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Abstract—After working for some time, developers commit
their code changes to a version control system. When doing so,
research shows that they often bundle unrelated changes (e.g., bug
fix and refactoring) in a single commit, thus creating a so-called
tangled commit. Sharing tangled commits is problematic because
it makes review, reversion, and integration of these commits
harder and historical analyses of the project less reliable.

Researchers have worked at untangling existing commits, i.e.,
finding which part of a commit relates to which task. In this paper,
we contribute to this line of work in two ways: (1) A publicly
available dataset of untangled code changes, created with the help
of two developers who accurately split their code changes into self
contained tasks over a period of four months; (2) based on this
dataset we devise and assess EpiceaUntangler, an approach to help
developers share untangled commits (aka. atomic commits) by
using fine-grained code change information. We further evaluate
EpiceaUntangler by deploying it to 7 developers, who used it for
2 weeks. We recorded a median success rate of 91% and average
one of 75%, in automatically creating clusters of untangled fine-
grained code changes.

I. INTRODUCTION

Version Control Systems (VCS), such as Git and Subver-
sion, allow programmers to control changes to source code,
in a way that they make it possible to find who made each
software change, when, and where. This information is impor-
tant to support both the coordination of developers working
in teams [1] and the creation of many recommendation and
prediction systems related to software quality [2].

Research shows that developers often bundle unrelated
changes (e.g., bug fix and refactoring) in a single commit [3],
creating a so-called tangled commit, such as the following:'

r1252 | elharo | 2006-11-09 [...] | 2 lines
Pulling getOperator up into BinaryExpr per Jaxen-169

[ ]

Index: src/java/main/org/jaxen/expr/AdditiveExpr.java

(revision 1251)
(revision 1252)

-—— src/[...]/AdditiveExpr. java
+++ src/[...]/AdditiveExpr. java
@@ -61,7 +61,7 @@

*
- x/public interface AdditiveExpr extends BinaryExpr
+ *x/
+public interface AdditiveExpr extends BinaryExpr

{
- String getOperator () ;

}

The tangled commit above contains both a refactoring (the
move of ‘getOperator’ to a different place, not shown in this
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extract), and code formatting (the move of an interface defini-
tion to its own line). Sharing tangled commits is problematic
because it makes code review, reversion, and integration harder
and historical analyses of the project less reliable [4]. For
example, even the integration of the code formatting change
included in the commit above would be a demanding task.

Researchers have worked on untangling existing commits,
i.e.,, finding how to separate parts of a commit relating to
different tasks. Herzig and Zeller presented the earliest and
most significant results in this area [3]: They implemented the
first algorithm that can automatically untangle commits given
artificially tangled ones.

In this paper, we expand on this previous work by:
(1) Working in an untyped setting where most of the approach
by Herzig and Zeller is inapplicable; (2) considering fine-
grained code change information gathered during development
(e.g., time at which each line has changed and all versions of
each line); and (3) evaluating the resulting approach both on
data generated by programmers who manually label it, and
with programmers working on real-world development tasks.

The ultimate goal of our work is to help developers of
dynamically-typed code share untangled commits. To that end,
we: (1) asked 7 developers to manually cluster changes for
each of their commits using a dedicated tool, for a period of
4 months; (2) manually validated the generated data, selecting
the data recorded by 2 of these developers, and computed
a number of features based on the their fine-grained code
changes; (3) modeled the problem of predicting whether two
fine-grained changes belong together using a variety of ma-
chine learning approaches, determined the most appropriate
one and then identified the most significant features; (4) de-
signed an algorithm that uses the machine learner result to
propose an automatic clustering of any tangled commit and
developed a corresponding tool, EpiceaUntangler; and finally
(5) evaluated the effectiveness of our approach with developers
who used EpiceaUntangler in their daily work for two weeks.

Our results show that three features are especially im-
portant to perform clustering of fine-grained code changes:
the time and the ordered distance between the changes, and
whether the changed code belongs to the same class. By
modeling these features with Random Forests [5], we identify
whether two changes belong to the same commit with an
accuracy of 95%, if training and testing on the same developer,
and more than 88% if tested on a different developer. A set
of 200 manually clustered fine-grained code changes (i.e., the
equivalent of a few days of work) was sufficient to reach good
performances. When deploying EpiceaUntangler with new
developers during their daily tasks, we recorded an average
success rate of 75% and a median one of 91%.
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II. PROBLEM DESCRIPTION

When developers want to share their work in a VCS, they
will, more often than not, realize that they have done more
than one activity, e.g., fixed a bug, reformatted a method, and
fixed a typo in a comment. Sharing everything in a single
tangled commit is regarded as bad practice because it makes
the following activities more difficult:

e Review: reviewers have to understand the code changes
of all the activities at once [6]—[8];

e Reversion: developers have to revert all changes of a
problematic commit even when only one part of the
commit is problematic [1];

e [ntegration: integrators have to integrate or reject whole
commits, e.g., they cannot accept a code formatting oper-
ation and reject a bug fix included in the same commit [9];

e Historical analysis: researchers need to associate activ-
ities to files to conduct statistical analyses while, e.g.,
mining software repositories [4].

