly
publishing company, which offers hundreds of titles documenting OSS soft-
ware, and even hosts OSS-themed conferences, including the influential OS-
CON Open Source Convention.

7.4.8 Financial Support and Coexistence

Although this may not qualify as a business model in the strict sense, OSS

projects are often supported by donations from other companies that have
adopted their products. Additionally, foundations such as the FSF may support
either OSS projects or directly their programmers [77].

Corporations also directly sponsor OSS projects, either in funding or by
contributing developers to work on the projects, or by releasing previously
closed code and encouraging their employees to work on it. An example is
IBM’s Eclipse software development environment, which is still supported by
IBM developers [244].

Finally, venture capital funds also exhibit considerable interest in OSS

projects, especially following success stories such as Red Hat, Netscape and
others [103].

8
Adoption and Reuse

The licensing of open source software and the availability of its source code
makes it a very good reuse candidate in other software development efforts.
Indeed this is a regularly witnessed trend with the documentation of both
proprietary and open source software regularly containing acknowledgements
for a multitude of reused libraries and components. We discuss the different
types of adoption and reuse, and reasons, concerns and criteria for effective
and successful reuse.

8.1 Adoption vs Reuse

We distinguish two levels of OSS utilisation within other organizations and
software development efforts: adoption and reuse.

8.1.1 Adoption

Adoption is a general term that refers to the strategic decision by a company
or organization to utilise OSS software, either by introducing OSS products in
its daily tasks, or by reusing (parts of) OSS software within its own products
or packages.

In the first case it is not necessary for the organization to open, read,

84

8.1. Adoption vs Reuse 85

and modify the code, because the organization only seeks to improve the
performance of its internal function by using open source software instead of
proprietary offerings (e.g. GNU/Linux vs Windows, OpenOffice vs Microsoft
Office, Inkscape vs Adobe Illustrator, or PortgreSQL vs Oracle’s relational
database).

In the second case, software companies reuse the code and the artifacts of
an open source software package in order to build a new product. We refer to
this with the more specific term of OSS reuse.

8.1.2 Reuse

Reuse refers to a more specific case of adoption, where a piece of OSS is
incorporated in a software vendor’s product, either as it is or after modifica-
tions are made to it. So OSS reuse is a more organic approach to adoption,
whereby the OSS software being adopted is studied, understood, and embed-
ded in the new product. A goal of software reuse is to reduce the amount of
new software development [123, 111, 31].

The advantages and disadvantages of software adoption and reuse must be
considered before deciding whether to undertake this task [230], as discussed
in Section 8.2.

Software reuse has been examined and defined clearly within the soft-
ware engineering bibliography. In the case of open source software it usually
refers to the use of open source code within proprietary or other open source
software.

In terms of source code, the purpose of reuse can be either the incorpora-
tion of the code in new software, or its use as a reference [228]. The size and
granularity of the reused software can vary from lines of code to functions,
modules, or entire systems and applications.

We can categorize OSS reuse into three types, according to the degree to
which the originating software is used, as-is, studied or modified.

Black-Box Reuse In this case the original software is used as-is, or with
very minor modifications [2, 230]. This may or may not include source code,
and it is similar to the reuse of other proprietary software. The advantages of
OSS in this case include the zero purchasing and royalty cost, the lower risk
of vendor lock-in, and the ability to migrate to other, more intrusive reuse

86 Adoption and Reuse

models, should such a need arise. An example of such reuse are the various
applications distributed with Linux-based netbooks.

Grey-Box Reuse Modifications of the code only take place at interface
level [216, 2], and may not involve but a small portion of the source code.
However a study and in-depth understanding of the code may be required,
which may involve a considerable investment, even for limited modifications
[230]. Continuing the previous example, some netbooks ship with a Linux
version enhanced with modules that support their particular hardware fea-
tures.

White-Box Reuse The inner workings of the reused software are studied,
and adaptations, customizations and bug fixes take place [230]. Notable ex-
amples of this reuse type are Juniper’s use of the FreeBSD kernel [151], and
Google’s use of the Linux kernel [87].

8.2 Criteria for Reuse

Before deciding to reuse OSS software within a proprietary software product
a careful consideration and study of the circumstances should be carried out,
with focus on the characteristics of the organization that is considering to
reuse the OSS code, as well as the OSS code itself. Criteria that should be
considered emerge both from theoretical and empirical studies, and include
the following.

Organizational Versatility involves experience and know-how with OSS

software reuse [2, 25], existence of skilled IT personnel [91, 50], the level
of management support, formalization and strategic planning [2, 91, 216],
an ideological predisposition toward OSS [91, 2] and availability of technical
support [230].

Adequate Tool Support includes tools such as operating systems,
databases, application servers, compilers, build managers and integrated de-
velopment environments, and version control management systems compat-
ible with the OSS software to be adopted (see also [216, 25, 2, 111]). Most

8.3. Adoption Drivers 87

tools used for developing OSS are themselves OSS, so the main difficulty here
is organizational resistance toward their adoption.

Appropriate Development Standards Appropriate software engineering
and development standards and practices should be followed to ensure safe
and effective integration of the reused code into an application. These may
include visibility and accessibility of the code repository, use of version con-
trol systems, peer reviews, issue tracking, regression testing, use of various
code quality metrics, training into new OSS practices, and the use of OSS de-
velopment tools (see also [216, 25, 2]). The aim of adopting these standards
is to ensure that modifications of the reused source code can be smoothly in-
tegrated with the original source. Failure to back-port these changes creates
a fork between the reused code and the original source code version, which
increases the maintenance cost of merging the two brnaches over time.

Status of the OSS Code to be Reused The status of the code must be care-
fully assessed in terms of aspects such as

• reliability, maturity and robustness [242, 31, 2, 230],
• maintainability [31, 20],
• compatibility with the existing technology and skills [50],
• scalability [242] (to the extent that this is important),
• portability [111],
• functionality, with respect to the new product needs [111],
• security, availability and robustness [111],
• flexibility of interfaces and ability to upgrade [111, 31, 20],
• ease of installation and upgrade [196, 2, 111],
• interoperability and ability to run on other operating systems or

older hardware [91], and
• legality with respect to licensing and potential for patent infringe-

ment [111].

8.3 Adoption Drivers

We distinguish and analyse four key drivers behind the adoption and reuse
of OSS: strategic advantages, enhancement of development process, product

88 Adoption and Reuse

quality, and external factors.
These are discussed below, and also itemized in Table 8.1.

Adoption drivers Concerns
Strategic advantages Reduced development cost

No proprietary lock-in
Reduced time to market
External support
Business opportunities

Switching costs
Locating the right OSS

Licensing and
legal responsibilities
OSS lock-in possible

Development process Dissatisfaction with
other products
Good OSS development
practices
Community support

Non-standard processes,
knowledge barriers
Requires high expertise
Code coupling and
interconnection
Orphaned code
No time to market pressure

Product quality Functionality
maintainability
reliability
efficiency
portability

Quality variability
poor documentation
Code ownership and
accountability
Code quality assessment

External factors Successful projects
Need for transparency

Cost of experienced
personnel
Incentives for developers

Table 8.1 Motivation and concerns regarding the reuse of OSS within proprietary software products.

8.3.1 Strategic Advantages

The strategic advantages behind software adoption and reuse emerge from
various empirical studies including interviews, field studies and surveys, as
well as theoretical approaches and literature reviews, and include the follow-
ing.

Reduced Development Cost and No Licensing Fees OSS is a cheaper so-
lution in terms of direct acquisition, upgrades and maintenance costs, and is
a substitute for the development of new software [230, 2, 164, 50, 153, 242,
196, 28].

Avoidance of Proprietary Lock-In As the source code is available, there
is no risk of being locked into proprietary standards or specific software or

8.3. Adoption Drivers 89

hardware platforms, and dependence on particular software vendors is mini-
mized [242, 20, 230, 28].

Reduced Time to Market Reusing software components significantly re-
duces the overall development time [169, 98, 28]. This has also been empiri-
cally verified in [2].

Availability of External Support Support can come in diverse forms and
at various levels, through the OSS project community or through support con-
tracts for advanced versions of OSS products [230] (e.g. enterprise Linux dis-
tributions).

New Business Opportunities Many companies have embraced OSS and
built business models around offering value-added services based on such
software [169].

8.3.2 Development Process Enhancement

The adoption of OSS affects and enhances the entire development process in
various ways.

By incorporating OSS source code, as well as the valuable coding and de-
velopment practices of well-engineered OSS, including bug fixing [2], peer
reviews [196, 216] and collaboration procedures [164], a mediocre develop-
ment process can be greatly improved (Reference [216] advances this view
with examples from prominent OSS projects.)

Additionally, by reusing code of choice, developers can work with code
they appreciate and feel comfortable with [98]. In fact many developers that
reuse OSS end up becoming contributors to the original OSS project from
which the reused code originated.

Furthermore, the communities formed around OSS projects can be lever-
aged in the process of adopting and/or reusing the project’s outcome [25].
The knowledge and experience of the community is transfered to the com-
mercial setting within which the new product is developed. Additionally, the
OSS community can be attracted to the new development effort, to participate
in discussions or even in the code development itself with its large developer
base [164], thus maintaining the product up-to-date.

90 Adoption and Reuse

Finally the community may even be targeted as potential clients of the
resulting commercial product.

8.3.3 Product Quality

As OSS projects often go through an extensive period of maturation before
being a target for adoption [247], the code originating from them can be of
particularly high quality, thus giving additional value to the proprietary prod-
uct. Specific characteristics of interest include the following.

Advanced Functionality Often, the functionality provided by reused com-
ponents is more complete than what could be achieved by a single company’s
development effort. Having access to the source code allows additional re-
quirements to be fulfilled [91].

Code Security The open availability of source code allows us to examine it
and ensure that there are no dangerous bugs, viruses, or other security holes,
and modify it if necessary [164, 230]. It is found that security breaches in OSS

code are usually fixed very quickly [196].
The peer review process offers additional reassurance, as do the recog-

nized good practices usually followed in OSS development [2].

Customization The ability to customize OSS offers additional flexibility
and allows changes, experimentations and freedom of choice [164]. Code
that meets specific requirements can be reused and adapted to achieve addi-
tional customer satisfaction [242, 2, 169]. The resulting software can then be
redistributed within the OSS community for additional cycles of testing and
feedback, thus improving it at a minimal cost and resulting in better and more
trustworthy software [242, 230, 98].

Modularity and Granularity In OSS development modularity and granu-
larity concerns are given a high priority. As a result it is also possible to reuse
code at different levels of granularity ranging from lines of code to classes,
methods, libraries or entire system, thus increasing the opportunities for reuse
[2, 216].

8.4. Concerns 91

8.3.4 External Factors

Additional external factors that may favor the reuse of OSS in proprietary
products include the showcase of successful publicly recognized exemplars of
software development within one’s product [91], and a need for transparency,
publicity of processes, and security.

8.4 Concerns

Various concerns are involved with the decision to adopt and/or reuse OSS

within an organisation. We group these into the same four categories. (See
also Table 8.1 and the survey in [222]).

8.4.1 Strategic

Adoption of OSS software might incur short-term switching costs, often re-
quiring a substantial investment. For example using a Linux-based operating
system for the first time may involve a steep learning curve [196] and a con-
siderable application porting effort.

Searching, analysing and integrating an existing piece of OSS code may
actually turn out to be an equivalent task as writing it from scratch [98], so
the total cost of reusing code must be carefully calculated [230]. The amount
of experience with OSS within the organization, including both technical and
organizational skills will play an important role [20, 50].

Additionally, the software itself may incur costs, e.g. enterprise Linux
distributions that include additional services and technical support are not
free, nor are external consultants that may need to be hired [230, 241].

A category of additional hidden costs must also be anticipated, includ-
ing initial procurement and maintenance [111], customization and integration
[153], personnel retraining [20, 230], data migration to the new system en-
vironment and file conversion [230, 20] as well as consultants cost [169]. A
careful consideration of all these costs projected over a reasonable period of
time must be done to decide whether OSS reuse is actually in the best interest
of the organization.

The complexity and sheer number of different OSS licenses also present
complications and perceived risk factors, as discussed in Chapter 6. Restric-
tions imposed in a license may affect the ability of the proprietary software

92 Adoption and Reuse

to be extended, internally reused, or resold [241].
The organization adopting the OSS is legally responsible for ensuring the

license requirements are met, but may not have the technical expertise for
this [105]. It is therefore exposed to the risk of the owner of the original OSS

claiming for damages or, more commonly, demands for burdensome com-
pliance measures, such as the publication of proprietary code incorporated
within a GPL-licensed product.

Another legal risk is the inadverted infringement of third-party patents
or intellectual rights, which may be included in the OSS code that is reused
[196]. The OSS licenses generally don’t provide indemnity from such claims.
Dual-licensed OSS may help overcome some of the above issues, but it will
require purchase of a license for use in proprietary software [230].

Finally, although an advantage of OSS is that it offers protection from
proprietary vendor lock-in, it is still possible to get locked-in with an OSS

software choice [230]. For example, an organization basing its product on an
enterprise Linux distribution and the relevant services, support, and updates,
may have difficulty switching to a different solution.

8.4.2 Development Process

In terms of the actual development processes followed by the proprietary
company or organization, OSS adoption or reuse may also be subject to vari-
ous issues.

The adoption and reuse procedures are not standardized [169]. Rigorous
processes should be followed, including conscious searches in online OSS

repositories, specific training of staff members or even hiring of new staff
with experience in OSS, and the outsourcing part of the adoption process.
These are often neglected.

It is also argued that as OSS projects pay less importance to strategic plan-
ning and organization of the overall development effort [216] some of the im-
portant project life-cycle tasks may be downgraded or skipped. The availabil-
ity of support for the reuse and integration tasks may often not be correctly
organized and available [169].

Another issue with the reuse of OSS is that modifying the source code of
important software such as operating systems or applications servers requires
particularly mature and experienced programmers [230]. If problems come

8.4. Concerns 93

up with the integration (e.g. the coupling and interconnection of different
pieces of reused code may have undesired and unexpected side-effects, if not
done carefully [216]) the response time and the organization’s capacity of
dealing with them may be questionable. This is supported by the work of
Meng Huang et al. who designed an assessment framework and reported on
a case study based on it [111].

Establishing a long term relationship with the OSS community behind the
code that is adopted is definitely an important factor. Even so, as found by
an exploratory empirical study in [164], managers feel that in case issues
arise there is no safe mechanism or entity to undertake the task of resolving
them. It is possible, for example, that a piece of OSS that is reused ends up
being abandoned or “orphaned” by the original project (sometimes a result of
forking [169]). In this case, the code will not be properly maintained and will
not evolve, or if it does it may not be in a direction compatible with the rest
of the project [216].

Finally, a critical difference between OSS and proprietary software devel-
opment, as also discussed in Chapter 5, is that with OSS the time to market is
not an important issue. As a result, a proprietary software release may need to
be indefinitely delayed until an important upgrade or fix is completed within
the original OSS project whose code is reused.

Overall, there are still knowledge barriers to the safe reuse of OSS code.
These affect issues such as searching for the appropriate OSS application
whose code to reuse [169], assessing the maturity of an OSS package [230],
transfer of knowledge and skills for bug fixes and modifications, the lack
of ability to adapt such code for legacy systems and others. Still, Ajila and
Wu, through questionnaires, surveys and a literature review, found that these
issues are not particularly more severe in the reuse of OSS compared to soft-
ware reuse in general [2].

8.4.3 Product Quality

Regarding the quality and condition of the reused product itself, there are
concerns about OSS documentation [164], which may not meet the standards
of the rest of the proprietary code.

Open source software quality is considered to be often of a high standard,
but there can always be exceptions. It may not be easy to assess which is

94 Adoption and Reuse

the case [216], or to verify that there are no hidden security flaws in large
code bases, thus increasing the risk of security problems [25], and this has
significantly deterred companies from reusing software, or only do so after
extensive code review processes or if a close relationship is established with
the originating OSS project.

Additionally, as mentioned in Section 8.4.2, orphaned code will not be
correctly maintained, and thus will be of poorer quality [216].

Finally, the ownership of the code being reused may sometimes be diffi-
cult to determine, especially if it is licensed under a viral model [216], making
it difficult to hold someone responsible or accountable for it. Furthermore,
even though newer SCM systems do permit authorship identification at the
source code line level, most OSS licenses include limitation of developer lia-
bility clauses.

8.4.4 External Issues

Other external issues that may adversely affect the decision to reuse OSS in-
clude the fact that in some cases there is not enough funding to get the neces-
sary support for adapting the OSS to the needs of the proprietary product [50],
as well as the need to develop incentives for the developers to engage in such
a process [98]. In some cases the reuse of code is considered by developers
to be less rewarding than writing in new code.

8.5 Software Reuse Process

The process of reusing a piece of OSS within a proprietary software prod-
uct consists of the following four stages: decision, selection, integration and
assessment.

