
SQM 2008

Evaluating the Quality of Open Source
Software

Diomidis Spinellis1 Georgios Gousios1 Vassilios Karakoidas1

Panagiotis Louridas1

Department of Management Science and Technology
Athens University of Economics and Business

Athens, Greece

Paul J. Adams1

Research and Development
Sirius Corporation Ltd.

Weybridge, United Kingdom

Ioannis Samoladas1 Ioannis Stamelos1

Department of Informatics
Aristotle University of Thessaloniki

Thessaloniki, Greece

Abstract

Traditionally, research on quality attributes was either kept under wraps within the organization that
performed it, or carried out by outsiders using narrow, black-box techniques. The emergence of open source
software has changed this picture allowing us to evaluate both software products and the processes that
yield them. Thus, the software source code and the associated data stored in the version control system,
the bug tracking databases, the mailing lists, and the wikis allow us to evaluate quality in a transparent
way. Even better, the large number of (often competing) open source projects makes it possible to contrast
the quality of comparable systems serving the same domain. Furthermore, by combining historical source
code snapshots with significant events, such as bug discoveries and fixes, we can further dig into the causes
and effects of problems. Here we present motivating examples, tools, and techniques that can be used to
evaluate the quality of open source (and by extension also proprietary) software.

Keywords: open source, product quality attributes, process quality attributes, sqo-oss

1 Introduction

Traditionally, research on software quality attributes was either kept under wraps

within the organization that performed it [4, pp. vii–viii], or it was carried out by

1 This work was funded by the European Community’s Sixth Framework Programme under the contract
IST-2005-033331 “Software Quality Observatory for Open Source Software (sqo-oss)”

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Spinellis et al

 50

 52

 54

 56

 58

94 95 96 97 98 00 01 02 03 04 05
0

1

2

3

M
ai

nt
ai

na
bi

lit
y

in
de

x

Li
ne

s
of

 c
od

e
(m

ill
io

ns
)

Year

Kernel MI
LOC

 60

 62

 64

 66

 68

 70

94 95 96 97 98 00 01 02 03 04 05
2

3

4

5

M
ai

nt
ai

na
bi

lit
y

in
de

x

Li
ne

s
of

 c
od

e
(m

ill
io

ns
)

Year

User Programs MI
LOC

Fig. 1. Program growth and maintainability index over time in the Freebsd kernel and user programs.

outsiders using narrow, black-box techniques [19,6]. The emergence of open source

software has changed this picture [31] by allowing us to examine both the software

products [27] and the processes that yield them [13]. Thus, assets, such as the

software source code, the associated data stored in the version control system, the

issue-tracking databases, the mailing lists, and the wikis, allow us to evaluate quality

in a transparent way [10]. More importantly, because open source software has

considerable economic impact [8], and is increasingly used in mission-critical real-

world applications (see for instance [5, p. 313] and [17, p. 81]), many organizations

would like to have at hand object measures regarding the quality of the development

process and the corresponding product.

This paper presents a technical and research overview of sqo-oss, a cooperative

research effort aiming to establish a software quality observatory for open source

software. After an overview in the next Section, Section 3 presents the system’s

structure, Section ?? its operation, and Section 4 examples of research on software

quality that we hope to bring under the sqo-oss umbrella.

2 Overview

The motivation behind this study came about three years ago when one of its

authors (Spinellis) found on his hands an idle server with ample storage and internet

bandwidth. Having recently read studies concerning the use of the maintainability

index on open source quality [32,24], he decided to apply it on snapshots of the

Freebsd system over 10 years of its evolution.

The maintainability index (MI) is a widely used measurement of maintainabil-

ity. Typical values for MI range from 200 to −100. Higher MI values imply better

maintainability. The formula and its constituent coefficients are derived from nu-

merous empirical studies, and the formula’s results have been tested against actual

programmer perceptions. For example, one study [3] relates how Hewlett-Packard

(hp) engineers compared two similar systems. The system they subjectively consid-

ered as being difficult to maintain and modify had an MI of 89, the other, which

had received praise for its quality in an internal hp evaluation had an MI of 123.

Normally, we should calibrate the formula’s coefficients for our specific organiza-

tion and project, but even with its given values, the formula typically yields usable

results.

2

Spinellis et al

To experiment with the formula, Spinellis put together a script to calculate the

value over a directory tree, and then applied it on snapshots of the Freebsd system

over 10 years of its evolution (see Figure 1). That demonstrated the value of ex-

ploring quality attributes using process-related data, and initiated a research grant

application, for sqo-oss: a software quality observatory for open source software.

