
A Note on Rigour and Replicability

Panos Louridas
Greek Research and Technology Network S.A.

and
Department of Management Science and Technology

Athens University of Economics and Business
Athens, Greece

louridas@grnet.gr, louridas@aueb.gr

Georgios Gousios
Technical University of Delft

Makelweg 4
Delft, The Netherlands

G.Gousios@tudelft.nl

ABSTRACT
As any empirical science, Software Engineering research should
strive towards better research practices. Replication is regrettably
not a priority for Software Engineering researchers and, moreover,
not afforded by many published studies. Here we report our expe-
rience from our encounter with a recent paper in a flagship Soft-
ware Engineering conference. Our experience shows that current
publication requirements do not guarantee replicability.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance mea-
sures

General Terms
Measurement

Keywords
ACM proceedings, empirical software engineering, statistics

1. INTRODUCTION
“Replication—the confirmation of results and conclusions from
one study obtained independently in another—is considered the
scientific gold standard”; thus started a special section in Science
last year on Data Replication and Reproducibility [7]. A similar
call was made a few months later in Nature [6]. In the context
of software engineering, it has been known for a while that the
quality of empirical studies is not up to the desired level [14, 20].
Replications are much touted [13, 15, 1] but rarely performed [16,
20].

To help others replicate their work, researchers should not only
make their data available to others upon publication, but ensure
that all their material, comprising code, should also be readily
shared, to ensure full replication [12]. As Computer Scientists
and Software Engineers we have the advantage of knowing how
to do that—share our code, tools, data and documentation—and
of living and working in a culture where openness, in the form of
Open Source Software, has been the norm for many years now. In
the effort to enable full replication, we should lead by our example.

In this note, we would like to draw our attention to problems with
replication in our own field, taking as an example a paper that
appeared in a recent flagship conference. The paper, “Combining
Functional and Imperative Programming for Multicore Software:
An Empirical Study Evaluating Scala and Java” appeared in the
International Conference on Software Engineering icse that took
place in Zurich on June 2–9, 2012 [11]. It drew our attention
because it compares programming in a popular imperative lan-
guage against programming in a hot multi-paradigm (imperative

and functional) language; it so happens that we have had con-
siderable experience with both languages. The results were quite
surprising compared to our experience; unfortunately, we were
equally surprised by our inability to check them.

In what follows we describe what we believe is wrong with the
presentation of that particular paper. Note that we do not prove
that the paper itself is wrong. To do that, or conversely to ver-
ify the paper’s findings, we should be able to check the authors’
methods. We were unable to do that. We believe that this holds
valuable lessons for the materials that all authors should make
available upon review and publication, and what journal editors
and proceedings committees should require from the manuscripts
they receive.

2. STATISTICAL RIGOR
The authors state at the outset that they “confirm with statis-
tical significance Scala’s claim that Scala code is more compact
than Java code, but clearly refute other claims of Scala on lower
programming effort and lower debugging effort”. They “interpret
p ≤ 0.05 as a strong indication for a difference, which degrades
as p increases; p > 0.1 is the threshold where the difference be-
comes insignificant”. This is somewhat strange, as the threshold
is usually taken to be p < 0.05, with strong statistical significance
taken at p ≤ 0.01.

The experiment was carried out by a single population (of size
13) that had to work out a programming project in Scala and in
Java in four weeks. Seven of the subjects worked in Scala and six
in Java. When the four weeks ended, the languages were reversed
so that the six subjects that had worked with Java switched to
Scala and the six subjects that had worked with Scala switched
to Java.

To compare the effort required to finish the project in Scala and in
Java the authors used the Wilcoxon’s paired rank sum test. The
authors explain that “infomaly speaking, this non-parametric test
evaluates whether two populations differ with statistical signifi-
cance”. If this is what the authors intended, then they used the
wrong test, as in their study they do not investigate the difference
between two populations, but the difference in measurements in
the same population (while programming in Java and in Scala).
The rank sum test is the so-called Wilcoxon, Mann and Whitney
test [4, Chapter 4], where “the data consist of two random sam-
ples, a sample from the control population and an independent
sample from the treatment population” [4, p. 106]. By contrast,
the Wilcoxon signed rank test [4, Chapter 3] is used with “pairs
of ‘pretreatment’ and ‘posttreatment’ observations; here we are
concerned with a shift in [the] location [median] due to the ap-
plication of the ‘treatment’ ” [4, p. 35] which is what the authors
want to do. Note that in this discussion we are using the same

reference statistics textbook as the authors of the paper.