The factors that should be considered in the decision to reuse OSS have
been analysed in the above sections. Considerable additional insight is of-
fered in [159], which outlines a particular case of OSS development and reuse
within HP, highlighting some of the relevant concerns and how they were
dealt with and overcome.

In the selection stage the appropriate software to be reused is identified
through the following steps.

(1) Collection of high-level requirements and identification of candi-

8.5. Software Reuse Process 95

date projects [111, 123]. This happens through an analysis of the
functional and non-functional requirements for the specific soft-
ware, and a comparison with various existing OSS projects. Other
types of requirements may include cost, hardware constraints,
project status, maturity and popularity, programming language
and operating system (see also Chapter 3 for indicators of suc-
cessful projects). Then deeper surveys involving the OSS project
repositories and community will yield additional details about the
project quality, size, number of developers, submission and bug
fix rate [153].

(2) The high level architecture and modularity of the candidate
projects is studied, to identify in which cases the particular parts
of interest can be effectively extracted for reuse [111].

(3) More detailed and low-level specifications are then laid out, to-
gether with specific selection criteria [111, 123, 153]. Addition-
ally, licensing concerns and interactions should be carefully con-
sidered [153], and the interdependencies between software li-
censed under different license types should be taken into account
(see also [121]).

(4) A final selection of the OSS project, and in particular of what parts
of it will be reused eventually takes place [31, 228, 153].

In the integration and implementation stage, the following four steps are
involved.

(1) The initial criteria and requirements are adjusted, if required,
based on the characteristics of the OSS to be reused.

(2) The type and scope of reuse are determined, including the degree
to which the OSS code will be modified (e.g. a selection between
black, grey or white-box reuse). This decision should take into ac-
count the risks involved and the match between the requirements
and the OSS specifications [123].

(3) The next step consists of implementation of changes, improve-
ments and integration of the OSS code within the product [111,
31]. According to the type of reuse there may be a need to study
and analyse the source code, and perform code modifications of

96 Adoption and Reuse

different extent. In the case where legacy systems are involved,
experienced consultants may be required to perform specific code
adaptations [169].

(4) Finally the resulting software product will be subject to proper
maintenance and updates, including modifications in system func-
tionality, keeping the relevant documentation up to date, debug-
ging, restructuring, and conversion [153]. An important part of
this phase involves the contribution of any changes made to the
reused OSS back to its originating project. This integration effort,
apart from being the correct ethical choice, will also reduce the
effort of future maintenance.

At the end of this process the product status should be assessed, including
rigorous testing of the resulting artifact, evaluation of the entire process, its
cost and potential need for extensions, and validation of the license status
[153, 123].

9
Motivation

One of the aspects of OSS that attracts a lot of attention is the fact that it is a
high quality public good developed for free by qualified volunteer developers,
individuals or organizations, and evolving at a rapid pace. This is puzzling,
because based on economic theory one would expect such privately provided
public goods to be stagnant and of inferior quality [16].

In an attempt to explain the above phenomenon, the motivation for con-
tributing to OSS projects has been the subject of many studies from diverse
scientific domains. In this chapter we try to summarize their findings and
present some of the relevant literature.

According to findings by various studies, contributing to OSS is a “private-
collective” activity, meaning that even though the contributed code becomes
public, elements of it remain private property of its creator [235].

Table 9.1 summarizes the categories of motivational aspects that affect
the involvement of individuals and businesses or other organizations in OSS

efforts, and itemizes some of the more relevant bibliography for each aspect.
These are further analyzed and discussed in the following sections.

97

98 Motivation
Motivation factors for
Individuals

Motivation factors
for Businesses

In
tr

in
si

c
(h

ed
on

is
tic

)

E
xt

ri
ns

ic

S
oc

ia
l

P
ol

iti
ca

l/i
de

ol
og

ic
al

T
ec

hn
ol

og
ic

al

en
vi

ro
nm

en
t

an
d

w
or

ki
ng

 s
ty

le

P
ro

ce
ss

/p
ro

du
ct

O
pe

nn
es

s

E
nj

oy
m

en
t,

am
us

em
en

t
F

ul
fil

lm
en

t,
sa

tis
fa

ct
io

n
S

en
se

 o
f c

ie
nt

ifi
c

di
sc

o
ve

ry

an
d

cr
ea

tiv
ity

C
ha

lle
ng

e
R

ep
ut

at
io

n
an

d
st

at
us

S
ig

na
lli

ng
 in

ce
nt

iv
es

 (
ca

re
er

,
jo

b
op

po
rt

un
iti

es
)

F
in

an
ci

al
 in

ce
nt

iv
es

 a
n

d
re

w
ar

ds

S
en

se
 o

f b
el

on
gi

ng
 (

co
m

m
un

ity

id
en

tif
ic

at
io

n)
A

ltr
ui

sm
C

on
tr

ib
ut

io
n

to
 p

ub
lic

 g
oo

d
G

en
er

al
iz

ed
 r

ec
ip

ro
ci

ty

A
nt

i-c
om

m
er

ci
al

is
m

H
ac

ke
r

cu
ltu

re
A

dv
an

ci
ng

 th
e

fr
ee

 s
/w

 m
ov

em
en

t

Le
ar

ni
ng

 a
nd

 s
ki

lls
 d

ev
el

op
m

en
t

C
om

m
un

ity
 c

on
tr

ib
ut

io
n

 a
nd

 fe
ed

ba
ck

B
le

ed
in

g-
ed

ge
 te

ch
no

lo
gy

R
ea

lis
at

io
n

of
 p

er
so

na
l i

de
as

U
se

r-
dr

iv
en

 in
no

va
tio

n
In

te
gr

at
io

n
of

 in
di

vi
du

a
l's

 fi
xe

s
in

m

ai
nt

ai
ne

d
co

de

A
do

pt
io

n
of

 c
od

e
th

at
 f

its
 c

om
pa

ny
's

bu

si
ne

ss
 m

od
el

H
ig

h
qu

al
ity

 c
od

e
C

on
tr

ib
ut

io
n,

 fe
ed

ba
ck

 &
 s

up
po

rt
 fr

om

O
S

 c
om

m
un

ity
S

ta
nd

ar
di

za
tio

n
F

ra
gm

en
ta

tio
n

an
d

m
o

du
la

rit
y

te
ch

ni
qu

es
U

se
r-

dr
iv

en
 in

no
va

tio
n

H
um

an
 c

ap
ita

l i
m

pr
ov

e
m

en
t

A
do

pt
io

n
of

 O
S

 m
od

el
C

om
pe

tit
io

n
ov

er
vi

ew
R

ep
ut

at
io

n
C

om
m

er
ci

al
 v

is
ib

ili
ty

E
m

pl
oy

ee
 s

at
is

fa
ct

io
n

[2
54

]

[1
45

],
 [

14
6]

, [
14

7]
, [

22
]

[8
8]

[2
2]

, [
68

]
[6

8]

[8
8]

, [
22

]

[2
2]

, [
21

]
[8

8]

[1
1]

[2
2]

, [
25

4]
, [

68
]

[2
2]

, [
21

]
[2

2]

[6
8]

, [
22

]

[1
46

],
 [

14
7]

[6
8]

[2
2]

[2
2]

, [
68

],
 [

14
6]

, [
14

7]

[2
2]

, [
14

5]
, [

14
6]

, [
14

7]

[2
2]

, [
14

5]
, [

14
7]

[2
2]

, [
14

5]
, [

14
7]

[1
45

],
 [

14
7]

[1
45

]

[8
8]

[8
8]

, [
21

]

[1
45

],
 [

14
6]

, [
14

7]
, [

22
]

C
at

eg
or

iz
at

io
n

M
ot

iv
at

in
g

fa
ct

or
s

R
el

ev
an

t b
ib

lio
gr

ap
hy

T
he

or
et

ic
al

S
ur

ve
ys

E
m

pi
ri

ca
l s

tu
di

es
O

th
er

/g
en

er
ic

[2
54

],
 [

20
4]

, [
13

8]

[1
38

]

[1
09

],
 [

22
],

 [
89

],

[1
41

],
 [

17
2]

[1
09

],
 [

89
]

[2
2]

, [
89

]

[1
02

],
 [

10
9]

, [
89

],
 [

22
]

[1
02

]
[1

38
]

[1
01

]

[2
2]

, [
89

],
 [

25
4]

, [
13

7]

[2
2]

[2
2]

[8
9]

, [
22

]

[1
01

],
 [

13
8]

[2
50

],
 [

10
6]

[2
2]

, [
25

0]
, [

10
6]

[2
2]

, [
25

0]
, [

10
6]

[2
50

],
 [

10
6]

[2
2]

, [
25

0]
, [

10
6]

[2
2]

, [
13

8]
, [

10
2]

, [
25

0]
, [

10
6]

[2
2]

, [
25

0]

[1
06

]

[2
50

]

[2
50

]

[1
07

]

[2
04

],
 [

17
2]

, [
13

8]
, [

10
9]

[1
02

],
 [

89
]

[2
2]

, [
89

],
 [

13
8]

[1
38

]

[1
38

]

[1
02

]

[1
02

]
[1

38
],

 [
23

5]

[1
01

]

[1
01

],
 [

13
8]

[2
35

]

[1
38

],
 [

10
2]

[2
35

]

[1
38

]

[1
02

]

[1
38

]

[4
6]

[2
03

]

[2
13

]

[2
13

]

[2
21

]
[2

21
],

 [
5]

, [
18

6]

[2
21

]

[1
2]

, [
21

3]

[1
85

],
 [

25
7]

, [
16

]

[1
85

]
[2

13
]

[1
85

],
 [

75
],

 [
21

3]

[2
32

]

[1
34

],
 [

12
],

 [
19

1]

[1
34

],
 [

19
1]

[1
34

],
 [

12
]

[1
2]

[2
0]

[1
2]

[2
26

],
 [

22
7]

, [
16

],
 [

21
3]

[2
0]

Table 9.1 A categorization of the factors motivating individuals and organizations to contribute to OSS.
The relevant bibliography is also included and grouped in works including theoretical studies, empirical
findings, surveys and reviews of the scientific area, or other general studies.

9.1. Motivational Aspects for Individuals 99

9.1 Motivational Aspects for Individuals

In attempting to identify what motivates developers to contribute to OSS

projects, most studies focus on two types of motivating factors: intrinsic (or
hedonistic, including factors such as enjoyment, challenge, and satisfaction)
and extrinsic (mostly involving economic and signalling incentives). Addi-
tional factors uncovered are of a social, political or ideological nature (par-
ticipation into a community effort, or belief in the OSS movement and what it
represents) as well as what the technological environment that OSS projects
are surrounded by may offer an individual.

A general hypothesis that contributions to OSS projects are merely driven
by generosity and altruism is challenged by economists [145]. As found in a
survey-based empirical study of motivational profiles, although altruism does
play a significant role, it is not enough to explain the phenomenon; other
motives we mentioned come into play [48]. We discuss these below.

9.1.1 Intrinsic

By intrinsic motivations, which have been widely studied in psychology (see
[138] and the references therein), we refer to those relating to satisfaction
of an immediate need, or pleasure from carrying out a specific activity [22].
These rewards can involve intellectual gratification, a sense of aesthetic plea-
sure [21], or satisfaction of a basic need for competence, control or autonomy
[236].

Following are some intrinsic motivational factors for contributing to OSS

that have been identified in the literature.

Enjoyment and Amusement Linus Torvalds characteristically claimed
that the main motivation behind programming for the Linux project is fun
[226]. The enjoyment factor has been found to be important by other re-
searchers [88, 227, 204, 213]. Various empirical studies also back this state-
ment, referring to an “innate desire to code” [102] and concluding that hedo-
nistic motivations are among the strongest ones [109, 138, 16, 172].

Satisfaction and Fulfillment OSS programming has been described as an
artistic process providing satisfaction and fulfillment associated with problem

100 Motivation

solving [21].

Sense of Scientific Discovery, Creativity and Challenge Similarly, vari-
ous studies identify as strong incentives the sense of scientific discovery and
the inherent creativity factor, as well as the challenge of participating in a
project together with many other highly skilled and motivated programmers
[21, 204, 138, 203, 46, 254].

9.1.2 Extrinsic

By extrinsic motivations we refer to those that are satisfied indirectly, and
usually through financial or monetary compensations [22]. An example of
this indirect fulfillment would be a programmer contributing to an OSS project
so as to gain visibility or better reputation within the community, in the hope
that this will lead to better job opportunities.

Following are examples of extrinsic motivational factors according to the
literature.

Reputation and Status As described in the preceding example, program-
mers have various reasons to project and increase their reputation and status
within the professional community [88, 109, 89, 213]. Participation in suc-
cessful, and often high-profile OSS projects are excellent media to achieve
this, as they provide high visibility into the programmer’s work, style, perfor-
mance and achievements.

Signaling Incentives Participation in an OSS project may be driven by ca-
reer concerns. Developers may use this approach to signal their availability
and skills for potential job opportunities [145, 146, 147, 22, 176]. Another
category of signalling incentives relates to the developer’s ego gratification
that results from peer recognition of their work, in a way similar to the in-
tellectual gratification that motivates members of the scientific community
[14, 46, 11, 21, 120].

Financial Incentives and Monetary Rewards There are various ways in
which participation in OSS projects can lead to financial gain. As open source

9.1. Motivational Aspects for Individuals 101

technologies are widely used and taught in universities, graduate program-
mers are likely to continue using them, due to their lower costs (the so called
Alumni Effect [146, 147]). Additionally, participation in an OSS project bene-
fits from bug fixes, customizations and extensions contributed by other mem-
bers. This can offset the cost of one’s own contributions to the project. And
monetary rewards can also be directly reaped from this activity [22, 89, 138].
Reference [136] provides an in-depth description of the way in which fi-
nancial incentives (among others) influence and motivate OSS developers by
incorporating both intrinsic and extrinsic elements in an integrative theory
about OSS developer motivation.

9.1.3 Political and Ideological

Participation in OSS projects can also be the result of one’s political, ide-
ological or cultural beliefs. For example OSS entails an expression of anti-
commercialism [22, 89, 68, 221, 62], while there is also a clear cultural ele-
ment shared within OSS communities (the “hacker culture”) [68, 221, 5, 186,
62]. At the same time, it can also be a statement belief in the free software
movement, and an active attempt to advance it.

9.1.4 Social

If we consider OSS as a social movement, we can adopt another perspective
for studying the incentives to participation in OSS projects [239]. The follow-
ing types of motivations can be identified.

Altruism Contribution to an OSS project has a clear altruistic element. Var-
ious studies provide evidence of this, including empirical work contrasting
the outcomes of a phone survey of various firms regarding their motivations
for participating in OSS projects with an earlier study of individual respon-
dents [22], a study that identified the prominent motivating factors based on
classical theory as well as empirical studies [102], and a paper discussing key
economic problems of OSS based on theory and a proposed simulation model
[21].

Sense of Belonging and Contributing to a Public Good Community iden-
tification [88, 102, 109, 89, 221, 22] is a widely accepted motivating factor.

102 Motivation

As concluded in a Linux-based study [5], it involves elements such as partic-
ipation in a collective effort, social interactions and group influences. Other
factors include a consciousness of connecting with other members, shared rit-
uals, a sense of duty, trust and loyalty toward the community, and contributing
to a public good [186, 205, 221, 5, 213].

Generalized Reciprocity Also referred to as “gift giving” [185], it involves
relationships forged through mutual reciprocal actions, similar to relation-
ships within families [257] or academic societies [11].

9.1.5 Technological Environment and Working Style

OSS projects are typically characterized by the formation of highly motivated
and skilled communities of developers and a technologically challenging and
exciting environment. This is found to be an important motivating factor for
participating and contributing to such efforts, for various reasons.

Learning and Skills Development Achieved through interaction with
other members, examination of other developers’ code, and the open and
transparent OSS development processes [22, 89, 254, 68, 137].

Community Contribution and Feedback The ability to reciprocally in-
teract on a technical level with other project members [21, 22, 185].

Working with Bleeding-Edge Technology Exposure to state-of-the art
technologies and inventions that would otherwise be hard to come across in
such an open way, if at all [22, 213].

Realisation of Personal Ideas The OSS project environment allows the im-
plementation and realisation of bigger goals and aspirations than would oth-
erwise be possible [185, 89, 75, 68, 22, 213].

User-Driven Innovation Direct interaction with users, and immediate inte-
gration of their needs into the various development phases is an opportunity
offered by OSS projects [232, 101, 138, 147] that may be hard to get in a

9.2. Motivational Aspects for Businesses 103

larger software development house where engineers are often shielded from
customers through multiple layers of support personnel.

Integration of Individual Fixes By submitting one’s fixes and improve-
ments to an OSS project, these become integral parts of the maintained source
code and will therefore be available in future releases, to both the contributing
individual and others [213].

9.2 Motivational Aspects for Businesses

Several of the motivations for individuals may also apply in the case of busi-
nesses or other organizations that contribute to OSS software projects. We
examine separately motivations pertaining to the software development pro-
cesses and the resulting products, and motivations relevant to the open nature
of OSS projects.