The sqo-oss project is a two year 200 person-month European research effort.

The consortium consists of two academic partners: the Athens University of Eco-

nomics and Business and the Aristotle University of Thessanoniki, and three indus-

trial partners: kdab, with employees in Sweden, France, Denmark, and Germany,

which executes Open Source and proprietary development contracts in the Qt/kde

environment; ProSyst, a leading provider of embedded Java and osgi compliant

software, and Sirius Corporation, an Open Source consultancy. Also participating

is kde e.V., an open source organization behind the namesake powerful free soft-

ware graphical desktop environment for Linux and Unix workstations. The project’s

goals are to

• create a metric plugin-based architecture and a corresponding processing engine,

• establish new product and process software metrics that take advantage of the

sqo-oss infrastructure,

• provide an interface through the web, web services, and an Eclipse plugin that

developers can use to improve the quality of their application,

• publish concrete values of product and process metrics for popular oss software,

• setup a league of open source software applications based on user-specified criteria.

Each one of the above goals is not a unique or an innovative tool idea. There

are several open source tools that try to evaluate code quality of a single software

project by examining several aspects of it. pmd 1 is a Java scanner that tries to

find possible bugs from exception handling statements and code problems, such as

dead or duplicate code. Findbugs 2 performs static analysis to reveal bugs in Java

based programs. Checkstyle 3 is a coding style checker for Java programs. Sonar 4 ,

unlike the above, is a plug in metrics tool, for Java. It integrates, as plug-ins, a

set of code measurement tools (like the ones presented) in a single application and

presents overall results. The presentation follows the iso/iec 9126 Quality Model

[12]. A notable open source metrics collection tool for C++ is esx 5 from National

Research Council of Canada.

In addition to code quality assessment tools for standalone projects there are

also frameworks that evaluate a fair amount of open source projects. These frame-

works present their results on the web. Ohloh 6 performs measurements regarding

the source code repository of almost 14000 open source projects. Metrics include

lines of code, programming languages that are used by a project, developer con-

tributions and licenses used. Apart from presenting numbers, Ohloh also makes

1 http://pmd.sourceforge.net
2 http://findbugs.sourceforge.net
3 http://checkstyle.sourceforge.net/
4 http://sonar.codehaus.org/
5 http://www.psmsc.com/ESx.asp
6 http://www.ohloh.net

3

Spinellis et al

estimations and statements about the development status, such as “Project X has

and active team, an established codebase and an increasing development activity”.

Similar to Ohloh is Sourcekibitzer 7 which analyzes about 700 open source, Java

based, projects. Sourcekibitzer presents reports like lines of code evolution and

complexity evolution. Moreover, Sourcekibitzer also tries to evaluate developers’

contribution to open source projects and has constructed a “developer know how”

metric to measure developer’s breadth of knowledge according to the participating

open source projects. Scan by Coverity 8 is a collaboration between Coverity and

the us Department of Homeland Security to apply Coverity’s commercial static anal-

ysis tools to more than 14000 individual open source projects. They present their

results on their website and also categorize projects to “rungs” according to their

performance to their tests. A notable framework that performs quality checking is

KDE’s English Breakfast Network (EBN 9). EBN checkouts KDE’s codebase and

then runs various checking tools. These tools include API and User documentation

validation and source code checking.

A key difference between sqo-oss and these systems is its ability to calculate

and integrate metrics from various product and process-related sources. These can

include the actual code, actions on the version control system, posts in mailing

lists, and entries in the system’s bug database. Thus, sqo-oss tries to take into

account the open source development as a whole, not only code. Using a plug-

in based system, sqo-oss integrates various tools to gather measurements. Then

these measurements are used to perform quality evaluation. In addition, sqo-oss is

not limited to a single programming language, but can apply appropriate metrics

to programs in different languages. Its ambition to build an on line database of

metrics of open source projects combines the features both from stand alone tools

and the frameworks presented above. Unlike the frameworks presented sqo-oss will

be an open source project itself, open to the community and free for everyone to

try and participate.

3 System Architecture and Implementation

The software produced by the SQO-OSS project is called Alitheia, for “neat and

businesslike truth” (Alitheia means truth in Greek). A complete Alitheia deploy-

ment consists of a data collection system, a computation component called the

cruncher, and a presentation layer in the form of a website. The data collection

system collects the raw data from open source projects and the presentation layer

makes computation results available to users; neither is relevant to this paper and

the whole may be viewed as a standard three-tier architecture.