The aggregated effort statistics, in terms of hours spent by each
subject on each project, show that “on average it takes 20 hours
(38%) longer to complete the Scala project. The populations dif-
fer significantly with p = 0.059”. As we mentioned above, this
p-value could very well be taken as non-significant. We tried to
investigate that further. We took the effort numbers from the fig-
ure included by the authors in the paper, and ran the appropriate
statistical tests ourselves. We used the r package for statistical
computing. Our results are strikingly different from the authors,
in that they do confirm their contention with a much more sta-
tistically significant p-value. In particular,

wilcox.test(scala.hours, java.hours, pair=TRUE)

produced a p-value of 0.002, with the warning that the exact p-
value could not be computed due to ties. To get an exact calcu-
lation of the p-value we used the R coin library, where

wilcoxsign_test(scala.hours ~ java.hours,
distribution=exact())

produced a p-value of 0.00049.

We proceeded to verify the paper’s “multivariate analysis of vari-
ance (manova) that analyzes the impact of Java and Scala skills
(beginner/expert) on the Java and Scala effort of each subject”.
Unfortunately we were stymied, as the input data for manova
cannot be found in the paper or any attached figures. The re-
sults “show that expert skills lead to lower effort in comparison
to beginners”, which is not surprising. The authors validated
their results based on the Box test for the equality of variance-
covariance matrices. However, they do not mention how they
validated the other assumptions required by analysis of variance,
such as normality of sample populations. As the effort statistics
were investigated using a non-parametric method (the Wilcoxon
test), we would expect to find a justification for using a paramet-
ric test for the impact of skills on effort, but we did not, nor were
we able to test the manova assumptions ourselves.

Further statistical claims are made regarding Scala’s code com-
pactness. It is argued by proponents of the language that Scala
code is more compact than Java and less prone to boilerplate.
The authors performed a “Wilcoxon rank sum” test on their mea-
surements. This would probably mean the Wilcoxon Mann and
Whitney test, which would be suitable in this case, as we do
not have “pre-” and “post-” condition measurements, but mea-
surements from two independent samples. It is argued that “the
paired Wilcoxon rank sum test on each subject’s solution shows
support (p = 0.078) that Scala code is more compact” in terms
of Lines of Code (loc)—a p-value that usually is counted as not
statistically significant. A comparison in terms of characters finds
that “the statistical support is weaker (p = 0.094)”—an even less
statistically significant p-value.

3. EXPERIMENTAL DESIGN

Developer Experience. The empirical study involved 13 sub-
jects, Master’s students close to their graduation, on average in
their fourth year of Computer Science studies. They reported
“an average of four years of Java experience and no Scala expe-
rience”. They were given four weeks of training with Java and
Scala. Java training “covered parallel programming with shared-
memory”. Scala training “included functional programming and
parallel programming with actors”. Following the training, the

subjects were asked to solve the Dining Philosophers problem in
both Scala and Java. Their measure of proficiency in both lan-
guages was measured. In Java, seven subjects were classified as
experts and six as beginners. In Scala, seven subjects were classi-
fied as experts and six as beginners. No details are given on how
the classification was performed.

In computer science education literature, programming exper-
tise classification usually follows the five stage scale (Novice, Ad-
vanced Beginner, Competent, Proficient, Expert) proposed by
Dreyfus and Dreyfus [2]. It is generally agreed that it takes
roughly ten years for a novice to become an expert program-
mer [19]. However, this does not mean that every two years a
developer automatically gains an experience level; factors such as
the complexity of tasks exposed to and competitiveness of the
environment come into play. In popular programming culture,
estimates range from from six months [17] to ten years [8].

In light of this evidence, it is surprising that six Master’s students,
close to their graduation, with four years of Java experience, were
classified as still being beginners in the language. It is equally
surprising that seven students were classified as experts in Scala,
after only four weeks of training.

A way to measure language proficiency would be against familiar-
ity with language constructs. Scala is a complex language, with
many features. The creator of Scala has proposed a categorization
of knowledge levels for the language [9]:

• Level A1: Beginning application programmer

• Level A2: Intermediate application programmer

• Level A3: Expert application programmer

• Level L1: Junion library designer

• Level L2: Senior library designer

• Level L3: Expert library designer

Each level comes with an brief summary (bullet points) of the
skills required for it. The categorization has been adopted to
classify the material in a recent book on Scala [5]. It does not
appear that it was used in the classification of the subjects in
the experiment. Unfortunately, there is no information on how
exactly the classification was done, and in which way exactly the
students had achieved expert status.

The difference in expertise may explain the subjects’ statements
regarding ease of programming in the two languages and their
productivity with them: “Only 30% say that adapting to Scala’s
programming model was easy, compared to 100% for Java” (af-
ter four years of experience) and “92% of subjects feel productive
in Scala, compared to 100% in Java” (which seems to be a solid
endorsement of Scala, taking into account the short training pe-
riod).