9.2.1 Process and Product

The development carried out within proprietary software firms can be en-
hanced and enriched through participation in OSS projects in several ways.

Contribution From the OSS Community The feedback and support re-
ceived from the OSS community can be highly beneficial to the software pro-
duction process, which is typically more closed and isolated within propri-
etary vendor firms [22, 250, 106, 134, 191, 45]. Specific benefits include peer
review, reduction of effort duplication, utilization of existent modules, and
access to talented developers.

Modularity The product’s design and effort allocation can be improved
by taking advantage of the extensive modularity approaches used in OSS

projects. This is evidenced in numerous literature reviews, survey studies,
software provision models, case studies and related analyses [250, 134, 12,
106].

Code that Fits the Company’s Model A business may contribute to an
OSS project in order to adopt some code that fits their business model. The

104 Motivation

fit may concern factors such as code functionality, quality, cost, licensing,
and competition. In start-up or research intensive companies, additional mo-
tivations such as lowered entry barriers and fast product development seem to
play a significant role [96]. Examples of this include Apple1 basing their Mac
OS X operating system on OSS projects such as FreeBSD, GCC2 and WebKit;3

TiVo4 using Linux for their DVR; and Juniper5 basing their router software on
FreeBSD.

9.2.2 Openness

Additional motivation for the business and its employees stems from the open
nature of OSS projects. Specific motivational factors may include.

Commercial visibility and reputation is gained by participating in OSS

projects [20, 106, 250, 45]. For instance, Sun (now part of Oracle) gained
tremendous goodwill from the OSS community and developers in general by
open-sourcing the Java platform and the Solaris operating system.

Competition knowledge can be gathered through the project community
or by observing other companies that participate in the same projects [145,
147, 250].

Adoption of the OSS model and ideas may significantly improve the pro-
cesses and working environment within a business [22, 145, 147, 250].

Human capital improvement Participation in OSS projects can have a ben-
eficial effect on the employees [22, 145, 147, 138, 102, 250, 20, 106, 12, 107].
The same motivations that were examined for the case of individual develop-
ers will, to a certain extent, also apply here. Employees that take initiatives
will experience recognition by the other members of the project commu-
nity [107], restrictive managerial attitudes will be softened and programmers
will be working in a more intellectually stimulating environment [145].

1http://www.apple.com/
2http://gcc.gnu.org/
3http://webkit.org/
4http://www.tivo.com/
5http://www.juniper.net/

http://www.apple.com/
http://gcc.gnu.org/
http://webkit.org/
http://www.tivo.com/
http://www.juniper.net/

9.2. Motivational Aspects for Businesses 105

User-driven innovation The active involvement of users throughout the
various phases of the project evolution is a particularly important advantage
for software vendor firms [22, 145, 147, 250, 12, 106, 235].

10
Impact and Outlook

The impact that OSS has had both on the software business, but also on society
as a whole, at a local and global scale, is undeniable. For example science and
education, developing countries, and the youth of our societies have all been
positively affected by OSS directly or indirectly.

It is interesting to examine how OSS and its main characteristics are
aligned with many of the current global challenges faced in different fields
and disciplines, and how it can be applied to help provide potential solutions.

It is also worth delving into the outlook for OSS, both in terms of what
its future might hold, and in terms of identifying the research directions that
some of the main concerns currently voiced around it might open.

10.1 Impact on the Software Industry

Various aspects of the impact of OSS on the software business and market
have already been discussed in other chapters of this survey. Overall, it could
be argued that OSS has “broadened” the software industry by significantly
reducing entry barriers for both individuals and companies, introducing a
healthier form of competition, reducing the possibility of market monopoliz-
ing and forming globally distributed software production communities. The

106

10.1. Impact on the Software Industry 107

free and open licensing of OSS has played a very big role in fuelling these
changes [96].

The emergence of a multitude of open, widely distributed and exciting
OSS projects has allowed new (as well as experienced) developers and IT
practitioners to enter the world of innovative software production, develop
their skills, exchange ideas, showcase their capabilities and become parts of
a vibrating software industry [219]. This is to a large extent made possible
through the transparency and accessibility of almost all the information about
the resulting software artifacts, including source code, past versions, recorded
issues and communications, documentation, development roadmap and tools.

At the same time OSS has provided the opportunity for small firms to
enter the market with lower costs, barriers and risks, by utilizing or building
on applications, operating systems and utilities that are founded on OSS and
made available through a relatively low investment [74, 245]. Such firms will
in turn offer employment to IT professionals, possibly including some who
originated from the development communities that supported these same OSS

products.
New software development models, technologies and infrastructures for

collaboration, design and modularisation patterns, and concurrent develop-
ment and debugging processes have emerged from OSS, and are changing
the commercial software development scene [244, 72, 216, 245]. This rapid
spread of ideas from the OSS world has reached the proprietary software do-
main as well [219]. Software vendors carefully follow these developments,
and many opt to either embrace similar methodologies, or keep very close
ties with the OSS domain, for practical or strategic reasons.

With the appearance of many dominant OSS products in most areas of
software, including applications, operating systems, infrastructural and mid-
dleware software, which are available at a very small cost, modifiable and
adaptable, a new skill for IT professionals is the ability to monitor and search
the OSS repositories to identify, combine and work with these products [219].

Global competition within the software industry has also been signifi-
cantly affected by OSS. One example is the introduction of a new type of firm
in the market that focuses on the packaging, distribution and support of OSS

products (see also Section 7.3). OSS also offers an effective anti-monopolistic
defence, and allows the software industry to move away from a model based
on proprietary software lock-in [74].

108 Impact and Outlook

Due to its licensing characteristics and low cost, many hardware vendors
also increasingly prefer to ship their products with embedded OSS. For exam-
ple various consumer electronics and telecommunications firms increasingly
use the Linux operating system or other OSS in their products [237, 74, 96].

The OSS approach of full transparency and distribution of digital archives
can also help in preserving software artifacts in the future. By covering the
basic requirements of digital preservation systems [194], 1 OSS has the poten-
tial of preserving the current state of the art in software engineering for future
study [112]. Indeed, at the moment researchers can dig into publicly avail-
able software archives dating as back as mid-1980, whereas binaries from the
same era are barely executable on current computers.

Finally, we have reviewed in considerable detail in Chapter 7 and summa-
rized in Table 7.1 the entire ecosystem of different types of companies that
formed around OSS, and the different business opportunities and models that
are emerging.

10.2 Impact on Society

In order to examine the impact of OSS on society, we focus on three impor-
tant, dynamically evolving and changing sectors of global society: the youth,
science and education, and the developing countries.

10.2.1 The Youth and Teaching

In today’s modern society, free and easy access to information is of
paramount importance in the development of skills and knowledge, in par-
ticular for the young. OSS has undeniably helped underpin the spread of
the internet with technologies such as web servers, browsers, and messag-
ing technologies [219]. These technologies have become a part of the youth’s
everyday lives, and allow them to search for information, connect with others
and join communities. By engaging in such collaborative activities, cultural
divides are torn down, prejudices are abandoned, and a real global identity
can be achieved [219].

The low cost and free availability of many OSS educational applications

1Linus Torvalds humorously quoted on the subject:“Only wimps use tape backup: real men just upload
their important stuff on ftp, and let the rest of the world mirror it.”

10.2. Impact on Society 109

also allows them to be used in schools and in teaching without requiring
large funds or resources. These provide access to many online repositories of
learning material that are openly accessible to all (one example being MIT’s
Open CourseWare Initiative)2.

For young people with special interest in software, or aiming to enter
the software industry, OSS provides great opportunities for developers or en-
trepreneurs, regardless of one’s geographic location. A track record of one’s
contributions to projects, and participation in OSS communities can become
a substitute for a CV. The knowledge, information and skills that flow inside
OSS project communities and can be accumulated through participation are
immense, rendering them “a complete new kind of learning platform” [141].

The culture of OSS projects, and the acceptance of new contributors to
their communities further facilitate learning. The access to OSS source code
makes this software particularly appropriate for teaching in technically ori-
ented classes. Even if students are not skilled enough to make contributions
to a project, they can learn from it by examining and studying it (reading
other’s code is a strongly recommended practice for developing programming
skills [208, 213, 211]). Additionally, organizational and project management
models that are associated with running OSS projects can be studied through
observation.

Finally, OSS is the distribution mechanism and driving force behind many
innovative and successful educational initiatives. These include the Scratch3

and EToys4 programming environments for children, the Processing5 plat-
form for creative artists, and the One Laptop Per Child initiative [132].

10.2.2 Science, Engineering and Research

The philosophy of sharing and open cooperation is not only a key element
of OSS projects and initiatives. Science, research, and engineering are areas
where widespread collaboration on large and complex projects and tasks are
inherent and necessary. The open source model of innovation can be applied
in these areas as well, in fields ranging beyond software development, such

2http://ocw.mit.edu/
3http://scratch.mit.edu
4http://www.squeakland.org
5http://www.processing.org

http://ocw.mit.edu/
http://scratch.mit.edu
http://www.squeakland.org
http://www.processing.org

110 Impact and Outlook

as social sciences, life sciences, and biomedicine [240].
In fact, it is argued that the OSS approach can be compared to the way

research is conducted in the scientific and academic communities [129]. In
both communities strong norms apply regarding the respect for and impor-
tance of knowledge and recognition of contribution, and the need for public
validation of scientific or engineering results (as in peer reviewing). Simi-
lar intellectual property regimes apply to both worlds, and members of both
communities are primarily rewarded through the dissemination of their work,
the resulting status and prestige gains, the learning experience, and ultimately
the fun of it, rather than being motivated mainly through monetary incentives.
Finally, in both domains virtual collaboration within large distributed teams
is a fundamental element.

Another interesting observation is that work in both OSS development and
science and research are financed through similar processes. In many cases in
science individual researchers will become interested in a particular subject
and conduct work that is not directly financed through their main projects
[237]. Similarly, as has been discussed, a large percentage of OSS developers
are at the same time employed by firms working on different projects.

As discussed in a literature survey of OSS characteristics that promote
research [237], these similarities open up opportunities for dialog between
members of the two communities. Although the fundamental goals and ques-
tions may vary, the shared creative process and rules are similar. Observ-
ing OSS development can therefore make more apparent the corresponding
strengths or weaknesses of the scientific process, and help improve it.

Another important impact of OSS to the research and academic commu-
nity is the availability of very large repositories of data [161]. This data can
be of different sorts including source code, mailing lists, bug reports, techni-
cal communications, user feedback, and version control repositories. All this
information is very valuable to researchers, as it allows them to study tech-
nical, organizational, or behavioural matters (e.g. millions of lines of source
code, specification documents and technical exchanges, topics of discussions,
people’s influence on the development process, decision making and coordi-
nation, conversational protocol etc.) [237]. These repositories can be searched
and data retrieved based on recent advances in data mining technologies can
be analysed both qualitatively and quantitatively to reveal new information
useful in fields as varied as engineering, sociology and economics, to name

10.2. Impact on Society 111

but a few [252].
Finally, the use of OSS in research and academia allows progress to be

made in spite of scarcity of funds, and quicker results to be produced by us-
ing OSS tools. A couple of recent examples of OSS projects that are applied to
research include the MOSES6 OSS toolkit for statistical machine translation,
the IntAct7 OSS database and software suite for modeling, storing and ana-
lyzing molecular interaction data, and the OpenStack8 OSS Cloud computing
system and the R-Project9 statistical computing platform.

10.2.3 The Developing Countries

Developing countries have a great percentage of the world’s brain power, yet
only enjoy a very small share of the world’s technological innovation [129].
OSS is considered to be a solution for bridging the digital divide between the
most advanced countries and developing countries that still face massive eco-
nomic, social and infrastructural challenges. Being generally free and easily
accessible, OSS is attractive for all types of users, ranging from home users
and schools to businesses and governments, especially in challenged environ-
ments where funds and resources are particularly scarce. As an added bonus
many OSS offerings require fewer computing resources than their proprietary
alternatives, and can therefore run on older or cheaper hardware.

In such economies and conditions, locking institutions into proprietary
software that charges, or may in the future start charging license fees is not
feasible. With OSS it is possible to train professionals to use, modify and
maintain the software they need to perform their professional, educational or
everyday tasks, due to its openness and availability of the source code [237].

The distributed development model of OSS also allows people in develop-
ing countries to participate in and learn from such projects, without the need
to relocate to other parts of the world, as would be typically required in order
to work in a large software firm (an effect labelled the “brain drain”, whereby
educated people are forced to abandon their home countries in search of em-
ployment and career opportunities elsewhere in the world) [219].

6http://www.statmt.org/moses/
7http://www.ebi.ac.uk/intact/main.xhtml
8http://www.openstack.org/
9http://www.r-project.org

http://www.statmt.org/moses/
http://www.ebi.ac.uk/intact/main.xhtml
http://www.openstack.org/
http://www.r-project.org

112 Impact and Outlook

For developing countries to evolve and benefit from current technological
advances, a community of trained local professionals must be formed and
supported. Outsourcing opportunities offer considerable employment cur-
rently, but this is not enough [219]. The OSS approach is well suited for em-
powering the software development and research communities of developing
countries.

A particularly interesting case of the application of OSS to serve the needs
of developing countries is the OLPC (One Laptop Per Child) initiative [132],
which based the development of the XO, a very low cost portable computer on
the choice of the Fedora Linux operating system and the Sugar graphical user
interface. The XO was developed with the key concepts of learning, openness
and collaboration in mind. The use of the Linux/Sugar OSS solutions allowed
its production cost to remain minimal, and upheld the open source ideology.
Indeed this project’s technology proved to be a potential threat to the PC
industry in emerging markets.

10.3 Tackling Global Challenges

The OSS philosophy adheres to principles that reach beyond software devel-
opment and the IT domain, and revolve around openness and collaboration
at a global level. These principles are particularly relevant and applicable to
many of today’s global challenges and problems, and the OSS approach can
be part of the process of tackling these challenges and making progress that
will potentially lead to an improvement at a global scale.

The effects of globalization are widely observed, and its impact on educa-
tion and universities is seen in numerous collaborative projects and exchange
programs. Concepts such as e-learning and collaborative learning have at-
tracted a lot of attention within science and education [219].

Methods for distributed organization and division of labour at a global
scale have also been developed [129], and OSS projects have a lot to offer in
this domain. Indeed, the results of research performed on OSS has been of
interest to fields as varied as social sciences, economics, anthropology and
computer science [237]. The OSS development approach thus bridges inter-
disciplinary barriers in both the research, engineering and organizational con-
text.

With global scale implementations and infrastructures in fields such as

10.4. Concerns, Research and Outlook 113

telecommunications and networking, medicine and biology, e-government,
and transportation, OSS projects can provide an organization method that is
based on open tools, active participation of a large community of developers
and users, transparency of processes, innovative governance structures, better
services and a fresh mentality [165]. In particular, processes including coor-
dinating the flow of information, tracking and resolution of issues, allocation
of tasks and responsibilities, and handling the difficulties inherent in the man-
agement of widely distributed efforts can be copied from those used in large
OSS projects.

The OSS model is also of particular importance as it provides an example
for how a public and openly available good, namely the information contained
within OSS projects and their artifacts can give rise to profitable commer-
cial investments [129]. We have examined in this survey the various business
models and ecosystems that surround such OSS efforts in Chapter 7.

The entire software market has been influenced at a global level as a result
of OSS (see our discussion in Chapter 10.1), affecting issues of monopoly,
competition, and market placement.

OSS has also been found to harness a quality-enhancing demand-side
learning approach [27], whereby through close interaction with user commu-
nities, and more frequent development and release cycles that allow constant
testing, incentives are provided for user groups to report problems or request
new features. This approach, which relies on opening the source code and
providing the software with no licensing costs, has been found to be more
beneficial than other, conventional cost-reducing approaches in the market.
Given the global financial challenges we are faced with, the OSS experience
can clearly be leveraged in other domains as well.

10.4 Concerns, Research and Outlook

Although OSS has the advantages and positive characteristics discussed in
this survey, it is by no means a panacea for all problems faced in the soft-
ware production process. First of all, not all software projects are amenable to
open-sourcing. Projects that contain intellectual property of very high value,
or projects with very case-specific code that is not reusable, are unlikely can-
didates. The same is true for products based on an arcane technology or ad-
dressing an application domain that is unlikely to attract OSS enthousiasts.

114 Impact and Outlook

In the cases where open-sourcing is a potential approach, there is still
plenty of room for improvement.

10.4.1 Concerns

Various concerns have been voiced around the OSS methodology and philos-
ophy, some of which have alread been already discussed in this survey.

Usability Issues It is considered that not enough attention is paid to usabil-
ity in OSS projects [104]. One potential reason is that OSS developers focus
more on the functional characteristics of their code, rather than the user in-
terfaces and usability, and that they are often not educated or trained to deal
with usability and human-computer-interaction matters [29].