A. Existing Solutions for Tangled Changes

To avoid tangled commits, developers could organize their
work so that, at commit time, only one activity’s code is to be
shared. This requires frequent commits and interruptions in the
developer’s work flow [10]-[13]. Even with a lot of discipline,
there will be times when a developer will have to split changed
code into several commits.

To separate code from several activities into different
commits, some tools (e.g., ‘gitadd’) let the user selects which
files and lines to commit first. Being line based, these tools
share the following problems: (1) The code present at commit
time might be incomplete [14]: Each change to a line shadows
previous changes of the same line making it impossible to
commit the line as it was before the last change; (2) a commit
resulting of a manual selection of a subset of all changed lines
might be invalid: e.g., a developer might commit the beginning
of a function definition but not the end; and (3) changed lines
are shown in the order they appear in their files irrespective of
their modification time: This makes it difficult for developers
to select lines changed closely in time.

A great source of inspiration for us comes from Herzig et
al., [3], [4], who implemented an algorithm to automatically
untangle commits. Their algorithm uses several confidence
voters to decide whether two lines of a tangled commit should
be put in the same cluster. They aggregate the results of each
confidence voters into a single score, and then use the concepts
of a multilevel graph-partitioning algorithm by Karypis and
Kumar [15] to generate the clusters. Their voters include:

e ‘FileDistance’: the number of lines between the two lines
if they are both in the same file;

e ‘PackageDistance’: the relationship between the packages
each line was changed into;

e ‘CallGraph’: the difference between the call graphs of the
program with each line change applied separately;

e ‘ChangeCouplings’: the frequency with which the files
both lines were changed into are committed together,
using the work from Zimmermann et al., [2];

e ‘DataDependency’: a boolean indicating if the two lines
read or write the same variable(s).

We see the following limitations to Herzig et al., work that
we address in the current paper:

e Dependence on static-analysis: The ‘CallGraph’ and
‘DataDependency’ voters rely on static analyses that might
not be possible for dynamically-typed programming lan-
guages (or that might be available in a weaker form);

o [ncompleteness: The tangled commits used as input to
the algorithm suffer from the incompleteness problem
described earlier in this section: If a line is changed twice
before a commit, the commit only contains the latest
version of the line, shadowing a previous version of the
line which could have been part of an untangled commit;

e Artificiality: The validation by Herzig et al., relies on a
classification by themselves of 7,000 existing commits
without feedback from each project’s experts. We believe
that only the author of each commit can, at commit
time, best organize his changes into untangled commits.
Moreover, Herzig et al., untangling algorithm relies on the
knowledge of the expected number of untangled commits
for a particular tangled one. With the goal of helping
developers creating untangled commits, we do not have
access to this knowledge.

In this paper, we propose to alleviate the problems of the
Herzig et al., approach by (a) expanding it to a dynamically-
typed environment where some kinds of analyses are not
available; (b) using fine-grained changes collected during de-
velopment sessions; (c) relying on developer-approved data for
the validation of our approach. Following are the requirements
of our approach:

(a) The Dynamically-Typed Setting: Whereas the Herzig
et al., approach relies on static analysis of Java programs to
untangle commits, our approach must help developers create
untangled commits in a dynamically-typed environment. Cer-
tain types of static analysis, e.g. accurate call graph analysis, is
not possible for dynamically-typed languages. Therefore, our
approach should not rely on static analysis.

(b) Fine-Grained Changes: In modern integrated develop-
ment environments (IDEs), tools can be notified each time
a method is changed. As a result, a tool could listen to all
fine-grained changes made by developers and, at commit time,
present the developer a list of all the changes they have
done. For example, a developer saving a method’s source
code 3 times will result in 3 fine-grained changes. This is in
contrast with most tools that only present the latest version of
each changed line; this requirement tackles the incompleteness
limitation.

(c) Developer-Approved Data: The untangling algorithm
should be based on data from manually untangled commits by
developers who created the tangled commits at first. The final
version of the approach should present each developer, at com-
mit time, a list of the automatically found untangled commits
with their fine-grained changes: Each developer could then
reorganize these automatically-computed clusters of changes.
Results must be validated by comparing the automatically-
computed clusters of changes against the manual reorganiza-
tion of the developer.
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III. PROPOSED SOLUTION

In a nutshell, our solution is to develop an approach and
associated tools to help developers share untangled commits.
The tools log all the fine-grained changes made by developers
as they change the source code. When a developer wants to
commit her changes, the tool, based on an analysis of the
recorded information, presents several automatically-computed
clusters of changes: Each cluster represents a distinct activity
of the developer since last commit. The developer may then
add a comment to each cluster and, if necessary, adapt the
automatic clustering (by adding/removing clusters and moving
changes to different clusters). Once the developer validates the
clusters, the tool generates a commit per cluster and publishes
them to a repository. In the following section, we present our
solution decomposed in individual parts.

A. Epicea: Event modeler with fine-grained changes

Central to our approach is the collection of fine-grained
information. To conduct this task, we use Epicea [16], a tool
we developed to model IDE events. In essence, Epicea listens
to actions taking place in the IDE and records different types of
events. A simplified version of the events recorded by Epicea
is shown in Figure 1. Epicea records complete information
of these events (e.g., whether a test run failed), including
timestamp. As previous studies (both in Eclipse [17] and in
Smalltalk [18]) showed that save-based recording produces
reliable fine-grained code change data, we record code change
operations (add, modify, and delete classes and methods) every
time the user saves the code. Epicea stores the collected data
as a sequence of serialized objects into plain text files.