If real proficiency is reflected in the efficiency of the programs
the subjects wrote, then the speedup analysis presented in the
paper, comparing the speed gains by running the Scala and Java
programs on multiple threads, would provide a clue. Again, we
do not have access to the measurement data; the only available
information is the paper text plus the figures. These show that
the average speedup of Scala programs is about two and of Java
programs about three. There are a few outliers with significant

speedups. It is these programs that we would expect to be the
work of the subjects with real expert status.

Functional vs. Imperative. Apart from evaluating programmer
proficiency, the paper evaluates and uses as a basis for compar-
ison the use of functional vs. imperative programming language
constructs. To do that, the authors count keywords and methods:
“var, object, array, while, for, abstract, import java,
etc. indicate an imperative style. By contrast, constructs such as
val, list, map, filter, flatMap, foreach, ::: (list con-
catenation), :: (list cons operator) indicate a functional style”.
In each program the number of occurrences of imperative and
functional programming language was measured and then a per-
centage figure of imperative vs. functional style was derived. The
actual measurements are not provided by the paper; to validate
the results the authors asked a Software Engineer to count man-
ually the methods and classify them as using a functional or im-
perative style. The resulting functional / imperative percentages
confirmed the automated counting method, with a median diver-
gence of 20%; there is no statistical significance attached to that
figure.

Statistics apart, we are not aware of a standard way to judge ad-
herence to a functional programming style. In a Scala style guide-
lines proposal, functional programming includes “case classes as
algebraic data types, options, pattern matching, partial functions,
destructuring bindings, lazyness, call by name, flatMap” [3]. Or
we could include function literals and closures, recursion, tail calls,
lists maps and sets, traversal, mapping, filtering, folding and re-
ducing, options, pattern matching, partial functions, currying,
and so on [18, Chapter 8].

To drive the point home, we tried to replicate the authors’ method
with a published example. Consider the following code showing
the usual imperative code for matrix multiplication [10, Exam-
ple 6.15.2].

def matmul(xss: Array[Array[Double]],
yss: Array[Array[Double]]) = {

val zss: Array[Array[Double]] =
new Array(xss.length, yss(0).length)

var i = 0
while (i < xss.length) {
var j = 0
while (j < yss(0).length) {

var acc = 0.0
var k = 0
while (k < yss.length) {

acc = acc + xss(i)(k) * yss(k)(j)
k += 1

}
zss(i)(j) = acc
j += 1

}
i += 1

}
zss

}

Counting the keywords and language constructs we find that the
code is 7% functional and 93% imperative. By contrast, consider
the following code [10, Example 6.19.2], in which the creator of
Scala explains how the above operation could be written in a
functional way:

def transpose[A](xss: Array[Array[A]]) = {
for (i <- Array.range(0, xss(0).length)) yield
for (xs <- xss) yield xs(i)

}

def scalprod(xs: Array[Double], ys: Array[Double]) = {
var acc = 0.0
for ((x, y) <- xs zip ys) acc = acc + x * y
acc

}

def matmul(xss: Array[Array[Double]],
yss: Array[Array[Double]]) = {

val ysst = transpose(yss)
for (xs <- xss) yield

for (yst <- ysst) yield
scalprod(xs, yst)

}

Counting using the same method we find that the code is 6% func-
tional and 94% imperative, i.e., less functional than the impera-
tive version. Measuring code “functional-ness” automatically by
means of keywords does not really work. More research needs to
be done towards that direction, but conclusions cannot be drawn
from the method presented by the authors.

4. A PROPOSAL
We believe that it is time for the Software Engineering community
to raise the bar on what can be expected from an empirical study.
icse and other top Software Engineering conferences can play an
active role on that front. We would have encountered none of the
problems outlined above if published papers included:

• All measurement data.

• All interviews, questionnaire, research protocols, and other
related data derived from subjects, anonymized if necessary.

• Full details on the statistical methods used. These should
include scripts and programs, so that it is easy for other
researchers to run them. If statistical frameworks are used
(e.g., r or spss), full details on the versions and libraries
should be provided as well.

• Any other code that has been used in the publication’s re-
search.

• Documentation for all of the above.

To enforce the above, conferences could require from authors to
open up their data and their data manipulation tools under a li-
cense that enables everybody to use them. Sharing of data should
happen in an organized way; for example, conference organization
committees could create a shared repository where researchers
can upload their data and tools along with instructions to use
them. To enable full replication, researchers could provide virtual
machine images with the full environment and data they used.
Moreover, conferences and journals can describe a formal redress
procedure; should an error is found in a paper, authors should be
required to reply to the error claim.