Indeed the most successful OSS projects include software used by people
with experience in IT, such as operating systems, libraries, compilers and
shell applications, which require less training.

Often the OSS project development teams have no access to usability ex-
perts to consult or usability labs to run experiments on, resulting in minimal-
istic or unpolished user interfaces [171, 219]. Additionally, usability design
should take place from the beginning, and it is a task that is difficult to dis-
tribute [171].

The situation seems to have improved in recent years, however, espe-
cially as the result of high-profile user-oriented projects such as word pro-
cessors (e.g. OpenOffice) and web browsers (e.g. Firefox). Moreover, there is
also an emerging trend in OSS projects, especially those working on desktop
applications, to employ usability experts in user interface design. The cur-
rent versions of both leading OSS desktop environments (GNOME and KDE)
feature human-computer interaction guidelines while reusable interface ele-
ments have been designed by professional graphics artists, leading to more
consistent user experience.

Potential solutions include involving usability experts, educating devel-
opers around usability issues, academic involvement (where considerable re-
search in usability and human-computer-interaction takes place), and more
active participation of users. The links between users and developers should
also be reinforced with better communication tools that will allow the de-
scription and tracking of usability problems [171].

10.4. Concerns, Research and Outlook 115

Licensing Complexity As we have discussed in Section 6.5, the large num-
ber of OSS licencing options, and the risks of combining them, pose chal-
lenges to developers of software applications.

The need for a good understanding of the legal implications of incorpo-
rating OSS code within proprietary applications is increasingly important, and
software practitioners are becoming aware of it and looking for methods to
address this [105, 85]. Furthermore, OSS supporters are increasingly enforc-
ing the software license’s requirements.10

The Problem of Commons There is a clear gap between the public and
open nature of OSS software and the private and competitive practices of pro-
prietary software firms. The same distinction is found between academic re-
search in various fields, and the private enterprises that secure property rights
on the resulting ideas and innovations [129].

The right balance needs to be found between the openness of OSS and
the protectionism of private firms. This requires reconsidering the practices
of intellectual property rights management to find the optimum balance be-
tween software developers’ incentives obtained by gaining exclusive rights to
their work and society’s benefit through the proliferation and wide sharing of
innovations [107].

An additional topic of debate concerns whether software patents should
be allowed, and to what extent. Advocates of patenting software argue that
it is a necessary means of enforcing a property claim and protecting an in-
vention, so that its owner can extract an economic return from it, and it thus
promotes innovation and development [129].

On the other hand, organizations such as the Free Software Founda-
tion, have taken a strong stance and have been campaigning against software
patenting, stating that it hinders and undermines the free software movement
[51, 26]. Some of the arguments include the fact that, contrary to copyrights,
patents cover ideas and their use, and not the details of specific implementa-
tions [83], and thus constitute an absolute monopoly against using a certain
idea, even if developers could prove that they independently invented it. Ad-
ditionally, the duration of patents, which is of the order of 20 years, is very
long for the software field. They further argue that the quality and scope of

10See e.g. http://www.gpl-violations.org/.

http://www.gpl-violations.org/

116 Impact and Outlook

patents is sometimes inadequately evaluated, leading to trivial patents cover-
ing obvious inventions [13]. Finally, they contend that the financial cost of
obtaining a patent, investigating prior art (even a small program can cover
hundreds of patentable ideas), or defending one’s self or organization against
a patent dispute is prohibitively large [83, 51, 101]. In an attempt to fight soft-
ware patents, the 2007 revision of FSF’s GPL (GPLv3) includes language that
forces distributors of GPL code to license their patents practiced by the code
to the software’s users, thus hindering attempts of patent holders’ to collect
royalties from GPLed software users [217].

Motivational Issues The motivational factors for developers contributing
effort to OSS projects have been examined in Chapter 9.1. Sometimes these
factors are not strong enough, and developers can drift out of the project
communities and stop contributing [204, 240].

Interestingly the project’s licensing decisions, as well as the participation
of developers in the key project decisions are strongly correlated with the
project’s success, and the link seems to involve additional motivation for the
developers to continue contributing to the project [203].

Forking Danger The danger of forking has been discussed in several
places in this survey. The risk is for a part of code (that could be embed-
ded in another application) to remain stagnant and unsupported. This risk is
not as pronounced in proprietary software, where market pressures force the
firm’s management to closely monitor and direct the decisions of developers
[240].

10.4.2 Research and Outlook

The field of OSS has attracted a lot of attention, and research addresses prac-
tically all of its aspects, including technological, social, managerial and eco-
nomic.

A taxonomy of OSS research and frameworks for performing empirical
studies has been proposed [182, 124]. The research however is still at an
evolving stage, with some aspects receiving more attention than others. Re-
search methods used so far include case studies, surveys and quantitative
studies, but combination of these would yield more substantial results [223].

10.4. Concerns, Research and Outlook 117

Although OSS project data is easy to acquire and analyse, there is not yet
a lot of insight on characteristics such as quality, innovation, and evolution
[223]. Additionally, the complexities of mining this data are considerable and
the dangers of misinterpretation are present [168].

We try to identify some of the more active areas of research and evolution
based on current literature, and discuss the direction in which they may lead
the future of OSS.

Incentives for Contributing to OSS Projects A deeper understanding of
what motivates developers to participate and contribute to OSS projects would
be useful [240, 5]. There are various open questions that could be investi-
gated.

What role do the project’s characteristics and various rewards play in mo-
tivating developers? How much does the project’s quality and (current or
expected) success affect this? How does this choice weigh with respect to
contributing to a proprietary software project [60]?

What are the dynamics of the average developer’s role within an OSS

project community? How does their attitude change over time, and how does
this affect the project’s sustainability?

What is the role of software firms in this equilibrium, what are their expe-
riences with participation in OSS initiatives so far [107]? As the participation
of firms becomes more important, could there be a new mix of incentives,
combining the participation in the OSS project with the impact of this on the
employee’s career within the firm [240, 190]?

Is there some correlation between the motivation to participate to an OSS

project and the project’s license type? Do the economic effects of the license
choice affect the developers’ choice of project to participate in [203]?

Licensing As we discussed in Section 6.5 the multitude of OSS licenses and
their combination as OSS is reused in other products poses various challenges
and risks.

The way in which this interdependence and combination of licenses
evolves needs to be analysed, and the weaknesses and limitations of the cur-
rent licenses will need to be addressed and possibly new licensing types de-
veloped to simplify the current situation [180].

118 Impact and Outlook

The effects of the licensing choice on the reuse of OSS code in proprietary
projects also needs to be analysed, and the specific factors related to the li-
cense that affect the adoption and reuse of the OSS code need to be identified
and studied [98]. Automatic tools that are already considered for consistency
checking between licenses of cloned OSS software [86] may need to evolve.

Reuse The reuse of OSS software into other projects has become an in-
creasingly common activity. Still there are questions about the efficacy of
and requirements for successfully reusing OSS software, as well as concerns
about how practical and advantageous it really is.

Research on the issue of OSS software reuse could identify different as-
pects of this practice such as what types of projects are more likely candi-
dates for reuse and what individual or organizational characteristics affect
this; whether the frequency of a specific component’s reuse could be pre-
dicted based on its properties, such as functionality and quality; what are the
main motivations for reusing OSS software; and finally, what is the cost to an
OSS project of building reusable components, and how this cost is distributed
[98].

Community The properties of OSS project communities and their coun-
terpart commercial software development workforces should be studied both
independently and comparatively. The goal would be to identify how inno-
vation is carried out in both contexts, how they can mutually benefit from
each other through joint efforts or the exchange of results, and what the im-
plications of this may be toward extending the theory of private-collective
innovation [98].

As more and more developers from private software firms actively par-
ticipate in OSS projects, it would be important to investigate how this affects
the two, and whether a hybrid form of community may be emerging. If so,
would this be incompatible with the OSS principles, and would it hinder the
OSS processes? Or could it be a positive development that may lead to more
strategic partnerships, strengthened at the community level?

As the effectiveness of software production depends on the quality and
characteristics of the underlying communities of developers, such informa-
tion would be very valuable both for the OSS projects and the firms that form

10.4. Concerns, Research and Outlook 119

relations with them [53].

Business Aspects At the business level, OSS and proprietary software prod-
ucts are generally in competition. However we have discussed in Section 7.4
there are also cooperation opportunities between the two [240].

The result of these hybrid efforts (labelled as second generation OSS, or
OSSg2) offer important added value propositions to their customers. However
this is still an evolving model, undergoing continuous adjustments, and new
models are expected to emerge blurring the lines between the two worlds even
further [244].

The motivation for moving from proprietary to OSS regimes may also be
the subject of future research [250]. The ability to evaluate the performance
and outcomes of such joint efforts, including methodologies and tools, will
be very valuable [191].

The type of licensing of the OSS software will clearly determine to a large
extent whether such cooperations may be feasible, and how open their out-
come must be. The implications of this on the competitive placement of the
resulting product is also an area where research could produce valuable re-
sults [142]. Automated tools for assessing copyright attributions and code
ownership by companies engaged in OSS projects would also be of interest to
the industry [191].

Finally it is argued that involvement in OSS projects has many similar
characteristics with outsourcing, for example the choice of what part of the
product to develop and what activities to perform internally, and what to out-
source (or open-source). It would thus be interesting to compare these two
practices and study their similarities and differences [250].

Overall, the OSS principles and practices represent a trend toward democ-
ratizing innovation and creativity, by empowering users to contribute and
evolve through the openness of projects outcomes and communities alike
[233, 234]. The full breadth of social and economic impact that can be
achieved through their application in all the fields we have examined remains
to be seen. However, there is an important opportunity to employ, adapt, or
explore the applicability of the OSS principles in each field’s research agenda
[237].

Open source software is part of a paradigm shift in the way we build com-

120 Impact and Outlook

plex artefacts, divide our labor, organize sophisticated endeavours, and handle
supply-chain relationships. Although it is unlikely that OSS will become the
only, or even the main, game in town, there is plenty of evidence indicating
that practitioners and researchers can benefit a lot from its study and use.

Acknowledgements

We would like to thank Vaggelis Giannikas, Vassilis Karakoidas, and Dimitris
Mitropoulos for comments and suggestions on earlier drafts of this work. We
are especially thankful for the feedback of Panos Louridas, who performed
this survey’s internal review. Furthermore, we are grateful to Charles Corbett,
Uday Karmakar, Thanos Papadimitriou, and Konstantinos Psounis for their
role in setting this paper in motion, and to Zac Rolnic for nurturing it to
completion. We would also like to thank the anonymous reviewers for their
insightful comments and suggestions.

A
Representative Applications

Following is a collection of some notable OSS applications, categorized ac-
cording to their type. The selected applications include some of the most
popular ones (in terms of downloads from the SourceForge.net site), some
of our personal favourites, as well as some that we selected as representative
examples from diverse categories. The selection is by no means objective.

A.1 Systems Applications

A.1.1 Operating Systems
GNU/Linux is a family of free, popular Unix-like computer operating systems using the
Linux kernel, running on a variety of computer hardware, ranging from mobile phones, tablet
computers and video game consoles, to mainframes and supercomputers. http://www.
linux.org/

FreeBSD is a free Unix-like complete operating system descended from Unix cleaned
from the AT&T code via the Berkeley Software Distribution (BSD). Generally regarded as re-
liable and robust. Focuses on performance and the x86 platform http://www.freebsd.
org/

NetBSD is a freely available open source version of the Unix-derivative Berkeley Soft-
ware Distribution (BSD). Still actively developed, the NetBSD project focuses on high quality
design, stability, portability and performance. http://www.netbsd.org/

121

http://www.linux.org/
http://www.linux.org/
http://www.freebsd.org/
http://www.freebsd.org/
http://www.netbsd.org/

122 Representative Applications

OpenBSD is a 1995 fork of NetBSD, focusing on security, portability, standardization,
code correctness, and quality documentation. http://www.openbsd.org/

Xen is a virtual machine monitor that allows several guest operating systems to run on the
same computer. http://www.xen.org/

A.1.2 Desktop Environments
Gnome is a desktop environment for computers running Linux and Unix-like operat-
ing systems. The Gnome project was initiated by the Mexican programmers Miguel de
Icaza and Federico Mena. It is part of the GNU project and was released in 1999. http:
//www.gnome.org/

X11 , also known as the X Window System, provides a graphical user interface (GUI) for
networked computers. The X.Org project provides an open source implementation of the X
Window System. It is used as the base for running Gnome and KDE. http://www.x.org/
wiki/

KDE is a graphical desktop environment and integrated set of cross-platform applications
designed to run on Linux, FreeBSD, Windows, Solaris and Mac OS X systems. It was initially
developed by a single person, 24 year old computer science student Matthias Ettrich at the
University of Tübingen, as an OSS project and first released in 1998. http://www.kde.
org/

A.1.3 Databases
MySQL is a relational database management system. It was originally distributed as open
source software only under a standard copyleft GPL-like license. In 2001 the original develop-
ers founded the company MySQLAB that owns the copyright to the software. A dual licensing
scheme, similar to Sendmail, was then adopted, allowing either free GPL-like licensing for
OSS applications, or a non-free proprietary license to integrate it with proprietary products
[51]. Currently owned by Oracle. http://www.mysql.com/

PostgreSQL is an object-relational database management system developed at UC
Berkeley from 1986 to 1994. In 1995 a group of developers was formed around it as an open
source project, giving it its new name. It is released under the PostgreSQL license, which is
similar to the BSD license. http://www.postgresql.org/

HSQLDB is an embedded SQL relational database engine written in Java, including tools
such as a command line SQL and GUI query interface. http://hsqldb.org/

SQLite is a software library that implements an embedded, self-contained, serverless,
transactional SQL database engine. http://www.sqlite.org/

http://www.openbsd.org/
http://www.xen.org/
http://www.gnome.org/
http://www.gnome.org/
http://www.x.org/wiki/
http://www.x.org/wiki/
http://www.kde.org/
http://www.kde.org/
http://www.mysql.com/
http://www.postgresql.org/
http://hsqldb.org/
http://www.sqlite.org/

A.1. Systems Applications 123

A.1.4 Web and Application Servers
Apache HTTP Server is a secure, efficient and extensible open-source HTTP server
for modern operating systems including Unix and Windows NT. Its development started in
1998, as a fork off the httpd, a web server created at the National Center for Supercomput-
ing Applications (NCSA). An online group of developers formed to support and enhance it.
Within one year it was the most popular server on the internet. In March 1999 the group
formed the Apache Software Foundation1 with the goal of supporting the server (at an or-
ganizational, legal and financial level) and promoting the development of community-driven
software. http://httpd.apache.org/

Jakarta Tomcat is an open source software implementation of the Java Servlet and
JavaServer Pages technologies, developed by the Apache Software Foundation. http://
tomcat.apache.org/

JBoss is a free software, open-source Java EE-based application server. http://www.
jboss.org/

AWStats is a free powerful and featureful tool that generates advanced web, streaming, ftp
or mail server statistics, in a graphical form. http://awstats.sourceforge.net/

A.1.5 System Administration Tools
Wireshark is a free and open-source packet analyzer used for network troubleshoot-
ing, analysis, software and communications protocol development, and education. http:
//www.wireshark.org/

Nagios is a powerful IT monitoring management system that allows organizations to iden-
tify and resolve IT infrastructure problems before they affect critical business processes.
http://www.nagios.org/

phpMyAdmin is a tool written in PHP intended to handle the administration of
MySQL over the Web. Currently it can create and drop databases, create/drop/alter tables,
delete/edit/add fields, execute any SQL statement and manage keys on fields. http://www.
phpmyadmin.net/

A.1.6 Email
Fetchmail was a mail utility for Unix-like systems, released in the early 1990s. The
project was initiated by Eric Raymond, and used as a model in his famous essay “The
Cathedral and the Bazaar” [185] to discuss his ideas about open source. http://www.
fetchmail.info/

1http://www.apache.org/

http://httpd.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.jboss.org/
http://www.jboss.org/
http://awstats.sourceforge.net/
http://www.wireshark.org/
http://www.wireshark.org/
http://www.nagios.org/
http://www.phpmyadmin.net/
http://www.phpmyadmin.net/
http://www.fetchmail.info/
http://www.fetchmail.info/

124 Representative Applications

Sendmail is a general purpose internetwork email routing facility (mail transfer agent)
that supports many kinds of mail transfer and delivery methods, including the Simple
Mail Transfer Protocol (SMTP) used for email transport over the internet. http://www.
sendmail.org/

Postfix is a fast, easy-to-administer, and secure open-source mail transfer agent that routes
and delivers electronic mail. http://www.postfix.org/

SpamAssassin is a computer program used for e-mail spam filtering that uses a variety of
local and network tests to identify spam signatures. http://spamassassin.apache.
org/

A.1.7 Networking Infrastructure
BIND is a widely used DNS software that provides a robust and stable platform on top
of which organizations can build distributed computing systems with the knowledge that
those systems are fully compliant with published DNS standards. https://www.isc.
org/software/bind