B. Voters

Once the data is collected, we have to characterize it in
a way that it can be used for generating untangled changes.
Similarly to Herzig et al., in [3], [4], the first step is to model
our clustering task into a binary classification problem: For all
the potential pairs of recorded fine-grained changes, we want
to determine whether they belong in the same cluster. To this
end, we implement a number of features or, maintaining the
term used by Herzig et al., [3], voters, which describe different
relations between the considered changes. Our voters (detailed
in Table I) span the following six dimensions:

1) Code structure: Although non-typed languages do not
allow for deep static analysis, it is possible to compute ba-
sic relations. Our three voters in this dimension consider
whether the two changes happen in the same package,
class, and/or method.

2) Content: This voter analyzes the output of the methods
before and after the changes, and returns true in case the
output remained the same but basic formatting properties
changed. This voter should help linking changes regarding
refactoring actions.

3) Testing: Epicea records test runs. The rationale of this
voter is that two changes happening between a run of
the same test could be related to the same task (e.g., this
should hold in the case of test-driven development).

4) Spread: These voters measure the distance between the
two considered changes, considering time passed and
number of other changes in between. We expect close
changes to be more related.

5) Message sending: This dimension analyzes whether the
changes involve message sending (also known as ‘method
invocations’, in languages such as Java or C#) that are
possibly related.

6) Variable accessing: This dimension computes relations
between the variable accessed by the two changes: For
example, a change that adds a new instance variable may
be related to a change that adds an usage of the same
variable in a method.

The input of each voter is a pair of changes, and the output
is of the type specified in column “Type’ of Table I.

C. Machine learning approaches

Our approach computes the values for each voter per each
pair of changes (for performance reasons, we only consider
fine-grained change pairs that are less than 3 days apart); to
aggregate these values and train models that would predict
whether the two changes should be in the same cluster, we
use machine learning (ML).

We consider three well-known machine learning algo-
rithms [19]: (1) binary logistic regression (‘binlogreg’),
(2) Naive bayes (‘naivebayes’), and (3) random forests [5]
(‘ranforest’). We chose these algorithms not only because they
have been applied successfully to a number of data mining
tasks related to software engineering, but also because they
make quite different assumptions on the underlying data and
model (e.g., ‘naivebayes’ relies on the conditional indepen-
dence assumption, i.e., the value of a voter is unrelated to the
value of the others, and ‘binlogreg’ requires each observation to
be independent and linearity of independent variables and log
odds), thus they can offer different interpretations. The choice
of the most appropriate machine learning algorithm is based
on the empirical data collected during the experiment.

This machine learning step takes as an input the values
computed by the voters, and it outputs a probability that the
two changes belong to the same cluster.

D. Clustering

The last necessary step in our approach is to take the
output of the machine learning step, computed on each pair



TABLE 1.

DIFFERENT VOTERS TESTED IN OUR INVESTIGATION.

Voter Name \ Dimension \ Type \ Relation between the two considered changes

samePackage Code structure Boolean They involve the same package.

sameClass Code structure Boolean They involve the same class.

sameSelector Code structure Boolean They involte a method with the same name (regardless its class).

bothCosmeticChanges \ Content \ Boolean \ They are both cosmetic (i.e., pretty-printing—both versions of the method return the same result).
sameTestRun \ Testing \ Boolean \ They are modified between the same unit-test runs.

numberOfEntriesDistance Spread Numeric How close they are in the history; the voter computes number of other changes between them.
timeDifference Spread Numeric How close in time they are in the history; the voter computes the seconds between them.
reciprocalMessageSends Message sending Nominal They invoke each other; it computes 0, 1 or 2 if, respectively, no, one, or both call the other.
numberOfSharedMessageSends Message sending Numeric They share a number of the same message sends.

numberOfSharedMessageSendsInDelta Message sending Numeric They add or remove a number of the same message sends.

numberOfVariableAccesses Variable accessing Numeric One change modifies or adds definitions of instance variables, the other accesses some of them.
numberOfShared VariableAccesses Variable accessing Numeric They access a number of the same instance variable names.
numberOfSharedVariableAccessesInDelta | Variable accessing | Numeric | They start or stop accessing a number of the same variable names.

of changes, and aggregate it to form the clusters of changes
to be presented to the user.

In this method, each change is initially considered a cluster
of its own. Then pairs of clusters are successively selected by
their maximum scores and merged. The result of this method
is a dendrogram, which is a binary tree that represents the
nested clustering of code changes. In this dendrogram, each
non-leaf node has a similarity level that represents how similar
are both children. In our problem, a similarity level of 1
corresponds to two clusters that must be merged, while a level
of 0 corresponds to the opposite decision.

Finally, the desired clustering of code changes is obtained
by cutting the dendrogram at some similarity threshold. Using
a too low threshold produces too many small clusters, while a
threshold that is too high produces a single cluster. The choice
of the most appropriate similarity threshold depends on the
change set and, similarly to the machine learning approach, is
based on the empirical data collected during the experiment.