The cruncher part of the Alitheia system is a more complex artifact, as it brings

together data storage, multi-level caching, metadata extraction and preprocessing

as well as resource management for the actual computation work.

The cruncher is built on the osgi framework (formerly the Open Services Gate-

way initiative). This framework manages loosely-coupled collections of components

7 http://www.sourcekibitzer.org
8 http://scan.coverity.com
9 http://www.englishbreakfastnetwork.org

4

Spinellis et al

Fig. 2. Sketch of the architecture of an Alitheia deployment.

and provides lifecycle and remote management. This means that parts of the system

may be selectively replaced in the field without affecting the rest of the system. It

provides additional protection to system components through a strict separation of

the different modules within the system. The cruncher consists of the actual com-

putation core (which in turn handles caching, resource management, scheduling and

some data storage), connection services for the other tiers of a complete Alitheia

deployment and plugins that implement the computation of specific quality metrics

such as the clmt or mde metrics described later in this paper. A sketch of the

components is provided in Figure 2.

The core of the cruncher is a single module for osgi, although it fulfils a number

of separate roles. This monolithic (local) design was chosen to ease testing and

performance issues; the components of the core are tightly coupled and we deemed

that they cannot or should no be updated separately. The connection layer contains

a Java servlet container for web-services and other connectivity. The portion of the

system that sees the biggest benefit from the osgi framework is the collection of

metric plugins that may be extended, disabled, removed and upgraded through a

combination of cruncher functions (removing local data storage for a metric plugin)

and osgi functions (unloading the code of a plugin, for instance).

To illustrate how some of the components of an Alitheia deployment work to-

gether, we walk through a typical sequence of events that trigger computation and

storage within the cruncher. To do so, we must start with an external source: an

open source project that is being studied or monitored by the Alitheia deployment.

Suppose a developer changes some of the code of this project and commits the

change. Then the following events occur within the Alitheia deployment:

(i) Some time later, the data collection component updates its copy of the open

source project and notices that the source code has changed.

(ii) The data collection component updates the raw data from the data source and

connects to the cruncher to inform it of the change in the raw data.

(iii) The cruncher retrieves the raw data from the data collection component, anal-

yses it and stores the extracted and preprocessed metadata locally.

(iv) The cruncher determines which metric plugins should act on the new data.

Each of these plugins is asked to calculate a result for the change(s) in the raw

5

Spinellis et al

data.

(v) The scheduler part of the cruncher handles resource and cpu allocation to the

computation jobs that ensue.

(vi) Each metric plugin does its calculation and stores its results.

Once the core has activated metric plugins for calculations, the roles of master

and servant are reversed: the metric plugins begin querying the core for services.

The core provides two levels of data access, each with their own caching scheme,

through a Thin and a Fat Data Services Layer. Metrics may use either layer but

the Fat Layer is recommended, as it provides more processed and cached data than

the Thin Layer.

The Thin Data Layer (tds, so called because using it for data retrieval is a

tiresome process) provides raw project data to clients (e.g., metrics plugins). The

raw data consists of project source code, both as individual file contents and source

checkouts, project source history, mail messages in rfc822 format and bug data.

The tds manages access to the data and does resource management so that raw data

requests do not overwhelm the cruncher (for instance by simultaneously requesting

a complete checkout of the source code of kde for all 830,000 revisions of that

project).

The Fat Data System (fds) deals with the processed metadata about individual

items that would otherwise be retrieved through the tds; for mail messages we may

consider sender, recipients, subject, etc. bits of metadata that can be individually

queried. The fds also performs aggregation and allows higher-level search: “which

mail messages were sent last tuesday?” or “what replies are there to this message”.

The fds uses the database storage for the cruncher to store the metadata. We

assume that metadata is both smaller and used more briefly than raw project data.

Another feature of the fds is the production of “timeline” views of a project, in

which it merges the events from the source, mail and bug data into a single unified

notion of “project change event.” This is valuable for metrics that operate on more

than one datatype or that attempt to measure an aspect of a project’s process, not

just the product.

From the point of view of a metric plugin — once that metric is activated to

do a specific measurement — the architecture of the Alitheia core is turned on its

head: the fds is the primary service to use, with the database of metadata directly

available if the fds api is insufficient, and the tds is to be used for low-level data

shuffling; the metric’s primary concern is in obtaining the data and storing its result.