Zenoss is an enterprise network and systems management application http://www.
zenoss.com/

A.1.8 Security
Clonezilla is a partition or disk clone tool http://www.clonezilla.org/

putty is an SSH and telnet client, developed originally by Simon Tatham for the Windows
platform. http://www.putty.org/

TrueCrypt is a free open-source disk encryption tool for Windows, Mac OS X, and
Linux. http://truecrypt.org/

WinSCP is an open source FTP/SFTP client for Windows, used for secure file transfer be-
tween computers. http://winscp.net/eng/index.php

A.2 Dekstop
Mosaic was a famous web browser developed at the NCSA in 1993, which played an im-
portant role in the first period of the internet. It was released as open source and free of charge
for academic or internal business use. For commercial distribution the license terms had to be
separately negotiated with the NCSA [51]. http://www.ncsa.illinois.edu/

Firefox is a free and open source web browser descended from the Mozilla Application
Suite and managed by the Mozilla Corporation. http://www.mozilla.org/

http://www.sendmail.org/
http://www.sendmail.org/
http://www.postfix.org/
http://spamassassin.apache.org/
http://spamassassin.apache.org/
https://www.isc.org/software/bind
https://www.isc.org/software/bind
http://www.zenoss.com/
http://www.zenoss.com/
http://www.clonezilla.org/
http://www.putty.org/
http://truecrypt.org/
http://winscp.net/eng/index.php
http://www.ncsa.illinois.edu/
http://www.mozilla.org/

A.3. Entertainment 125

Thunderbird is a free, open source, cross-platform e-mail and news client developed by
the Mozilla Foundation. http://www.mozilla.org/

OpenOffice.org is an open-source office software suite for word processing, spread-
sheets, presentations, graphics, databases and more. It was originally developed by the Star-
Division, originally as StarOffice. StarDivision was acquired by Sun Microsystems in 1999.
It was released in 2000 as open source under the LGPL/SISSL license and promoted as an
alternative to Microsoft’s Office suite of applications. http://www.openoffice.org/

Evolution is a program that provides integrated mail, addressbook and calendar-
ing functionality to users of the Gnome desktop. http://projects.gnome.org/
evolution/

Pidgin (Gaim) is an easy to use and free chat client that can connect to AIM, MSN, Yahoo,
and more chat networks all at once. http://www.pidgin.im/

7Zip is a file compression and archival tool supporting various formats including 7z, ZIP,
CAB, and RAR. http://www.7-zip.org/

KeePass Password Safe is a free, open source, light-weight and easy-to-use password
manager for Windows http://keepass.info/

A.3 Entertainment
Mumble is a low-latency, high-quality voice communication tool for gamers. http://
mumble.sourceforge.net

MediaInfo is a tool for getting technical information and tags for multimedia files.
http://mediainfo.sourceforge.net

Media Player Classic is a free audio and video media player for Windows. http:
//mpc-hc.sourceforge.net/

Bittorrent is a popular open-source peer-to-peer file sharing client. http://www.
bittorrent.com

VLC media player is an open source media player that can handle DVDs, (S)VCDs,
Audio CDs, web streams, TV cards etc. http://www.videolan.org/vlc/

Audacity is a free, open source software for recording and editing sounds, available
for Mac OS X, Windows, GNU/Linux, and other operating systems. http://audacity.
sourceforge.net

http://www.mozilla.org/
http://www.openoffice.org/
http://projects.gnome.org/evolution/
http://projects.gnome.org/evolution/
http://www.pidgin.im/
http://www.7-zip.org/
http://keepass.info/
http://mumble.sourceforge.net
http://mumble.sourceforge.net
http://mediainfo.sourceforge.net
http://mpc-hc.sourceforge.net/
http://mpc-hc.sourceforge.net/
http://www.bittorrent.com
http://www.bittorrent.com
http://www.videolan.org/vlc/
http://audacity.sourceforge.net
http://audacity.sourceforge.net

126 Representative Applications

A.4 Graphics
Inkscape is an Open Source vector graphics editor, with capabilities similar to Illustrator,
CorelDraw, or Xara X, using the W3C standard Scalable Vector Graphics (SVG) file format.
http://www.inkscape.org/

Ghostscript is an interpreter for the PostScript language and for PDF documents. http:
//www.ghostscript.com/

Gnuplot is a portable command-line driven graphing utility for Linux, Windows, OS X,
VMS, and many other platforms. It is distirbuted under its own open source license (not GPL),
according to which the source code is copyrighted but freely distributed. http://www.
gnuplot.info/

GMT is an open source collection of tools for manipulating geographic and Cartesian data
sets (including filtering, trend fitting, gridding, projecting, etc.) and producing Encapsulated
PostScript File (EPS). http://gmt.soest.hawaii.edu/

GraphViz offers various tools for automatically rendering graphs specified in a declara-
tive/textual fashion. http://www.graphviz.org/

GIMP , an acronym for GNU Image Manipulation Program, is a freely distributed pro-
gram for such tasks as photo retouching, image composition and image authoring. Originally
released in 1996, it is now ported to many operating systems. http://www.gimp.org/

iReport is a popular visual reporting tool for JasperReports (Java reporting library) and
JasperServer (reporting server) that can manage charts, images, and subreports. http://
www.jasperforge.org/projects/ireport

FreeMind is a free mind mapping application written in Java. It allows the user to edit a
hierarchical set of ideas around a central concept. http://freemind.sourceforge.
net

A.5 Education
Moodle is a Course Management System (CMS): a free web application that educators can
use to create effective online learning sites. http://moodle.org/

Tux Paint is a painting program for kids between 3 and 12 years old http://
tuxpaint.org/

EToys is a free educational tool for teaching children powerful ideas in compelling
ways through a media-rich authoring environment and visual programming system. http:
//www.squeakland.org/

http://www.inkscape.org/
http://www.ghostscript.com/
http://www.ghostscript.com/
http://www.gnuplot.info/
http://www.gnuplot.info/
http://gmt.soest.hawaii.edu/
http://www.graphviz.org/
http://www.gimp.org/
http://www.jasperforge.org/projects/ireport
http://www.jasperforge.org/projects/ireport
http://freemind.sourceforge.net
http://freemind.sourceforge.net
http://moodle.org/
http://tuxpaint.org/
http://tuxpaint.org/
http://www.squeakland.org/
http://www.squeakland.org/

A.6. Scientific and Engineering 127

Scratch is an application aimed primarily at children that allows them to explore and ex-
periment with the concepts of computer programming by using a simple graphical interface.
http://scratch.mit.edu/

A.6 Scientific and Engineering
R-Project R is an extensible language and environment for statistical computing and
graphics. It supports a wide variety of statistical and graphical techniques. http://www.
r-project.org/

GNU Octave is a high-level language, primarily intended for numerical computations.
It includes a command line interface for solving linear and nonlinear problems numerically,
and for performing other numerical experiments. http://www.gnu.org/software/
octave

A.7 Publishing
TeX is a typesetting system designed and mostly written by Donald Knuth with the goal
to allow anybody to produce high-quality books with the exact same results on all computers.
http://www.tug.org/

Docbook is a semantic markup language for technical documentation, originally intended
for writing technical documents related to computer hardware and software. It can be used for
any other sort of documentation. http://www.docbook.org/

TCPDF is an Open Source PHP class for generating PDF documents. http://www.
tecnick.com/public/code/cp_dpage.php?aiocp_dp=tcpdf

TeXnicCenter is an integrated environment for creating LaTeX documents on the Win-
dows platform. http://www.texniccenter.org/

A.8 Software Development

A.8.1 Languages, Interpreters, Compilers
GCC, the GNU Compiler Collection includes front ends for C, C++, Objective-C,
Fortran, Java, and Ada, as well as libraries for these languages (libstdc++, libgcj,...) and back
ends for tens of processor architectures. GCC was originally written as the compiler for the
GNU operating system. http://gcc.gnu.org/

Java Technology by Orcale (Sun) is a programming language originally developed
by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle Corporation) and
released in 1995 as a core component of Sun Microsystems’ Java platform. http://www.
oracle.com/technetwork/java

http://scratch.mit.edu/
http://www.r-project.org/
http://www.r-project.org/
http://www.gnu.org/software/octave
http://www.gnu.org/software/octave
http://www.tug.org/
http://www.docbook.org/
http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=tcpdf
http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=tcpdf
http://www.texniccenter.org/
http://gcc.gnu.org/
http://www.oracle.com/technetwork/java
http://www.oracle.com/technetwork/java

128 Representative Applications

Scala is a general purpose programming language designed to express common program-
ming patterns in a concise, elegant, and type-safe way. www.scala-lang.org/

Erlang is a programming language designed at the Ericsson Computer Science Labora-
tory. http://www.erlang.org/

Haskell is an advanced, purely functional programming language allowing rapid develop-
ment of robust, concise, correct software. http://www.haskell.org/

Perl is a feature-rich programming language written by Larry Wall and released in 1986 as
free software. It is distributed under the GPL or the Artistic License. A particular advantage of
Perl are the thousands of add-on libraries available through the CPAN library. http://www.
perl.org/

Python is a high-level object oriented programming language that places emphasis on
code readability, and includes a large and comprehensive standard library. http://www.
python.org/

PHP is a widely-used general-purpose scripting language released in 1995. It is especially
suited for Web development and can be easily embedded into HTML. http://www.php.
net/

Ruby is a dynamic, open source programming language with a focus on simplicity and
productivity, and an elegant syntax that is natural to read and easy to write. http://www.
ruby-lang.org/en/

Tcl/Tk , short for Tool Command Language, is an interpreted language with a very
portable interpreter. Tcl is embeddable and extensible, and has been widely used since its
creation in 1988 by John Ousterhout. It is particularly versatile for the creation of GUIs.
http://www.tcl.tk/

Lua is a powerful, fast, lightweight, embeddable scripting language. http://www.lua.
org/

ScummVM is a cross-platform interpreter for several point-and-click adventure engines.
http://www.scummvm.org/

MinGW , a contraction of "Minimalist GNU for Windows", is a port of the GNU Compiler
Collection (GCC), and GNU Binutils, for use in the development of native Microsoft Windows
applications. http://www.mingw.org/

www.scala-lang.org/
http://www.erlang.org/
http://www.haskell.org/
http://www.perl.org/
http://www.perl.org/
http://www.python.org/
http://www.python.org/
http://www.php.net/
http://www.php.net/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.tcl.tk/
http://www.lua.org/
http://www.lua.org/
http://www.scummvm.org/
http://www.mingw.org/

A.8. Software Development 129

A.8.2 Libraries
Libpng was written as a companion to the PNG specification, as a way to reduce the
amount of time and effort it takes to support the PNG file format in application programs.
http://www.libpng.org

GD is an open source code library for the dynamic creation of images by programmers. GD
creates PNG, JPEG and GIF images, among other formats. http://www.libgd.org

Boost C++ Libraries provide many useful free portable peer-reviewed C++ libraries.
http://www.boost.org

A.8.3 Editors
Vim is an advanced text editor that seeks to provide the power of the de-facto Unix editor
’Vi’, with a more complete feature set. http://www.vim.org/

GNU Emacs is an extensible, customizable text editor, part of the GNU project http:
//www.gnu.org/software/emacs/

Notepad++ is a source code editor and MS Windows Notepad replacement. http://
notepad-plus.sourceforge.net

A.8.4 Version Control Systems
CVS is a version control system, used to keep track of all work and changes in a set of files,
and to allow several developers to collaborate. http://www.nongnu.org/cvs/

Apache Subversion is a revision control system founded and sponsored in 2000 by
CollabNet Inc. as an improvement to CVS. http://subversion.apache.org/

Git is a free and open source distributed version control system designed to handle every-
thing from small to very large projects with speed and efficiency. http://git-scm.com/

Mercurial is a free, distributed source control management tool. It efficiently handles
projects of any size and offers an easy and intuitive interface. http://mercurial.
selenic.com/

A.8.5 IDEs and Build Tools
Eclipse is a multi-language software development environment comprising an integrated
development environment (IDE) and an extensible plug-in system, written mainly in Java. It
was created by IBM in 2001 and released as open source. The Eclipse Foundation2 was created
in 2004 to support the Eclipse community. http://www.eclipse.org/

2http://www.eclipse.org/

http://www.libpng.org
http://www.libgd.org
http://www.boost.org
http://www.vim.org/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://notepad-plus.sourceforge.net
http://notepad-plus.sourceforge.net
http://www.nongnu.org/cvs/
http://subversion.apache.org/
http://git-scm.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://www.eclipse.org/

130 Representative Applications

NetBeans is an open-source project dedicated to providing software development prod-
ucts (the NetBeans IDE and the NetBeans Platform) for developers, users and the businesses.
http://netbeans.org/

Apache Ant is a tool for automating the software build processes, similar to make.
http://ant.apache.org/

A.8.6 Frameworks
ZK Simply Ajax and Mobile is an open-source Ajax Web application framework,
written in Java, that enables creation of rich graphical user interfaces for Web applications
with no JavaScript and little programming knowledge. http://www.zkoss.org

Mono is a software platform designed to easily create cross platform applications. Spon-
sored by Novell, Mono is an open source implementation of Microsoft’s .NET Framework
based on the ECMA standards for C# and the Common Language Runtime. http://www.
mono-project.com/Main_Page

Qt is a cross-platform application development framework widely used for the development
of GUI programs and for developing non-GUI programs such as console tools and servers.
Originally developed by Trolltech, which was acquired by Nokia in 2008. http://qt.
nokia.com/

Ruby on Rails is an open source web application framework for the Ruby program-
ming language, intended to be used with an Agile development methodology. http://www.
rubyonrails.org/

A.9 Content Management Systems
Drupal is a popular free and open source CMS written in PHP, used for websites rang-
ing from personal blogs to larger corporate and political sites including whitehouse.gov and
data.gov.uk. http://drupal.org/

WordPress is a popular open source CMS, often used as a blog publishing application
powered by PHP and MySQL. http://wordpress.org/

Joomla is an award-winning CMS, which enables users to build Web sites and powerful
online applications, based on ease-of-use and extensibility http://www.joomla.org/

Arianne RPG is a multiplayer online engine to develop turn based and real time games
providing a simple way of creating the game server rules and clients. http://arianne.
sf.net

Media Wiki is a free software wiki package written in PHP, originally for use on
Wikipedia, but now used by several other projects. http://www.mediawiki.org

http://netbeans.org/
http://ant.apache.org/
http://www.zkoss.org
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page
http://qt.nokia.com/
http://qt.nokia.com/
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://drupal.org/
http://wordpress.org/
http://www.joomla.org/
http://arianne.sf.net
http://arianne.sf.net
http://www.mediawiki.org

A.10. Business Applications 131

A.10 Business Applications
Compiere is an open source ERP and CRM business solution for the small and medium-
sized Enterprises in distribution, retail, service and manufacturing. It’s architecture is such
that it avoids duplication of information and the need for synchronization. http://www.
compiere.com/

OpenERP is a complete and feature rich ERP and CRM system. OpenERP has a 3 layer
structure: database, server and thin client that contains minimal business logic. The database
is PostgreSQL, and the server is written in Python. http://www.openerp.com

PostBooks ERP is a free open source ERP, accounting and CRM package for small
to midsized businesses. Built with open source Qt framework it runs on Linux, Mac, and
Windows. Its business logic resides in a PostgreSQL database. http://postbooks.
sourceforge.net

Openbravo ERP is a comprehensive and professional web-based open source ERP so-
lution. The model for Openbravo was originally based on the Compiere ERP program. Using
Openbravo, ERP organizations can automate and register most common business processes.
http://www.openbravo.com

webERP is an open-source web-based ERP system. http://www.weberp.org/
HomePage

OrangeHRM is an Open Source Human Resource Management System that covers Per-
sonnel Information Management, Employee Self Service, Leave, Time & Attendance, Bene-
fits, and Recruitment. http://orangehrm.sourceforge.net

JStock is a free stock market software for 23 countries http://jstock.

sourceforge.net/

http://www.compiere.com/
http://www.compiere.com/
http://www.openerp.com
http://postbooks.sourceforge.net
http://postbooks.sourceforge.net
http://www.openbravo.com
http://www.weberp.org/HomePage
http://www.weberp.org/HomePage
http://orangehrm.sourceforge.net
http://jstock.sourceforge.net/
http://jstock.sourceforge.net/

References

[1] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav, “EDOS distribution system:
A P2P architecture for open-source content dissemination,” in Open Source Develop-
ment, Adoption and Innovation, pp. 209–215, Springer Verlag, 2007. IFIP International
Federation for Information Processing Volume 234.

[2] S. Ajila and D. Wu, “Empirical study of the effects of open source adoption on software
development economics,” Journal of Systems and Software, vol. 80, no. 9, pp. 1517–
1529, 2007.

[3] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion, “Software licenses in context: The
challenge of heterogeneously-licensed systems,” Journal of the Association for Infor-
mation Systems, vol. 11, pp. 731–754, Nov. 2010.