The output of this step is the set of independent clusters
of fine-grained changes, which is eventually displayed to the
user with a dedicated user interface.

IV. RESEARCH METHOD

In this section, we describe how we structure our research
in terms of research questions, we present the research settings,
and we outline our research method.

A. Research questions

The goal of our work is to devise and test the approach
we previously described to untangle code changes at a fine
level of granularity. Accordingly, we structure our investigation
through the following research questions:

RQI1: Which voters are significant to untangle fine-grained
code changes?
With this question we aim to understand which are the
most important voters in our untyped setting. To answer
this research question, we consider the machine learning
task of deciding whether two changes should belong to
the same cluster. In doing so, we also determine which
machine learning approach among the three we test, is
better suited to model the problem through our voters.

RQ2: How effective is a machine learning model based on

the significant voters in untangling historical fine-
grained code changes?
Once we find the most significant voters and the best
machine learning approach, we are interested to know
their performance in predicting whether two changes
should belong to the same cluster. We also want to
investigate the effect asserted by individual developers’
working styles on prediction performance; for this we
train and test the machine learner on data generated by
different developers (e.g., training on one developer’s
data and testing on another developer’s data).

RQ3: How effective is a tool based on the best voters

and machine learning approach, when deployed with
developers working on their daily tasks?
Finally, we want to devise an approach EpiceaUntan-
gler, based on the best machine learner and voters, that
would be able to generate clusters and present them
with a graphical user interface. We want to test its
effectiveness when deployed with participants having
two features: (1) Their data should not have been used
for training the classifier, and (2) they should be working
on their daily working tasks as usual.

B. Research settings

Our study took place with professional developers, re-
searchers, and students using the Pharo environment.2 Pharo
is an open-source dialect of Smalltalk and implementation of
its programming environment. It was forked from Squeak in
2008 and it is rapidly evolving. Currently, Pharo has around 60
worldwide contributors, it is used by more than 15 universities
to teach programming and by 10 research groups to build
research tools, and more than 50 companies are deploying
Pharo applications in production daily.

We chose Pharo as a case study for two main reasons:
(1) The Pharo open-source community of developers has been
open, since its inception, to welcome and thoroughly evaluate
research tools (e.g., [20]-[22]); and (2) the programming
language, the development environment, and the versioning
system are tightly integrated. The later feature allowed a faster
prototyping of an approach to record fine-grained code changes
and interaction with testing and the versioning system. The
former feature allowed us to collect fine-grained data about

2http://pharo.org/


http://pharo.org/

code changes and IDE interactions from participants doing
real-world development work, and it enabled us to deploy
our resulting tool with more participants and evaluate the
results. Moreover, many research tools tested within Pharo
later became integral part of the environment (e.g., [23]); it
is our interest not only to improve the state of the art in
untangling code changes, but also creating an approach that
can be used in real-world scenarios.

C. Research steps

1) Fine-grained data generation and collection: To answer
our first two research questions, we need a ground truth to train
and test our voters and machine learning approaches. Such
a ground truth should be a reliable dataset containing fine-
grained code changes correctly split into tasks by their authors.
To obtain this, we contacted 7 participants actively contributing
to Pharo, including the first author of this paper. We asked them
to install Epicea and to use the tool (i.e., Epicea Task Clusterer
(ETC), Figure 2) that we devised to manually cluster their fine-
grained code changes. We showed a screencast’ demoing the
tool to all the participants before they started using it, so that
they could understand the goal of the experiment and adapt
their workflow accordingly. Every time participants decided
to commit their source code to the versioning system, during
their normal work, the ETC’s interface would appear (as in
Figure 2) displaying a list of all the fine-grained changes, since
the previous commit, that the user had to manually cluster into
the expected tasks.

TABLE II. PARTICIPANTS’ INFORMATION
P ID current programming experience (in months)
- role overall  industrial \ with Pharo
Data generation and collection phase
P1 Ph.D. student 168 60 48
P2 Ph.D. student 48 36 24
Evaluation in real-world development phase
P3 Ph.D. student 180 18 36
P4 software engineer 132 72 13
P5 associate professor 72 12 24
P6 Ph.D. student 72 11 11
P7 software engineer 180 10 30
P8 software engineer 60 18 36

In detail, the main user interface of Epicea Task Clusterer
(shown in Figure 2) works as in the following: In the top
pane, each column (e.g., Point 1) represents a task (to group
an activity of the user), and each item in a column represents
a code change (e.g., Point 2). Each code change is in a
ClassName»methodName format, and the icon shows the type
of change (as in Figure 1). The bottom pane (Point 3) shows
the details of the selected change, in a unified-diff format. The
user can review the listed changes and perform three actions
to specify the expected clustering for them: Add a new empty
task/cluster (Point 4), reopen an already closed task/cluster
(Point 5), and move changes between columns (with drag and
drop, Point 6). Once the clustering task is completed, the user
presses the button ‘Done’, and the interface disappears.