Overall, a metric may view the rest of an Alitheia deployment as an elaborate multi-

level cache mechanism, where remote data from an open source project under study

by the metric is mirrored by the data collection subsystem (reducing latency for

raw data access), then copied to the cruncher for immediate study through the

tds (reducing data access time further, but still requiring processing to obtain the

common metadata, if that is needed) and stored in pre-digested form (reducing the

time to obtain common metadata further) in the fds.

Turning the view on its head again and examining the interface that a metric

provides to the cruncher, we see that this interface has three areas of functionality:

lifecycle management, measurement (both performing measurements and obtain-

6

Spinellis et al

runMetrics(ProjectFile[])

Updater LoC MetricMetric
Activator FDSDB

OSGi

Scheduler Updater LoC MetricMetric
Activator FDSDB

OSGi

Scheduler

enqueue(MetricJob(ProjectFile))

(a) The updater notifies the metric activator (b) The metric activator enqueues a calculation job

Updater LoC MetricMetric
Activator FDSDB

OSGi

Scheduler

run(ProjectFile)

Updater LoC MetricMetric
Activator FDSDB

OSGi

Scheduler

getFile(ProjectFile)

(c) The job is executed (d) The metric retrieves the file contents from the fds

Updater LoC MetricMetric
Activator FDSDB

OSGi

Scheduler

addRecord(ProjectFile)

(f) The result is stored

Fig. 3. Metric activation and processing

ing the results afterwards for the communications and presentation layers), metric

configurationn and metadata.

Lifecycle management is is invoked by the osgi framework when loading and

unloading a metric plugin, and is required to keep the databases clean. It follows a

standard pattern of install, update and remove. Metric configuration and metadata

is a straightforward keys-and-values kind of interface.

Metric plugins implement one or more metrics that are interested in one or

more kinds of change in the open source projects under study. We use Java’s

reflection mechanism to dispatch requests; as a consequence the metric plugin api

has a method run(Object) which takes an object describing the change and this is

dispatched to the relevant measurement methods in each metric.

Figure 3 presents the steps required to calculate a simple line counting metric for

an array of files. The updater component is notified externally that an update to the

mirrored project assets has occurred; it then proceeds to incrementally process the

asset metadata while recording the exact resources that have changed. It then passes

the corresponding information to the metric activator (a). The metric activator

creates a job for each changed asset and calls the scheduler to enqueue the jobs

(b). When a thread becomes available, the scheduler runs the job. The job itself

essentially calls the metric’s run method with the appropriate argument (c), in our

case an object encapsulating a file. With this reference available, the metric can

query the fds component to retrieve the file’s contents from the original data source,

in that case directly from the project’s repository. Finally, the lines of the file are

counted and the result is stored in the database (e).

The simplest result retrieval scenario is presented in Figure 3. The client asks the

web service component for the measurement calculated by a metric on a specific file

(a). As each metric can store results in arbitrary ways in the system’s database, it

is not possible to search for metric results using a generic data retrieval mechanism;

instead each plug-in provides its own results retrieval function. Therefore, the web

service must call the plug-in administrator to obtain a reference to the plug-in

7

Spinellis et al

OSGi

LoC Metric DB Web
Service

Plugin
admin Client

getResult(Metric,File)

LoC Metric DB Web
Service

Plugin
admin

OSGi

getMetricRef(Metric)

(a) The client requests the result of metric on a file (b) The web service acquires a metric interface

LoC Metric DB Web
Service

Plugin
admin

OSGi

getResult(File)

LoC Metric DB Web
Service

Plugin
admin

OSGi

findResultObject(File)

(c) The web service asks the metric (d) The metric retrieves the result

OSGi

LoC Metric DB Web
Service

Plugin
admin Client

Result

(e) The result is returned

Fig. 4. Results retrieval

interface that implements the specific metric (b) and then query the plug-in itself

for the result of the metric on the specific file (c). The plug-in code searches the

database (d) for the result and returns it to the web service, which encapsulates it

in a soap message and returns it to the client(e).

Measurement retrieval incurs a complication. Some measurements may not be

done yet — for instance, when a large project is added it may take some time for all

measurement to be completed or we may ignore measurements of “old” data until

such time as someone expresses interest in them. We can distinguish situations

in which response time is important; if the user interface in the presentation layer

makes a request (through the communication layer and the core) for a specific

measurement, it is important to give a quick response: the measurement value if we

know it or otherwise an “I don’t know yet” value (and then start calculating the

measurement so as to return a better result next time). In other situations, response

time is immaterial. Suppose we have a metric that calculates the ratio between two

other measurements in the system (for instance, percentage of comments in a file,

by dividing the number of comment lines by the total number of lines). Here, the

calculation must have both values to proceed.