[4] U. Asklund and L. Bendix, “Study of configuration management for open source soft-
ware,” IEE Proceedings—Software, vol. 149, pp. 40–46, Feb. 2002.

[5] R. P. Bagozzi and U. M. Dholakia, “Open source software user communities: A study
of participation in Linux user groups,” Management Science, vol. 52, pp. 1099–1115,
July 2006.

[6] C. Y. Baldwin and K. B. Clark, “The architecture of participation: Does code archi-
tecture mitigate free riding in the open source development model?,” Management Sci-
ence, vol. 52, pp. 1116–1127, July 2006.

[7] M. Bar and K. F. Fogel, Open Source Development with CVS. Scottsdale, AZ: The
Coriolis Group, 2001.

[8] J. Barton, “From server room to living room,” Queue, vol. 1, no. 5, pp. 20–32, 2003.
[9] B. Behlendorf, “Open source as a business strategy,” in Open Sources: Voices from the

Open Source Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.
[10] Y. Benkler, “Intellectual property: Commons-based strategies and the problems of

patents,” Science, vol. 305, pp. 1110–1111, Aug. 2004.

132

References 133

[11] M. Bergquist and J. Ljungberg, “The power of gifts: Organising social relationships in
open source communities,” Information Systems Journal, vol. 11, no. 4, pp. 305–320,
2001.

[12] J. Bessen, “Open source software: Free provision of complex public goods,” July 2005.
Available at SSRN: http://ssrn.com/abstract=588763.

[13] J. Bessen and M. Meurer, Patent Failure: How Judges, Bureaucrats, and Lawyers Put
Innovators at Risk. NJ, USA: Princeton University Press, 2008.

[14] N. Bezroukov, “Open source software development as a special type of academic re-
search (critique of vulgar Raymondism),” First Monday, vol. 4, Oct. 1999.

[15] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does Distributed Devel-
opment Affect Software Quality? An Empirical Case Study of Windows Vista,” Com-
munications of the ACM, vol. 52, pp. 85–93, August 2009.

[16] J. Bitzer, W. Schrettl, and P. J. Schröder, “Intrinsic motivation in open source software
development,” Journal of Comparative Economics, vol. 35, pp. 160–169, May 2007.

[17] J. Bitzer and P. J. H. Schröder, The Economics of Open Source Software Development.
Emerald Group Publishing, 2006.

[18] J. Bitzer and P. J. Schröder, “Bug-fixing and code-writing: The private provision of
open source software,” Information Economics and Policy, vol. 17, pp. 389–406, July
2005.

[19] J. Bitzer and P. J. Schröder, “The impact of entry and competition by open source soft-
ware on innovation activity,” in The Economics of Open Source Software Development,
(J. Bitzer and P. J. Schröder, eds.), ch. 11, pp. 219–245, Emerald Group Publishing,
2006.

[20] A. Bonaccorsi, S. Giannangeli, and C. Rossi, “Entry strategies under competing stan-
dards: Hybrid business models in the open source software industry,” Management
Science, vol. 52, pp. 1085–1098, July 2006.

[21] A. Bonaccorsi and C. Rossi, “Why open source software can succeed,” Research Policy,
vol. 32, no. 7, pp. 1243–1258, 2003.

[22] A. Bonaccorsi and C. Rossi, “Comparing motivations of individual programmers and
firms to take part in the open source movement: From community to business,” Knowl-
edge, Technology and Policy, vol. 18, pp. 40–64, Dec. 2006.

[23] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: Its extracted
software architecture,” in ICSE ’99: Proceedings of the 21st International Conference
on Software Engineering, (New York), pp. 555–563, ACM, 1999.

[24] D. Bretthauer, “Open source software: A history,” Information Technology and Li-
braries, vol. 21, pp. 3–11, March 2002.

[25] A. W. Brown and G. Booch, “Reusing open source software and practices: The impact
of open source on commercial vendors,” in Software Reuse: Methods, Techniques, and
Tools, (C. Gacek, ed.), pp. 381–428, Springer Berlin / Heidelberg, 2002.

[26] B. W. Carver, “Share and share alike: Understanding and enforcing open source and
free software licenses,” Berkely Technology Law Journal, vol. 20, no. 1, pp. 443–481,
2005.

[27] R. Casadesus-Masanell and P. Ghemawat, “Dynamic mixed duopoly: A model mo-
tivated by Linux vs. Windows,” Management Science, vol. 52, pp. 1072–1084, July
2006.

http://ssrn.com/abstract=588763

134 References

[28] M. Cassell, “Why governments innovate: adoption and implementation of open source
software by four european cities,” International Public Management Journal, vol. 11,
no. 2, pp. 193–213, 2008.

[29] G. Çetin and M. Gokturk, “A measurement based framework for assessment of
usability-centricness of open source software projects,” in SITIS ’08: IEEE Interna-
tional Conference on Signal Image Technology and Internet Based Systems, pp. 585–
592, Dec. 2008.

[30] P. E. Ceruzzi, A history of modern computing, ch. Workstations, UNIX and the Net.
MIT University Press, 2003.

[31] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “A survey of software develop-
ment with open source components in Chinese software industry,” in Software Process
Dynamics and Agility, pp. 208–220, Springer Verlag, 2007.

[32] N. Choi, I. Chengalur-Smith, and A. Whitmore, “Managing first impressions of new
open source software projects,” IEEE Software, vol. 27, pp. 73–77, 2010.

[33] J. Colazo and Y. Fang, “Impact of license choice on open source software development
activity,” J. Am. Soc. Inf. Sci. Technol., vol. 60, pp. 997–1011, May 2009.

[34] M. Conklin, J. Howison, and K. Crowston, “Collaboration using OSSmole: a reposi-
tory of FLOSS data and analyses,” in MSR ’05: Proceedings of the 2005 international
workshop on Mining software repositories, (New York, NY, USA), pp. 1–5, ACM,
2005.

[35] T. Cornford, M. Shaikh, and C. Ciborra, “Hierarchy, laboratory and collective: Unveil-
ing linux as innovation, machination and constitution,” Journal of the Association for
Information Systems, vol. 11, pp. i–v, Nov. 2010.

[36] K. Crowston and B. Scozzi, “Open source software projects as virtual organizations:
Competency rallying for software development,” IEE Proceedings—Software, vol. 149,
pp. 3–17, Feb. 2002.

[37] K. Crowston, H. Annabi, and J. Howison, “Defining open source software project suc-
cess,” in ICIS ’03: Proceedings of the 24th International Conference on Information
Systems, 2003.

[38] K. Crowston, H. Annabi, J. Howison, and C. Masango, “Towards a portfolio of floss
project success measures,” in WOSSE ’04: Proceedings of the 4th Workshop on Open
Source Software Engineering, (Edinburgh, Scotland), pp. 29–33, May 2004.

[39] K. Crowston and J. Howison, “Hierarchy and centralization in free and open source
software team communications,” Knowledge, Technology & Policy, vol. 18, pp. 65–85,
Dec. 2006.

[40] K. Crowston, J. Howison, and H. Annabi, “Information systems success in free and
open source software development: Theory and measures,” Software Process: Improve-
ment and Practice, vol. 11, no. 2, pp. 123–148, 2006. Special Issue on Free/Open
Source Software Processes.

[41] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howison, “Self-organization of teams
for free/libre open source software development,” Information and Software Technol-
ogy, vol. 49, no. 6, pp. 564–575, 2007. Qualitative Software Engineering Research.

[42] K. Crowston and M. Wade, “Introduction to jais special issue on empirical research on
free/libre open source software,” Journal of the Association for Information Systems,
vol. 11, pp. i–v, Nov 2010.

References 135

[43] M. A. Cusumano, The Business of Software: What Every Manager, Programmer, and
Entrepreneur Must Know to Thrive and Survive in Good Times and Bad. New York:
The Free Press, 2004.

[44] M. A. Cusumano, “Reflections on free and open software,” Communications of the
ACM, vol. 47, pp. 25–27, Oct. 2004.

[45] L. Dahlander, “Penguin in a new suit: a tale of how de novo entrants emerged to har-
ness free and open source software communities,” Industrial and Corporate Change,
vol. 16, no. 5, pp. 913–943, 2007.

[46] J.-M. Dalle and P. M. David, “The allocation of software development resources in
open source production mode,” SIEPR Discussion Paper No. 02-27, Stanford Institute
for Economic Policy Research, Stanford University, March 2003.

[47] S. Daniel, “Structure, cohesion, and open source software success,” in Proceedings of
the 1st International Conference on Open Source Systems, pp. 317–319, July 2005.

[48] P. A. David and J. S. Shapiro, “Community-based production of open-source software:
What do we know about the developers who participate?,” Information Economics and
Policy, vol. 20, no. 4, pp. 364 – 398, 2008. Empirical Issues in Open Source Software.

[49] A. N. Dedeke, “Is Linux better than Windows software?,” IEEE Software, vol. 26,
pp. 104, 103, 2009.

[50] J. Dedrick and J. West, “Why firms adopt open source platforms: A grounded theory of
innovation and standards adoption,” in MIS Quarterly Special Issue Workshop, pp. 236–
257, Dec. 2003.

[51] F. P. Deek and J. A. M. McHugh, Open Source: Technology and Policy. Cambridge:
Cambridge University Press, 2008.

[52] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “Who is an open source software
developer?,” Communications of the ACM, vol. 45, pp. 67–72, Feb. 2002.

[53] M. den Besten, J.-M. Dalle, and F. Galia, “The allocation of collaborative efforts in
open-source software,” Information Economics and Policy, vol. 20, pp. 316–322, Dec.
2008. Empirical Issues in Open Source Software.

[54] C. DiBona, S. Ockman, and M. Stone, eds., Open Sources: Voices from the Open Source
Revolution. O’Reilly, 1999.

[55] Digital Equipment Computer Users Society, “Decus program library: PDP-11 cat-
alog,” Aug. 1978. Online http://www.bitsavers.org/pdf/dec/decus/
programCatalogs/DECUS_Catalog_PDP-11_Aug78.pdf.

[56] T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD project: A replication case study
of open source development,” IEEE Transactions on Software Engineering, vol. 31,
pp. 481–494, June 2005.

[57] J. J. Dongarra and E. Grosse, “Distribution of mathematical software via electronic
mail,” Communications of the ACM, vol. 30, no. 5, pp. 403–407, 1987.

[58] N. Duchneaut, “Socialization in an open source software community: A socio-technical
analysis,” Computer Supported Cooperative Work (CSCW), vol. 14, pp. 323–368, 2005.

[59] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software qual-
ity and reducing risk. Addison-Wesley Professional, first ed., 2007.

[60] N. Economides and E. Katsamakas, “Two-sided competition of proprietary vs. open
source technology platforms and the implications for the software industry,” Manage-
ment Science, vol. 52, no. 7, pp. 1057–1071, 2006.

http://www.bitsavers.org/pdf/dec/decus/programCatalogs/DECUS_Catalog_PDP-11_Aug78.pdf
http://www.bitsavers.org/pdf/dec/decus/programCatalogs/DECUS_Catalog_PDP-11_Aug78.pdf

136 References

[61] M. S. Elliott and W. Scacchi, “Free software development: Cooperation and conflict in
a virtual organizational culture,” in Free/Open Source Software Development, (S. Koch,
ed.), pp. 152–172, Hershey, PA: Idea Group Publishing, 2004.

[62] M. Elliott and W. Scacchi, “Mobilization of software developers: the free software
movement,” Information Technology & People, vol. 21, no. 1, pp. 4–33, 2008.

[63] A. Engelfriet, “Choosing an open source license,” IEEE Software, vol. 27, pp. 48–49,
Jan./Feb. 2010.

[64] N. Ensmenger, “Open source’s lessons for historians,” IEEE Annals of the History of
Computing, vol. 26, pp. 104, 102–103, 2004.

[65] J. Erenkrantz, “Release management within open source projects,” in WOSSE ’03: Pro-
ceedings of the 3rd Workshop on Open Source Software Engineering, pp. 51–55, May
2003.

[66] J. Feller and B. Fitzgerald, Understanding Open Source Software Development. Read-
ing, MA: Addison-Wesley, 2001.

[67] J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds., Perspectives on Free and Open
Source Software. Cambridge, MA: The MIT Press, 2005.

[68] J. Feller and B. Fitzgerald, “A framework analysis of the open source software devel-
opment paradigm,” in ICIS ’00: Proceedings of the 21st International Conference on
Information Systems, (Atlanta, GA), pp. 58–69, Association for Information Systems,
2000.

[69] C. Fershtman and N. Gandal, “Open source software: Motivation and restrictive licens-
ing,” International Economics and Economic Policy, vol. 4, no. 2, pp. 209–225, 2007.

[70] R. T. Fielding, “Shared leadership in the Apache project,” Communications of the ACM,
vol. 42, no. 4, pp. 42–43, 1999.

[71] B. Fitzgerald, “The transformation of open source software,” IEEE Transactions on
Software Engineering, vol. 30, pp. 587–598, September 2004.

[72] B. Fitzgerald, “The transformation of open source software,” MIS Quarterly, vol. 30,
pp. 587–598, Sep. 2006.

[73] K. Fogel, Producing Open Source Software: How to Run a Successful Free Software
Project. O’Reilly Media, Inc., 2005.

[74] S. Forge, “The rain forest and the rock garden: The economic impacts of open source
software,” info, vol. 8, no. 3, pp. 12–31, 2006.

[75] N. Franke and E. von Hippel, “Satisfying heterogenous user needs via innovation toolk-
its: The case of Apache security software,” Research Policy, vol. 32, pp. 1199–1215,
July 2003.

[76] Free Software Foundation, “Categories of free and nonfree software,” Aug. 1996. On-
line http://www.gnu.org/philosophy/categories.html.

[77] A. Fuggetta, “Open source software—an evaluation,” Journal of Systems and Software,
vol. 66, no. 1, pp. 77–90, 2003.

[78] C. Gacek and B. Arief, “The many meanings of open source,” IEEE Software, vol. 21,
no. 1, pp. 34–40, 2004.

[79] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,” Tech. Rep.,
University of Newcastle upon Tyne, 2001.

[80] M. J. Gallivan, “Striking a balance between trust and control in a virtual organization:
A content analysis of open source software case studies,” Information Systems Journal,
vol. 11, no. 4, pp. 277–304, 2001.

http://www.gnu.org/philosophy/categories.html

References 137

[81] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Boston, MA: Addison-Wesley, 2004.

[82] B. Gates, “An open letter to hobbyists,” Homebrew Computer Club Newsletter, vol. 2,
p. 2, Jan. 1976.

[83] J. Gay, ed., Free Software, Free Society: Selected Essays of Richard M. Stallman.
Boston: GNU Press, Free Software Foundation, 2002.

[84] D. M. German, “Software engineering practices in the GNOME project,” in Perspec-
tives on Free and Open Source Software, (J. Feller, B. Fitzgerald, S. Hissam, and
K. Lakhani, eds.), pp. 211–226, Cambridge, MA: The MIT Press, 2005.

[85] D. M. German and A. E. Hassan, “License integration patterns: Addressing license
mismatches in component-based development,” in ICSE ’09: Proceedings of the 31st
International Conference on Software Engineering, pp. 188–198, IEEE Computer So-
ciety, May 2009.

[86] D. M. German, M. D. Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code siblings: Tech-
nical and legal implications of copying code between applications,” in MSR ’09: Pro-
ceedings of the 6th International Workshop on Mining Software Repositories, pp. 81–
90, IEEE Computer Society Press, May 2009.

[87] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in SOSP ’03:
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
(New York), pp. 29–43, ACM, 2003.

[88] R. A. Ghosh, “FM interview with Linus Torvalds: What motivates free software devel-
opers?,” First Monday, vol. 3, March 1998.

[89] R. A. Ghosh, “Understanding free software developers: Findings from the FLOSS
study,” in Perspectives on Free and Open Source Software, (J. Feller, B. Fitzgerald,
S. Hissam, and K. Lakhani, eds.), pp. 23–46, Cambridge, MA: The MIT Press, 2005.

[90] P. Giuri, F. Rullani, and S. Torrisi, “Explaining leadership in virtual teams: The case of
open source software,” Information Economics and Policy, vol. 20, pp. 305–315, Dec.
2008. Empirical Issues in Open Source Software.

[91] E. Glynn, B. Fitzgerald, and C. Exton, “Commercial adoption of open source software:
An empirical study,” in The International Symposium on Empirical Software Engineer-
ing, Nov. 2005.

[92] M. Godfrey and Q. Tu, “Growth, evolution, and structural change in open source soft-
ware,” in IWPSE ’01: Proceedings of the 4th International Workshop on Principles of
Software Evolution, (New York), pp. 103–106, ACM, 2001.

[93] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,” in Con-
ference on Software Maintenance, (Piscataway, NJ,USA), pp. 131–142, IEEE, 2000.