3 Available at: https://www.youtube.com/watch?v=fQVWuMQUBew
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2) Data analysis and evaluation of voters: Once the par-
ticipants concluded the data collection period of 4 months, we
conducted exploratory data analysis [24] on the generated clus-
tered changes. We found that the data generated by five users
was extremely sparse and inconsistent; these users confirmed
this and explained that they were not able to reliably generate
the necessary data, mostly because of time issues arisen during
the experiment period. We removed this data, and kept the data
generated from the remaining two users (including the first
author of this paper) whose features are described in the top
half of Table II. The resulting dataset, which we name 2devs,
is described in Table III.

TABLE III. DESCRIPTIVE STATISTICS OF DATASET 2DEVS
P ID Total number of Changes per cluster

- changes  clusters ‘ Mean  Median  St. Dev. Max
Pl 15,175 298 50.9 8 153.1 1,582
P2 9,601 119 80.7 16 151.9 812

Using 2devs we answered RQ1 and RQ2. As previously
detailed (see Section III-C), we used machine learning to
automatically identify pairs of changes belonging to the same
commit, by modeling it as a binary classification problem. For
all potential pairs of changes in the 2devs dataset, we calculated
values for all the voters in Table I and labeled with ‘true’ if
the changes belonged to the same commit or ‘false’ otherwise.
As our dataset was unbalanced (the false class overruled the
true class by a ratio of 4:1), adjustments where necessary to
avoid overfitting. Models where thus trained with a ratio of
2:1 samples for the false and true class respectively.

Evaluation of voters. To evaluate each trained model,
we used standard machine learning metrics [19], such as
precision (prec), recall (rec), accuracy (acc), the Area Under
the receiver operating characteristic Curve (auc) and the F-
measure (f.measure). Models where trained with an increasing
number of samples as input (10* to 10 samples), in order
to determine the minimum number of samples required to
obtain adequate performance. At each input size, we used
random selection 10-fold cross validation to evaluate model
stability and reported results based on the mean of the 10
runs. We selected the best classifier and applied a classifier-
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specific process to rank voters according to their importance
in the classification process. Then we incrementally trimmed
the voter set starting from the less important feature until the
performance of the classifier was severely impacted. Finally,
we retrained the best classified with the trimmed voter set and
used as our final prediction model. The final model was then
exposed as a web service that EpiceaUntangler used to drive
the change untangling process to answer RQ3.

3) Deployment and evaluation with developers: Once we
completed the creation and evaluation of the best ML approach
and features on dataset 2devs, and obtained promising results,
we created the corresponding implementation in EpiceaUntan-
gler, a tool that developers can use in real-world development.

Our approach records all the fine-grained information,
exactly as done for the data collection phase. Then, when
a developer wants to commit, it computes the values for
all the significant voters for each pair of code changes, and
queries the web service implementing the final model of the
ML classifier. For each change-pair, the web service returns a
score between 0 and 1, indicating the probability that the two
changes belong to the same cluster, according to the trained
model. EpiceaUntangler aggregates all the scores to form clus-
ters using agglomerative hierarchical clustering method (see
Section III-D). This method outputs a dendrogram, which has
to be cut at some similarity threshold for obtaining the clusters
of changes. We created a testbed with ‘change set-expected
clustering’ pairs whose purpose was to help us to conceive a
good function for obtaining the similarity threshold for cutting
the dendrogram. In Figure 3 we illustrate the function. The
similarity threshold we chose corresponds to the maximum
similarity gap between all nodes whose similarity level is less
than 0.25. The intuition behind taking the maximum similarity
gap is that continue merging code changes together is not
worth, because the meaningful clusters have already been
detected. The reason to use 0.25 as a lower bound is that we
observed from data how that such a low likelihood indicates
in most cases changes that should not be merged.

This process happens in background: After the developer
decides to commit, she sees an interface similar to that used
to generate the data for 2devs (Figure 2), with the difference
that the clusters are already pre-computed by the tool.
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Fig. 4. Comparison between a computed clustering and an expected

clustering. On the left-hand side, each box represents a cluster of changes. The
computed clustering has found 4 clusters labeled from C'1 to C4 (cluster C5
is a virtual cluster to ease comparison). The expected clustering has 5 clusters:
FE1 to E5. On the right-hand side, the matrix shows the corresponding Jaccard
indexes.

Evaluation of clustering. To conduct this evaluation, we
recruited six participants, whose features are described in the
bottom half of Table II. They all used EpiceaUntangler for 2
weeks. To evaluate the clustering, each participant was asked
to confirm whether the automatic clustering was correct, if not
they could rearrange changes in the correct clusters. We used
the resulting data to evaluate the accuracy of our approach.

To measure the success rate of our approach, i.e., how
similar the computed clustering (from our algorithm) is to the
expected clustering (from the developer), we need to know the
ratio between the number of successfully clustered changes and
the total number of changes. To know if a change has been
successfully clustered, we must find which computed cluster
best matches which expected cluster.

Figure 4 shows a sample comparison between a computed
clustering and an expected clustering. The matrix on the right
represents the Jaccard indexes computed for each pair of
clusters; this index is defined as using the following formula:

|Cin Ej|
|CiU Ej|

Joig; =

This Jaccard index represents how much two sets coincide.
It ranges from O to 1, where 1 means the two sets are equal
(e.g., C3 and E1 in Figure 4) and 0 means the two sets have
nothing in common (e.g., C'4 and E2 in Figure 4).