We are aware that exact replication is not always possible; others
believe that it may be unattainable [1, Chapter 4]. We are also
aware that sharing of tools and data may be restricted due to rea-
sons not having to do with the developer’s will to shared them;
licensing and nda compliance may be two of them. What we pro-
pose can be a best effort approach: by default, submissions should
be accompanied by datasets and tools; if these are not available
due to force majeure, it should be up to the editor/conference
chair to decide on the submission.

5. CONCLUSIONS
The purpose of this note is not to point fingers, but to raise the
issue of the dangers of inadequate reproducibility. We were drawn
to this particular article and use it as an example mostly because
some of the findings contradict our own experience. Other articles
in the same conference are equally opaque with regards to replica-
tion and verification. However, we believe that publication-time
availability of experimental data, tools and experiment replication
documentation (“lab packs” as Basili [13] describes them) should
be a requirement for publication. Our proposal, if adopted, might
be a first step in this direction.

6. REFERENCES
[1] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller.

Replication’s role in software engineering. In Forrest Shull,
Janice Singer, and Dag I. K. Sjøberg, editors, Guide to
Advanced Empirical Software Engineering, pages 365–379.
Springer London, 2008. 10.1007/978-1-84800-044-5 14.

[2] H.L. Dreyfus and S.E. Dreyfus. Mind over machine. Free
Press, 1988.

[3] Marius Eriksen. Effective Sscala.
http://twitter.github.com/effectivescala, 2012.

[4] Myles Hollander and Douglas A. Wolfe. Nonparametric
Statistical Methods. John Wiley & Sons, Inc., 2nd edition,
1999.

[5] Cay S. Horstmann. Scala for the Impatient.
Addison-Wesley, 2012.

[6] Darrel C. Ince, Leslie Hatton, and John Graham-Cumming.
The case for open computer programs. Nature, 482:485–488,
23 February 2012.

[7] Barbara R. Jasny, Gilbert Chin, Lisa Chong, and Sacha
Vignieri. Again, and again, and again. . . . Science, 334:1225,
2 December 2011.

[8] Peter Norvig. Teach yourself programming in ten years.
http://norvig.com/21-days.html, 2001.

[9] Martin Odersky. Scala levels: beginner to expert,
application programmer to library designer.
http://www.scala-lang.org/node/8610, 2011.

[10] Martin Odersky. The Sscala language specification version
2.9. Technical report, Programming Methods Laboratory,
EPFL, Switzerland, May 24 2011.

[11] Victor Pankratius, Felix Schmidt, and Gilda Garretón.
Combining functional and imperative programming for
multicore software: An empirical study evaluating Scala
and Java. In Proceedings of te 34th International
Conference on Software Engineering, Zurich, June 6–9 2012.

[12] Roger D. Peng. Reproducible research in computational
science. Science, 334:1226–1227, 2 December 2011.

[13] Victor R.Basili, Forrest Shull, and Filippo Lanubile.
Building knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(04):456–473,
1999.

[14] M. Shaw. Writing good software engineering research
papers. In Proceedings of the 25th International Conference
on Software Engineering, 2003., pages 726–736, May 2003.

[15] Forrest Shull, Jeffrey Carver, Sira Vegas, and Natalia
Juristo. The role of replications in empirical software
engineering. Empirical Software Engineering, 13:211–218,
2008. 10.1007/s10664-008-9060-1.

[16] Dag I.K Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes,
A. Karahasanovic, N.-K. Liborg, and A.C. Rekdal. A survey
of controlled experiments in software engineering. IEEE
Transactions on Software Engineering, 31(9):733–753, Sept.
2005.

[17] Bjarne Stroustrup. Posting to comp.lang.c++.
http://www2.research.att.com/~bs/blast.html,
December 1994.

[18] Dean Wampler and Alex Payne. Programming Scala. O’
Reilly, 2009.

[19] Leon E. Winslow. Programming pedagogy—a psychological
overview. SIGCSE Bull., 28(3):17–22, September 1996.

[20] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the
success of empirical studies in the International Conference
on Software Engineering. In ICSE ’06: Proceedings of the
28th international conference on Software engineering,
pages 341–350, New York, NY, USA, 2006. ACM.

http://twitter.github.com/effectivescala
http://norvig.com/21-days.html
http://www.scala-lang.org/node/8610
http://www2.research.att.com/~bs/blast.html

	Introduction
	Statistical Rigor
	Experimental Design
	A Proposal
	Conclusions
	References