[94] R. Goldman and R. P. Gabriel, Innovation Happens Elsewhere: Open Source as a Busi-
ness Strategy. San Francisco: Morgan Kaufmann, Elsevier, Apr. 2005.

[95] R. Grewal, G. Lilien, and G. Mallapragada, “Location, location, location: How network
embeddedness affects project success in open source systems,” Management Science,
vol. 52, no. 7, pp. 1043–1056, 2006.

[96] M. Gruber and J. Henkel, “New ventures based on open innovation – an empirical
analysis of start-up firms in embedded Linux,” International Journal of Technology
Management, vol. 33, no. 4, pp. 356–372, 2006.

138 References

[97] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics
on open source software for fault prediction,” IEEE Transactions on Software Engi-
neering, vol. 31, pp. 897–910, Oct. 2005.

[98] S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open source software,” Man-
agement Science, vol. 54, pp. 180–153, Jan. 2008.

[99] J. Hahn, J. Moon, and C. Zhang, “Emergence of new project teams from open source
software developer networks: Impact of prior collaboration ties,” Information Systems
Research, vol. 19, pp. 369–391, Sep. 2008.

[100] J. Hamerly, T. Paquin, and S. Walton, “Freeing the source. the story of Mozilla,” in
Open Sources: Voices from the Open Source Revolution, (C. DiBona, S. Ockman, and
M. Stone, eds.), O’Reilly, 1999.

[101] D. Harhoff, J. Henkel, and E. von Hippel, “Profiting from voluntary information
spillovers: How users benefit by freely revealing their innovations,” Research Policy,
vol. 32, pp. 1753–1769, Dec. 2003.

[102] A. Hars and S. Ou, “Working for free? Motivations for participating in open source
projects,” in Proceedings of the 34th Hawaii International Conference on System Sci-
ences, (Hawaii), June 2001.

[103] F. Hecker, “Setting up shop: The business of open-source software,” IEEE Software,
vol. 16, pp. 45–51, Jan./Feb. 1999.

[104] H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa, “Assuring quality and usabil-
ity in open soruce software development,” Emerging Trends in FLOSS Research and
Development, International Workshop on, vol. 0, p. 2, 2007.

[105] D. Hedgebeth, “Gaining competitive advantage in a knowledge-based economy
through the utilization of open source software,” VINE, vol. 37, no. 3, pp. 284–294,
2007.

[106] J. Henkel, “Selective revealing in open innovation processes: The case of embedded
Linux,” Research Policy, vol. 35, no. 7, pp. 953–969, 2006.

[107] J. Henkel, “Champions of revealing—the role of open source developers in commercial
firms,” Industrial and Corporate Change, vol. 18, no. 3, pp. 435–471, 2009. Published
by Oxford University Press on behalf of Associazione ICC.

[108] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “Distance, dependencies, and delay
in a global collaboration,” in CSCW ’00: Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, (New York), pp. 319–328, ACM, 2000.

[109] G. Hertel, S. Niedner, and S. Hermann, “Motivation of software developers in open
source projects: An internet-based survey of contributors to the Linux kernel,” Research
Policy, vol. 32, no. 7, pp. 1159–1177, 2003.

[110] E. v. Hippel, “Economics of product development by users: The impact of "sticky"
local information,” Management Science, vol. 44, no. 5, pp. 629–644, 1998.

[111] M. Huang, L. Yang, and Y. Yang, “A development process for building OSS-based ap-
plications,” in Unifying the Software Process Spectrum (2005), Lecture Notes in Com-
puter Science 3840, (B. B. M. Li and L. Osterweil, eds.), pp. 122–135, Springer-Verlag
Berlin Heidelberg, 2005.

[112] A. Hunt and D. Thomas, “Software archaeology,” Software, IEEE, vol. 19, pp. 20–22,
Mar/Apr 2002.

[113] A. Israeli and D. G. Feitelson, “The Linux kernel as a case study in software evolution,”
Journal of Systems and Software, vol. 83, no. 3, pp. 485–501, 2010.

References 139

[114] C. Jensen and W. Scacchi, “Role migration and advancement processes in ossd projects:
A comparative case study,” International Conference on Software Engineering, vol. 0,
pp. 364–374, 2007.

[115] M. John, What the Dormhouse Said: How the 60s Counterculture Shaped the Personal
Computer. New York: Viking Adult, 2005.

[116] J. P. Johnson, “Open source software: Private provision of a public good,” Journal of
Economics & Management Strategy, vol. 11, pp. 637–662, Dec. 2002.

[117] N. Jørgensen, “Putting it all in the trunk: Incremental software development in the
FreeBSD open source project,” Information Systems Journal, vol. 11, pp. 321–336,
Oct. 2001.

[118] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for
mining software repositories in the context of software evolution,” Journal of Software
Maintenance and Evolution, vol. 19, pp. 77–131, Mar 2007.

[119] S. H. Kan, Metrics and Models in Software Quality Engineering (2nd Edition).
Addison-Wesley, 2003.

[120] W. Ke and P. Zhang, “The effects of extrinsic motivations and satisfaction in open
source software development,” Journal of the Association for Information Systems,
vol. 11, pp. 784–808, Dec. 2010.

[121] M. Kechagia, D. Spinellis, and S. Androutsellis-Theotokis, “Open source licensing
across package dependencies,” in PCI ’10: 14th Panhellenic Conference on Informat-
ics, pp. 27–32, IEEE Computer Society, Sep. 2010.

[122] B. W. Kernighan and P. J. Plauger, Software Tools. Reading, MA: Addison-Wesley,
1976.

[123] D. Y. Kim, J. B. Kim, and S. Y. Rhew, “Effective reuse procedure for open source soft-
ware,” in Software Engineering Research and Practice, pp. 163–167, CSREA Press,
2006.

[124] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El Emam, and
J. Rosenberg, “Preliminary guidelines for empirical research in software engineering,”
Software Engineering, IEEE Transactions on, vol. 28, pp. 721–734, Aug 2002.

[125] D. Knuth, The TeXbook. Reading, MA: Addison-Wesley, 1984.
[126] S. Koch, “Profiling an open source project ecology and its programmers,” Electronic

Markets, vol. 14, pp. 77–88(12), June 2004.
[127] S. Koch, “Effort modeling and programmer participation in open source software

projects,” Information Economics and Policy, vol. 20, no. 4, pp. 345 – 355, 2008. Em-
pirical Issues in Open Source Software.

[128] S. Koch and G. Schneider, “Effort, co-operation and co-ordination in an open source
software project: GNOME,” Information Systems Journal, vol. 12, no. 1, pp. 27–42,
2002.

[129] B. Kogut and A. Metiu, “Open-source software development and distributed innova-
tion,” Oxford Review of Economic Policy, vol. 17, no. 2, pp. 248–264, 2001.

[130] P. Kollock and M. Smith, “Managing the virtual commons: Cooperation and conflict
in computer communities,” in Computer-Mediated Communication: Linguistic, Social,
and Cross-Cultural Perspectives, (S. Herring, ed.), pp. 109–128, John Benjamins Pub-
lishing, 1996.

140 References

[131] D. Kozlov, J. Koskinen, M. Sakkinen, and J. Markkula, “Assessing maintainability
change over multiple software releases,” Journal of Software Maintenance and Evo-
lution: Research and Practice, vol. 20, no. 1, pp. 31–58, 2008.

[132] K. L. Kraemer, J. Dedrick, and P. Sharma, “One laptop per child: Vision vs. reality,”
Communications of the ACM, vol. 52, no. 6, pp. 66–73, 2009.

[133] S. Krishnamurthy, “Cave or community?: An empirical examination of 100 mature
open source projects,” First Monday, vol. 7, June 2002.

[134] S. Krishnamurthy, “A managerial overview of open source software,” Business Hori-
zons, vol. 46, pp. 47–56, Sep./Oct. 2003.

[135] S. Krishnamurthy, “An analysis of open source business models,” in Perspectives on
Free and Open Source Software, (J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
eds.), pp. 279–296, Cambridge, MA: The MIT Press, 2005.

[136] S. Krishnamurthy, “On the intrinsic and extrinsic motivation of free/libre/open source
(FLOSS) developers,” Knowledge, Technology & Policy, vol. 18, pp. 17–39, Dec. 2006.

[137] K. R. Lakhani and E. von Hippel, “How open source software works: ‘Free’ user-to-
user assistance,” Research Policy, vol. 32, pp. 923–943, June 2003.

[138] K. R. Lakhani and R. G. Wolf, “Why hackers do what they do: Understanding motiva-
tion and effort in free/open source software projects,” in Perspectives on Free and Open
Source Software, (J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), pp. 3–22,
Cambridge, MA: The MIT Press, 2005.

[139] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Springer Verlag,
2006.

[140] A. M. S. Laurent, Understanding Open Source and Free Software Licensing. Cam-
bridge, Massachusetts: O’Reilly, 2004.

[141] L. Lawrence, Free Culture: How Big Media Uses Technology and the Law to Lock
Down Culture and Control Creativity. New York: Penguin Group Inc., 2004.

[142] D. Lee and H. Mendelson, “Divide and conquer: Competing with free technology under
network effects,” Production and Operations Management, vol. 17, no. 1, pp. 12–28,
2008.

[143] S.-Y. T. Lee, H.-W. Kim, and S. Gupta, “Measuring open source software success,”
Omega, vol. 37, no. 2, pp. 426 – 438, 2009.

[144] S. Leffler, M. McKusick, M. Karels, and J. Quarterman, The Design and Implementa-
tion of the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley, 1989.

[145] J. Lerner and J. Tirole, “The open source movement: Key research questions,” Euro-
pean Economic Review, vol. 45, pp. 819–826, May 2001.

[146] J. Lerner and J. Tirole, “Some simple economics of open source,” The Journal of In-
dustrial Economics, vol. 50, pp. 197–234, June 2002.

[147] J. Lerner and J. Tirole, “Economic perspectives on open source,” in Intellectual Prop-
erty and Entrepreneurship, pp. 33–69, Emerald Group Publishing Limited, 2004.

[148] J. Lerner and J. Tirole, “The scope of open source licensing,” The Journal of Law,
Economics and Organization, vol. 21, no. 1, pp. 20–56, 2005.

[149] L. Lessig, “Open code and open societies,” in Perspectives on Free and Open Source
Software, (J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), pp. 349–360, Cam-
bridge, MA: The MIT Press, 2005.

[150] J. Lions, Lions’ Commentary on UNIX 6th Edition with Source Code. San Jose, CA:
Peer-to-Peer Communications, Inc., 1996.

References 141

[151] M. W. Losh, “An overview of FreeBSD/mips,” in AsiaBSDCon 2009, March 2009.
Online http://2009.asiabsdcon.org/papers/abc2009-P4B-paper.
pdf. Current September 2010.

[152] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure of complex
software designs: An empirical study of open source and proprietary code,” Manage-
ment Science, vol. 52, pp. 1015–1030, July 2006.

[153] T. R. Madanmohan and R. De’, “Open source reuse in commercial firms,” IEEE Soft-
ware, vol. 21, pp. 62–69, Nov./Dec. 2004.

[154] M. L. Markus, B. Manville, and C. E. Agres, “What makes a virtual organization work:
Lessons from the open-source world,” MIT Sloan Management Review, vol. 42, pp. 13–
26, Fall 2000.

[155] J. Martinez-Romo, G. Robles, J. M. Gonzalez-Barahona, and M. Ortuño-Perez, Open
Source Development, Communities and Quality, ch. Using Social Network Analysis
Techniques to Study Collaboration between a FLOSS Community and a Company,
pp. 143–158. Vol. 275 of IFIP International Federation for Information Processing,
Springer Boston, July 2008.

[156] J. Mateos-Garcia and W. E. Steinmueller, “The institutions of open source soft-
ware: Examining the Debian community,” Information Economics and Policy, vol. 20,
pp. 333–344, Dec. 2008. Empirical Issues in Open Source Software.

[157] S. McConnell, “Open-source methodology: Ready for prime time?,” IEEE Software,
vol. 16, pp. 6–11, July/Aug. 1999.

[158] M. K. McKusick, “Twenty years of Berkeley Unix: From AT&T-owned to freely re-
distributable,” in Open Sources: Voices from the Open Source Revolution, (C. DiBona,
S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[159] C. Melian and M. Mahring, “Lost and gained in translation: Adoption of open source
software development at Hewlett-Packard,” in Open Source Development, Communi-
ties and Quality, pp. 93–104, Boston: Springer, 2008.

[160] A. Meneely and L. Williams, “Secure open source collaboration: An empirical study of
Linus’ law,” in CCS ’09: Proceedings of the 16th ACM Conference on Computer and
Communications Security, (New York), pp. 453–462, ACM, 2009.

[161] A. Mockus, “Amassing and indexing a large sample of version control systems: To-
wards the census of public source code history,” in MSR ’09: Proceedings of the 6th
IEEE Intl. Working Conference on Mining Software Repositories, (M. W. Godfrey and
J. Whitehead, eds.), pp. 11–20, 2009.

[162] A. Mockus, R. Fielding, and J. Herbsleb, “A case study of open source software de-
velopment: The Apache server,” in ICSE ’00: Proceedings of the 22nd International
Conference on Software Engineering, (New York), pp. 263–272, ACM, 2000.

[163] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source soft-
ware development: Apache and Mozilla,” ACM Transactions on Software Engineering
and Methodology, vol. 11, no. 3, pp. 309–346, 2002.

[164] L. Morgan and P. Finnegan, “How perceptions of open source software influence adop-
tion: An exploratory study,” in ECIS ’07: The 15th European Conference on Informa-
tion Systems, (W. R. Osterle H, Schelp J, ed.), pp. 973–984, 2007.

[165] B. Mukerji, V. Kumar, and U. Kumar, “The challenges of adopting open source
software in promoting e-government,” in ICEG ’06: International Conference on E-
Governance, pp. 22–31, 2006.

http://2009.asiabsdcon.org/papers/abc2009-P4B-paper.pdf
http://2009.asiabsdcon.org/papers/abc2009-P4B-paper.pdf

142 References

[166] N. Munga, T. Fogwill, and Q. Williams, “The adoption of open source software in
business models: A Red Hat and IBM case study,” in SAICSIT ’09: Proceedings of the
2009 Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists, (New York), pp. 112–121, ACM, 2009.

[167] E. D. Mynatt, A. Adler, M. Ito, and V. L. O’Day, “Design for network communities,” in
CHI ’97: The 1997 Conference on Human Factors in Computing Systems, pp. 210–217,
March 1997.

[168] N. Nagappan, “Potential of open source systems as project repositories for empirical
studies working group results,” in Empirical Software Engineering Issues. Critical As-
sessment and Future Directions, pp. 103–107, Springer Verlag, 2007. Lecture Notes in
Computer Science 4336.

[169] D. Nagy, A. M. Yassin, and A. Bhattacherjee, “Organizational adoption of open source
software: Barriers and remedies,” Communications of the ACM, vol. 53, no. 3, pp. 148–
151, 2010.

[170] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolution patterns
of open-source software systems and communities,” in IWPSE ’02: Proceedings of the
International Workshop on Principles of Software Evolution, (Orlando, FL), May 2002.

[171] D. M. Nichols and M. B. Twidale, “The usability of open source software,” First Mon-
day, vol. 8, Jan. 2003.

[172] O. Nov, “What motivates Wikipedians?,” Communications of the ACM, vol. 50, pp. 60–
64, Nov. 2007.

[173] W. Oh and S. Jeon, “Membership herding and network stability in the open source
community: The ising perspective,” Management science, vol. 53, pp. 1086–1101, July
2007.

[174] S. O’Mahony and F. Ferraro, “The emergence of governance in an open source com-
munity,” Academy of Management Journal, vol. 50, no. 5, pp. 1079–1106, 2007.

[175] T. O’Reilly, “Lessons from open-source software development,” Communications of
the ACM, vol. 42, pp. 32–73, Apr. 1999.

[176] W. Orman, “Giving it away for free? the nature of job-market signaling by open-source
software developers,” The BE Journal of Economic Analysis & Policy, vol. 8, no. 1,
2008.

[177] B. O’Sullivan, “Making sense of revision-control systems,” Communications of the
ACM, vol. 52, pp. 56–62, Sep. 2009.

[178] D. L. Parnas, “Software aging,” in Proceedings of the 16th international conference
on Software engineering, (Los Alamitos, CA, USA), pp. 279–287, IEEE Computer
Society Press, 1994.

[179] J. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and closed-
source software products,” IEEE Transactions on Software Engineering, vol. 30,
pp. 246–256, April 2004.

[180] M. D. Penta, D. M. German, Y.-G. Gueheneuc, and G. Antoniol, “An exploratory study
of the evolution of software licensing,” in ICSE ’10: Proceedings of the 32nd Interna-
tional Conference on Software Engineering, ACM Press, May 2010.