From the resulting matrix we want to know which com-
puted cluster matches which expected cluster. This can be
obtained by maximizing the sum of the Jaccard indexes over
all permutations. For the sample in Figure 4 the maximum sum
over all the permutations (3.5) is attained for this set of pairs:

Matching = {(C1, E2)(C2, E4)(C3, E1)(C4, E3)(C5, E5)}

We compute the success rate of our algorithm using the
following formula:

#Success fullyClusteredChanges
#Changes

SuccessRate =

A change ch; is successfully clustered if the computed
and expected clusters that contain ch; are in the same pair
of the M atching set. In Figure 4, all changes are successfully
clustered except ch6. This gives us a success rate of 5/6 = 0.83.



V. RESULTS

In this section we answer our research questions, by
describing the results we obtained in our evaluations.

A. What are the dominant and significant voters?

As a first step to answer our first research question,
we use all the machine learning approaches we consider
on the collected data and we evaluate whether an approach
performs undoubtedly better. Table IV reports the results of the
classification performance of each machine learning approach
for predicting whether two changes belong together, using
a training size of n = 320,000 pairs (or 800 fine-grained
changes), on the 2devs dataset. Overall, and across all metrics,
the Random Forests algorithm delivers the best results, by a
big margin. The high REC measurement of the ‘binlogreg’ result
can be justified by its equally low PREC; the classifier marks
most of the file changes as belonging in the same cluster, but
few of those decisions are correct.

TABLE IV. CLASSIFICATION PERFORMANCE ON 2DEVS BY APPROACH
Classifier ‘ AUC ACC PREC REC F.MEASURE G.MEAN
‘binlogreg’ 092 0.68 0.43 0.96 0.60 0.76
‘naivebayes’ 0.88  0.65 0.41 0.94 0.57 0.73
‘ranforest’ 0.99 0.96 0.96 0.88 0.92 0.93
‘ranforest-trimmed’ ‘ 0.98 0.95 0.96 0.82 0.88 0.90
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Fig. 5. Voter importance for the random forest classifier.

Once we established that ‘ranforest’ delivers the best re-
sults, we assessed the importance of each voter for its clas-
sification result. We used the process suggested by Genuer
et al., [25]. Specifically, we run the algorithm 50 times on
a randomly selected sample of 10° change pairs, using a
large number of generated trees (500) and trying 5 random
variables per split. Then, we used the mean across 50 runs
of the Mean Decrease in Accuracy metric, as reported by the
R implementation of the ranforest algorithm, to evaluate the
importance of each feature. The results can be seen in Figure 5.
The three most important voters are: (1) the time difference
between the changes, (2) the ordered distance of the changes,
(3) and whether the changed code belonged in the same class.
We cannot make inferences about whether the effect of each
voter is positive or negative to the response class; nevertheless,
we believe that the results are indicative of the task-based
nature of software development.

B. How effective is random forests using the dominant voters?

We answer our second research question by using only
the three most important voters to train the prediction model.
The prediction results are reported in Table IV, marked as
‘ranforest-trimmed’. We see that even with just those voters we
obtain very good prediction results: The new model is within
3% of the performance of the model trained in all metrics.

Furthermore, we analyze the impact of the developer who
made the changes on training and testing. We expect that be-
haviors of developers might be different and have a significant
impact on the model.

We start showing that we obtain the best results when we
train and test from data generated by the same developer (the
‘intradev’ dataset in Figure 6). This confirms our hypothesis
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Fig. 6. Dataset performance metrics

that the behavior of the specific developer has an impact on the
model and the results. Furthermore, we see that the results are
not equally good when training with data from one developer
and testing on the other (the ‘crossdev’ dataset); moreover we
see that as we increase the training size, there is a drop in
performances. This can be attributed to overfitting the model
to the working habits of each individual developer. Finally, we
see that we can train accurate models by combining data from



multiple developers. In the ‘combined’ dataset, we combine
the data generated by both developers and use this to train the
model; this means that training and testing data is taken from
both samples. Figure 6 shows that this dataset reaches high
and stable results; and overfitting seems not present.

What is interesting to note is that the number of fine-
grained changes required for training in both the combined
and intradev cases is low: with 200 changes we can obtain
prediction results only 2% worse (in terms of acc) on average
than if we train with 800 changes. As 200 fine-grained changes
are the equivalent of a few days of work,* we have encouraging
evidence that an accurate model can be trained fast and deliver
good results for a single developer. Moreover, a pre-trained
model with data from multiple developers might be enough as
a starting point for an untangling tool, which could then be
trained to a particular developer’s working habits.

Overall, the results show that using the random forest
algorithm, a randomized set of about 200 fine grained changes
and a few easy to calculate voters, we can train a prediction
model that can identify whether two changes belong in the
same commit with an accuracy of 95% for a single developer.

C. How effective is EpiceaUntangler when used by developers?

We answered research question three by deploying
EpiceaUntangler with developers and recording whether the
clustering that it proposes corresponds to participants’ expec-
tations. The dataset devEval, resulting from this evaluation is
described in Table V. We notice that not all the developers
worked full time on coding during the two weeks, thus
producing less changes.