[181] B. Perens, “The open source definition,” in Open Sources: Voices from the Open Source
Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

References 143

[182] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software engineering:
a roadmap,” in ICSE ’00: Proceedings of the Conference on The Future of Software
Engineering, (New York, NY, USA), pp. 345–355, ACM, 2000.

[183] R. Purushothaman and D. Perry, “Toward understanding the rhetoric of small source
code changes,” IEEE Transactions on Software Engineering, vol. 31, pp. 511–526, June
2005.

[184] J. S. Quarterman and J. C. Hoskins, “Notable computer networks,” Communications of
the ACM, vol. 29, pp. 932–971, Oct. 1986.

[185] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. Sebastopol, CA: O’ Reilly and Associates, 2001.

[186] E. S. Raymond, “A brief history of hackerdom,” Online http://catb.org/~esr/
writings/cathedral-bazaar/hacker-history/, 2000.

[187] E. S. Raymond, “The magic cauldron,” Online http://www.sfu.ca/
oldlidc/LMSSC/documents/other%20related%20documents/
magic-cauldron.pdf, 2000.

[188] D. M. Ritchie and K. Thompson, “The unix time-sharing system,” Commun. ACM,
vol. 17, pp. 365–375, July 1974.

[189] J. E. Robbins, “Adopting open source software engineering (OSSE) practices by
adopting OSSE tools,” in Perspectives on Free and Open Source Software, (J. Feller,
B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), pp. 245–264, Cambridge, MA: The
MIT Press, 2005.

[190] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the motivations, partic-
ipation, and performance of open source software developers: A longitudinal study of
the Apache projects,” Management Science, vol. 52, pp. 984–999, July 2006.

[191] G. Robles, S. Dueñas, and J. Gonzalez-Barahona, “Corporate involvement of libre soft-
ware: Study of presence in Debian code over time,” in Open Source Development,
Adoption and Innovation, pp. 121–132, Springer Verlag, 2007. IFIP International Fed-
eration for Information Processing Volume 234.

[192] G. Robles, Empirical Software Engineering Research on Libre Software: Data Sources,
Methodologies and Results. PhD thesis, Universidad Rey Juan Carlos, Madrid, 2005.

[193] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo, “Beyond source code: The im-
portance of other artifacts in software development (a case study),” Journal of Systems
and Software, vol. 79, no. 9, pp. 1233 – 1248, 2006. Selected papers from the fourth
Source Code Analysis and Manipulation (SCAM 2004) Workshop.

[194] D. S. H. Rosenthal, T. Robertson, T. Lipkis, V. Reich, and S. Morabito, “Requirements
for digital preservation systems: A bottom-up approach,” D-Lib Magazine, vol. 11,
Nov. 2005.

[195] M. Rounds, “IBM saw ‘limited’ software industry,” Software, vol. 9, pp. 37–40, March
1989.

[196] M. Ruffin and C. Ebert, “Using open source software in product development: A
primer,” IEEE Software, vol. 21, no. 1, pp. 82–86, 2004.

[197] B. M. Sadowski, G. Sadowski-Rasters, and G. Duysters, “Transition of governance in a
mature open software source community: Evidence from the Debian case,” Information
Economics and Policy, vol. 20, pp. 323–332, Dec. 2008. Empirical Issues in Open
Source Software.

[198] P. H. Salus, A Quarter Century of UNIX. Boston, MA: Addison-Wesley, 1994.

http://catb.org/~esr/writings/cathedral-bazaar/hacker-history/
http://catb.org/~esr/writings/cathedral-bazaar/hacker-history/
http://www.sfu.ca/oldlidc/LMSSC/documents/other%20related%20documents/magic-cauldron.pdf
http://www.sfu.ca/oldlidc/LMSSC/documents/other%20related%20documents/magic-cauldron.pdf
http://www.sfu.ca/oldlidc/LMSSC/documents/other%20related%20documents/magic-cauldron.pdf

144 References

[199] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-OSS quality model:
Measurement based open source software evaluation,” in OSS ’08: 4th International
Conference on Open Source Systems: Open Source Development, Communities and
Quality, (E. Damiani and G. Succi, eds.), (Boston), pp. 237–248, IFIP 20th World Com-
puter Congress, Working Group 2.3 on Open Source Software, Springer, Sep. 2008.

[200] I. Samoladas, I. Stamelos, L. Angelis, and A. Oikonomou, “Open source software de-
velopment should strive for even greater code maintainability,” Communications of the
ACM, vol. 47, no. 10, pp. 83–87, 2004.

[201] W. Scacchi, “Understanding requirements for developing open source software sys-
tems,” IEE Proceedings—Software, vol. 149, no. 1, pp. 24–39, 2002.

[202] W. Scacchi, “Free and open source development practices in the game community,”
IEEE Software, vol. 21, pp. 59–66, 2004.

[203] R. Sen, C. Subramaniam, and M. L. Nelson, “Determinants of the choice of open source
software license,” Journal of Management Information Systems, vol. 25, no. 3, pp. 207–
239, 2009.

[204] S. K. Shah, “Motivation, governance, and the viability of hybrid forms in open source
software development,” Management Science, vol. 52, pp. 1000–1014, July 2006.

[205] S. Sharma, V. Sugumaran, and B. Rajagopalan, “A framework for creating hybrid-OSS
communities,” Information Systems Journal, vol. 12, no. 1, pp. 7–25, 2002.

[206] P. V. Singh, “The small-world effect: The influence of macro-level properties of devel-
oper collaboration networks on open-source project success,” ACM Trans. Softw. Eng.
Methodol., vol. 20, pp. 6:1–6:27, September 2010.

[207] D. Spiller and T. Wichmann, “FLOSS final report part 3. (FLOSS) free/libre open
source software: Survey and study. Basics of open source software markets and busi-
ness models,” Tech. Rep. IST-2000-4.1.1, Berlecon Research, July 2002.

[208] D. Spinellis, Code Reading: The Open Source Perspective. Addison Wesley Profes-
sional, 2003.

[209] D. Spinellis, “Version control systems,” IEEE Software, vol. 22, pp. 108–109, Sep./Oct.
2005.

[210] D. Spinellis, Code Quality: The Open Source Perspective. Boston, MA: Addison-
Wesley, 2006.

[211] D. Spinellis, “Future CS course already here,” Communications of the ACM, vol. 49,
no. 8, p. 13, 2006.

[212] D. Spinellis, “Global software development in the FreeBSD project,” in Interna-
tional Workshop on Global Software Development for the Practitioner, (P. Kruchten,
Y. Hsieh, E. MacGregor, D. Moitra, and W. Strigel, eds.), pp. 73–79, ACM Press, May
2006.

[213] D. Spinellis, “Open source and professional advancement,” IEEE Software, vol. 23,
pp. 70–71, Sep./Oct. 2006.

[214] D. Spinellis, “A tale of four kernels,” in ICSE ’08: Proceedings of the 30th International
Conference on Software Engineering, (W. Schäfer, M. B. Dwyer, and V. Gruhn, eds.),
(New York), pp. 381–390, Association for Computing Machinery, May 2008.

[215] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samoladas, and
I. Stamelos, “Evaluating the quality of open source software,” in SQM ’08: 2nd Inter-
national Workshop on Software Quality and Maintainability, pp. 5–28, The Reengi-

References 145

neering Forum, Apr. 2008. Electronic Notes in Theoretical Computer Science Volume
233 (March 2009).

[216] D. Spinellis and C. Szyperski, “How is open source affecting software development?,”
IEEE Software, vol. 21, pp. 28–33, Jan./Feb. 2004. Guest Editors’ Introduction: Devel-
oping with Open Source Software.

[217] R. Stallman, “Why upgrade to GPLv3,” 2007. Online http://www.gnu.org/
licenses/rms-why-gplv3.html.

[218] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality analysis
in open source software development,” Information Systems Journal, vol. 12, no. 1,
pp. 43–60, 2002.

[219] K. Staring, O. Titlestad, and J. Gailis, “Educational transformation through open source
approaches,” in IRIS ’05: Proceedings of the 28th Information Systems Research Sem-
inar in Scandinavia, Apr. 2005.

[220] J. Stark, “Peer reviews as a quality management technique in open-source software
development projects,” in Proceedings of the 7th International Conference on Software
Quality, (London, UK, UK), pp. 340–350, Springer-Verlag, 2002.

[221] K. J. Stewart and S. Gosain, “The impact of ideology on effectiveness in open source
software development teams,” MIS Quarterly, vol. 30, pp. 291–314, June 2006.

[222] K.-J. Stol and M. Ali Babar, “Challenges in using open source software in product
development: A review of the literature,” in International Conference on Software En-
gineering, pp. 17–22, 2010.

[223] K.-J. Stol, M. A. Babar, B. Russo, and B. Fitzgerald, “The use of empirical methods in
open source software research: Facts, trends and future directions,” in FLOSS ’09: Pro-
ceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development, (Washington, DC), pp. 19–24, IEEE Computer
Society, 2009.

[224] A. S. Tanenbaum, Operating Systems: Design and Implementation. Englewood Cliffs,
NJ: Prentice Hall, 1987.

[225] M. Tiemann, “Future of Cygnus solutions: An entrepreneur’s account,” in Open
Sources: Voices from the Open Source Revolution, (C. DiBona, S. Ockman, and
M. Stone, eds.), O’Reilly, 1999.

[226] L. Torvalds, “The Linux edge,” in Open Sources: Voices from the Open Source Revolu-
tion, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[227] L. Torvalds and D. Diamond, Just for Fun: The Story of an Accidental Revolutionary.
Harper Collins, May 2001.

[228] M. Umarji, S. Sim, and C. Lopes, “Archetypal internet-scale source code searching,”
in Open Source Development, Communities and Quality: IFIP 20th World Computer
Congress, Working Group 2.3 on Open Source Software, pp. 257–263, IFIP: Interna-
tional Federation for Information Processing, Springer, Sep. 2008.

[229] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie, and R. Sole, “Self-organization
patterns in wasp and open source communities,” Intelligent Systems, IEEE, vol. 21,
pp. 36–40, March-April 2006.

[230] K. Ven, J. Verelst, and H. Mannaert, “Should you adopt open source software?,” IEEE
Software, vol. 25, no. 3, pp. 54–59, 2008.

[231] P. Vixie, “Software engineering,” in Open Sources: Voices from the Open Source Rev-
olution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

http://www.gnu.org/licenses/rms-why-gplv3.html
http://www.gnu.org/licenses/rms-why-gplv3.html

146 References

[232] E. von Hippel, “Innovation by user communities: Learning from open source software,”
MIT Sloan Management Review, vol. 42, pp. 82–86, Summer 2001.

[233] E. von Hippel, “Democratizing innovation: The evolving phenomenon of user innova-
tion,” Journal für Betriebswirtschaft, vol. 55, pp. 63–78, March 2005.

[234] E. von Hippel, “Horizontal innovation networks -by and for users,” Industrial and Cor-
porate Change, pp. 1–23, May 2007.

[235] E. von Hippel and G. von Krogh, “Open source software and the ‘private-collective’
innovation model: Issues for organization science,” Organization Science, vol. 14,
pp. 209–223, March/Apr. 2003.

[236] E. von Hippel and G. von Krogh, “Free revealing and the private-collective model for
innovation incentives,” R & D Management, vol. 36, pp. 295–306, June 2006.

[237] G. von Krogh and S. Spaeth, “The open source software phenomenon: Characteristics
that promote research,” The Journal of Strategic Information Systems, vol. 16, no. 3,
pp. 236–253, 2007.

[238] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining, and specialization
in open source software innovation: A case study,” Research Policy, vol. 32, pp. 1217–
1241, July 2003.

[239] G. von Krogh and E. von Hippel, “Special issue on open source software development,”
Research Policy, vol. 32, pp. 1149–1157, July 2003.

[240] G. von Krogh and E. von Hippel, “The promise of research on open source software,”
Management Science, vol. 52, pp. 975–983, July 2006.

[241] H. Wang and C. Wang, “Open source software adoption: A status report,” IEEE Soft-
ware, vol. 18, pp. 90–95, March/Apr. 2001.

[242] T. Waring and P. Maddocks, “Open source software implementation in the UK public
sector: Evidence from the field and implications for the future,” International Journal
of Information Management, vol. 25, no. 5, pp. 411–428, 2005.

[243] A. I. Wasserman, “Building a business on open source software,” in Proceedings of
Conference on Technological Entrepreneurship, Edward Elgar, 2009. To appear.

[244] R. T. Watson, M.-C. Boudreau, P. T. York, M. E. Greiner, and D. W. Jr., “The business
of open source,” Communications of the ACM, vol. 51, pp. 41–46, Apr. 2008.

[245] S. Weber, The Success of Open Source. Harvard University Press, Oct. 2005.
[246] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix

this bug?,” in MSR ’07: Proceedings of the Fourth International Workshop on Mining
Software Repositories, (Washington, DC, USA), IEEE Computer Society, 2007.

[247] J. West and J. Dedrick, “Scope and timing of deployment: moderators of organizational
adoption of the linux server platform,” International Journal of IT Standards and Stan-
dardization Research, vol. 4, pp. 1–37, July 2006.

[248] J. West, “How open is open enough? Melding proprietary and open source platform
strategies,” Research Policy, vol. 32, pp. 1259–1285, July 2003.

[249] D. A. Wheeler, “The free-libre/open source software (FLOSS) license slide,” On-
line http://www.dwheeler.com/essays/floss-license-slide.pdf,
Sep. 2007.

[250] M. Wijnen-Meijer and R. Batenburg, “To open source or not to open source: That’s
the strategic question,” in ECIS ’07: Proceedings of the 15th European Conference on
Information Systems, pp. 1019–1030, 2007.

http://www.dwheeler.com/essays/floss-license-slide.pdf

References 147

[251] M.-W. Wu and Y.-D. Lin, “Open source software development: An overview,” IEEE
Computer, vol. 34, pp. 33–38, Jan. 2001.

[252] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software engineering,”
Computer, vol. 42, pp. 55–62, 2009.

[253] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the open souce
software development community,” in Proceedings of the 38th Annual Hawaii Interna-
tional Conference on System Sciences, Jan. 2005.

[254] Y. Ye and K. Kishida, “Toward an understanding of the motivation of open source
software developers,” in ICSE ’03: Proceedings of 25th International Conference on
Software Engineering, (Portland, OR), pp. 419–429, May 2003.

[255] R. Young, “Giving it away: How Red Hat software stumbled across a new economic
model and helped improve an industry,” in Open Sources: Voices from the Open Source
Revolution, (C. DiBona, S. Ockman, and M. Stone, eds.), O’Reilly, 1999.

[256] L. Yu, S. R. Schach, K. Chen, G. Z. Heller, and J. Offutt, “Maintainability of the kernels
of open-source operating systems: A comparison of linux with freebsd, netbsd, and
openbsd,” Journal of Systems and Software, vol. 79, no. 6, pp. 807 – 815, 2006.

[257] D. Zeitlyn, “Gift economies in the development of open source software: Anthropolog-
ical reflections,” Research Policy, vol. 32, pp. 1287–1291, July 2003.

[258] W. Zhang and J. Storck, “Peripheral members in online communities,” in AMCIS ’01:
Proceedings of the 7th America’s Conference on Information Systems, (Boston, Mas-
sachusetts), 2001.

Id: article.tex,v 1.230 2011/07/04 05:17:39 dds Exp

	Introduction
	Open Source Software and Other Types of Software Distribution
	Research, Related Disciplines, and Publications
	Organization of this Paper

	History and Evolution
	The Early Years
	Unbundling of Software from Hardware
	The Early Years of Unix
	Workstations, Networking and the Hacker Culture
	Notable Events in OSS History
	OSS Meets Proprietary Software
	OSS Becomes Mainstream
	Mainstream OSS Applications

	Projects
	Open Source vs Proprietary Software Projects
	Project Success
	Representative Examples

	Communities
	Actors
	Leadership
	Governance Processes
	Coordination Challenges and Mechanisms
	Evolution

	Production Process
	Modular Development Methodology
	Requirements Definition
	Incorporation of New Features
	Code Integration
	Release Management
	Technical Infrastructure and Collaboration Facilities
	Assessing Open Source Software Projects
	Concerns

	Licensing
	Concepts and Definitions
	Open Source Software Movements
	License Types
	License Selection
	Concerns and Risks

	Business Models
	Strategic Advantages and Impact of Moving to oss
	Prerequisites, Deciding Factors and Concerns
	The Open Source Software Ecosystem
	Main Business Models

	Adoption and Reuse
	Adoption vs Reuse
	Criteria for Reuse
	Adoption Drivers
	Concerns
	Software Reuse Process

	Motivation
	Motivational Aspects for Individuals
	Motivational Aspects for Businesses

	Impact and Outlook
	Impact on the Software Industry
	Impact on Society
	Tackling Global Challenges
	Concerns, Research and Outlook

	Representative Applications
	Systems Applications
	Dekstop
	Entertainment
	Graphics
	Education
	Scientific and Engineering
	Publishing
	Software Development
	Content Management Systems
	Business Applications

	References