TABLE V. DESCRIPTIVE STATISTICS OF DATASET DEVEVAL

Total number of Changes per cluster

P_ID

changes  clusters \ Mean  Median  St. Dev.  Max
P3 350 22 15.9 11 13.5 42
P4 826 28 29.5 3.5 50.9 228
P5 200 13 15.4 10 17.3 65
P6 166 12 13.8 6.5 15.6 47
P7 347 18 19.3 7 27.8 88
P8 162 11 14.7 10 12.7 37

We compared each cluster we proposed to the cluster that
the participant eventually judged as correct to be committed.
The box plot in Figure 7 shows the obtained results: We
observed a median’® success rate of 0.915 and an average of
0.753 with a standard deviation of 0.30.

We asked developers their opinion on the tool and received
diverse feedback. Most developers were positive [P3, P4, P6,
P8], e.g., P3 expressed the feeling that “EpiceaUntangler
guesses correctly the clusters of changes, also in a big commit
were I had 10 different clusters,” and P4 reported: “It works
good in many cases, especially for not so big change sets.”
At the same time, most developers [P4, PS5, P6, P8] expressed
concerns with the large amount of fine-grained information
to be processed; they explained that it adds too much noise
to see not only the last state of a method but also all the
intermediate modifications to it, especially when belonging to

4From the data we recorded, 200 fine-grained code changes correspond to
two to five days of work, depending on the developer’s style and pace.
5The results are not normally distributed, thus we report the median value.

SuccessRate
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Fig. 7. Success rate of EpiceaUntangler clustering approach

the same cluster. In the words of P8: “It was a bit painful to
check everything.”

Some participants suggested improvements to the user
interface: For example, P7 said that he “would like to option
to delete tasks in the UI”, and P6 said: “I would like to type a
name for each task in the Ul, as a reminder while I cluster.”

VI. DISCUSSION

In this section we discuss our results and show how we
mitigated the threats that endanger them.

A. Results

In the first research question, we asked which voters, or
features, are significant to untangle fine-grained code changes.
Despite we implemented voters along six dimensions, only
two dimensions were significant and contributed to most of
the outcome: code structure and spread. In particular, the
latter dimension has the greatest impact, by a big margin;
while the only significant voter in the former dimension
measured whether the two changes were happening in the
same class. This implies that these voters can be applied
to other object-oriented programming languages regardless of
whether they use types or not. This is a ripe opportunity for
testing the approach with different languages and in different
settings. Moreover, although we have no information about the
significance of the voters implemented by Herzig et al., [3],
[4], studies can be designed and carried out to determine if and
how untangling effectiveness increases as a result of combining
their voters with our significant ones.

We were surprised by the low impact of many of the
voters in the untangling task: We deemed message sending and
variable access, as well as testing information, to contribute
more. Since our initial data analysis was conducted with
changes collected by only two developers, a further study with
a larger set of developers for generating training data would
be useful to confirm or alter this result.

In the second research question, we asked how effective is
the best performing machine learning algorithm (i.e., random
forests) when used with the most significant voters. The results
were overall very good. Expectedly, we achieved the best
results when training and testing on data from the same
developer, nevertheless cross-developers results are promising
and merged-developers results do not show overfitting; in
addition, approximately 200 fine-grained code changes were
enough to reach most of the effectiveness. This implies that
training on more developers is necessary to achieve a more



general approach, and there seem to be no risk of overfitting by
doing it. Moreover, ideally every user should train the approach
on her own programming behavior; this seems reasonable since
the training can be effective with as little as a few days of work.

In the third research question, we investigate the effective-
ness of the whole approach when deployed with programmers.
Considering that the recruited participants were not used for
training phase, results are in line with the effectiveness mea-
sured for RQ2. One of the most recurring complains regarded
the large number of changes to be verified and sorted at every
commit. This is due to the fact that we showed all the fine-
grained changes recorded, thus also intermediate states for
the same change (when the developer saved multiple times).
We expect this information overload problem to be mitigated
once the approach is stable enough to work correctly in most
cases. Nevertheless, we see a good opportunity for further
investigating how certain fine-grained code changes can be
omitted, without losing relevant information that would lead to
the incompleteness discussed in Section II-A. Moreover, valu-
able comments regarded the UI of EpiceaUntangler. The Ul
evaluation goes beyond the scope of this paper, but improving
the UI can be a fertile ground to have an impact on reducing
the information overload of fine-grained code changes.

B. Threats to validity

Internal Validity. Our models and feature selection process
are based on a dataset generated through the actions of
two developers. While we have combined the actions of the
developers and shown that they provide very good prediction
performance and the evaluation of the EpiceaUntangler has
been overwhelmingly positive, it is possible that our findings
are biased towards the two developers’ working habits.

Bias with respect to developer working habits might also
occur in our selection of evaluation subjects. To reduce this
risk, we selected diverse developers, all of them working in
different projects and even in different physical locations.
Thus, we believe the participants represent a heterogeneous
enough population of Pharo developers.

Construct Validity. The notion of task is ambiguous. In
particular, each participant can interpret the task granularity
differently. For example, consider a single bug fix which
intended to fix two broken features. The participant could
consider the changes either as two individual tasks, or ev-
erything as a single bug-fixing task. For mitigating this risk,
we prepared a screencast with an example for users trying to
establish a common criterion for task granularity. Moreover,
we kept close contact with users for answering any doubt.
However, this ambiguity in the definition of task does not
reduce the precision of our success metric for answering
RQ3 (SuccessRate), since it represents each user expectation:
it compares EpiceaUntangler’s clustering with participant’s
expected clustering.

The clustering computed by EpiceaUntangler may have
influenced participants. When users had to evaluate the com-
puted clustering (as shown in Figure 2), the initial clustering
might have biased their answers.

External Validity. We used a specific platform (Pharo) and
language environment (Smalltalk) to facilitate our study. A

specific language may dictate a specific working style. For ex-
ample, in a typed language setting, an IDE would immediately
mark as erroneous cases where a type signature has changed
and not all uses have been adapted, therefore prompting the
developer to fix such cases. Therefore our results may not be
generalizable to all languages or working environments.

VII. RELATED WORKS

The impact of tangled changes has been reported in several
contexts: The inspiring work by Herzig et al., [4], reported that
at least 16.5% of all source files in the datasets they considered
were incorrectly associated with bug reports when ignoring the
existence of tangled change sets. In a large-scale study done at
Microsoft on how developers understand code changes, Tao et
al., reported that developers find it important for understanding
to decompose changes into the individual development issues,
but there is currently no tool support for that [6]. Bacchelli and
Bird reported that tangled changes in code to be reviewed are
often causing low quality reviews or longer time to review [7].

Herzig et al., were the first to implement an algorithm to
automatically generate untangled commits given a tangled one.
Their work greatly inspired our research. However, we see
some limitations to their work that we explain in Section II:
static-analyses dependency, incompleteness, and artificiality.
The main differences with our work is that: (1) we count with
fine-grained timing information of code changes as well as
IDE events like test runs; (2) we work in a dynamically-typed
language; (3) we evaluated our approach with developers.

Another source of inspiration comes from Robbes, who
created a fine-grained change model of software evolution
based on 3 principles [26]: (1) a program state needs to
be represented accurately by an Abstract Syntax Tree (AST);
(2) a program’s history is a sequence of changes, each one
producing a program state (an AST) and changes can be
composed into higher-level changes; (3) changes should be
recorded by the IDE as they happen, not recovered from a
VCS. Robbes et al., show how fine-grained change model can
better detect logical coupling between classes [27]. Their paper
presents new measures of logical coupling that we consider as
a future extension of our voters.

Steinert et al., propose CoExist, an approach and associated
tools to navigate the different states of a project based on
its fine-grained changes [13]. CoExist’s tool suite allows
for reverting any fined-grained change at the project level,
comparing different states of a program, localizing the cause
of a failing test in history, and reassembling changes to share
untangled commits. Despite this large feature set, automatic
clustering of dependent fine-grained changes to create untan-
gled commits is left as future work. Our work can be seen as
an extension of CoExist tool suite in this direction, despite its
totally unrelated implementation.

Wiloka et al., presented a program analysis technique
to identify committable changes that can be released early,
without causing failures of existing tests [28]. Wloka remarks
that an untangling algorithm would clearly benefit from having
a model with a more accurate concept of change to add
context information for individual change operations. Beyond
our ‘Same Test Run’ voter, we will leverage more the results
of unit-test execution to cluster related changes.



VIII. CONCLUSION

Version control systems allow developers to control
changes to source code, and enable understanding and anal-
yses the evolution of software systems. Nevertheless, tangled
commits make it harder to exploit the code change history.

In this paper, we devised and evaluated EpiceaUntangler,
an approach whose ultimate goal is to help developers share
self-contained changes that are well-decomposed into individ-
ual tasks. We build on the shoulders of others, and expand
previous work by: (1) Working in an untyped language setting
where static code analyses are more limited; (2) considering
fine-grained code change information gathered during devel-
opment; and (3) evaluating the resulting approach both on data
generated by programmers who manually labeled it, and with
programmers working on real-world development tasks.

Our results show that three features are especially im-
portant to perform clustering of fine-grained code changes:
the time and the ordered distance between the changes, and
whether the changed code belongs to the same class. Testing
the features on historical data manually labeled by developers,
we recorded good results (over 88% of accuracy in the worst
case) in determining whether two changes should belong to
the same cluster. When deploying the corresponding tool and
approach with new developers, we recorded a median success
rate of 91% and an average one of 75%.

Overall, this paper makes the following main contributions:

1) An analysis of the current points for improvement in the
state of the art in untangling code changes.

2) A publicly available® dataset of fine-grained code changes
collected by recording the development sessions of two
developers over the course of four months, and the
corresponding manual clustering.

3) The creation of different features/voters and their evalua-
tion, based on the aforementioned dataset, using machine
learning approaches to model and classify pairs of fine-
grained code changes, resulting in good accuracy results.

4) The creation of an approach and corresponding tool im-
plementation, EpiceaUntangler, to untangle fine-grained
code changes into clusters based on the three best voters
and the best performing machine learning algorithm.

5) The deployment and evaluation of EpiceaUntangler with
developers, who used it over the course of two weeks,
resulting in good success rate scores.
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