We introduce two methods for retrieving a measurement: a blocking one (which

waits until the measurement is available) and a non-blocking one (which will return

an “I don’t know” value). A non-blocking compound measurement will use non-

blocking retrieval for its constituents and a blocking compound measurement will

use blocking retrieval. Non-blocking queries that return “I don’t know” will start

the measurement process so that future queries will receive a value. This approach

neatly solves the problem of measurements-not-yet-available for the presentation

layer and also the problem of compound metrics. The architecture of the Alitheia

system can therefore be viewed in several ways: as a standard three-tier architecture;

as a multi-level caching scheme to get data to metrics; as a storage provider for the

metrics, and as a database of results that fills up in response to user queries.

8

Spinellis et al

180˚

240˚

300˚

0˚

60˚

120˚

180˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

10
1

10
1

10
2

10
3

10
4

10
5

LO
C

 0

 50

 100

 150

 200

 250

 300

 0 4 8 12 16 20

A
ve

ra
ge

 L
O

C
 p

er
 d

ay

Time (UTC)

Fig. 5. Global and round-the-clock development in the Freebsd system

4 Research on Open Source Software Quality

This section lists some motivating examples of how product and process metrics

can provide insights into software quality.

4.1 Quality in Global Software Development

A pilot study preceding the development of the sqo-oss infrastructure [28] used

data assets from the Freebsd operating system to examine the extent of global de-

velopment and its effect on productivity and quality. Specifically, we used developer

location data, the configuration management repository, and records from the issue

database.

One often-claimed advantage of global software development is the ability to

develop software round-the-clock in a continuous 24 hour cycle. In Figure 5 we can

see that this goal is indeed realized in the Freebsd project. Over a period of ten

years, Freebsd developers committed on average 177 lines on every hour of each

day; this number fluctuated between a minimum of 116 lines (at 02:00 utc) and a

maximum of 285 lines (at 03:00 utc).

The study also examined how a large number of (geographically dispersed) com-

mitters might affect the quality of the produced code. If the software’s quality

deteriorates when software is globally developed, managers should appreciate this

problem, and establish procedures for dealing with it. The quality of code is de-

termined by many elements, and measuring it is far from trivial [32,22]; For the

purpose of the study we chose to examine adherence to the Freebsd code style

guidelines [7] as a proxy for the overall code quality. We chose that metric because

we could easily measure style adherence by formatting each source code file with

the indent program configured according to the Freebsd style guide, and calculate

the percentage of lines that indent would change (the size of a minimal set of differ-

ences between the actual file and the formatted one). Furthermore, by having cvs

generate a listing of the source code file with every line annotated with the name of

the author who last modified it, we could count the number of developers who had

worked on the file.

Armed with those two measurements, we used Pearson’s product-moment

method to examine the correlation between the two. The correlation coefficient

9

Spinellis et al

for the 11,040 pairs of measurements was a miserly 0.05 in a 95% confidence in-

terval between 0.03 and 0.07. We therefore saw that in the case of Freebsd, the

involvement of geographically dispersed programmers (a process attribute) in the

development of code did not affect the quality of the produced code (a product

attribute).

Finally, we examined whether the global development of a file by various devel-

opers was associated with an increased number of problem reports filed for it. Such

a correlation could indicate that global development in the Freebsd project leads

to an increased number of bugs in the code, due, for example, to communication

problems between the various developers. Although problem reports are kept in

a database different from that of the Freebsd configuration management system,

rectified problems are typically marked in a cvs commit message by a reference

to the corresponding problem report (pr). Because serious problem reports are by

definition sooner or later rectified, we could establish a measure of the density of

problem reports in a file by dividing the number of commit messages tagged with a

pr number with the total number of the file’s commits. We could then examine the

correlation of that ratio with the number of different developers that had committed

code to the corresponding file.

We collected data for 33,392 source code files, 457,481 commit messages, and

12,505 prs. On average, each file was associated with 13.7 commits, 0.37 prs,

and 4.2 different developers. A two sided Pearson’s product-moment correlation

test between the pr density and the number of committers gave an insignificant

correlation between the two values (0.07) in a 95% confidence interval between

0.06 and 0.08. Therefore, the data from the Freebsd project did not support the

hypothesis that global software development is associated with a higher bug density

in the code produced.

4.2 Mean Developer Engagement

The principles behind the agile development methods and common practice within

the Open Source community are vastly different. In recent years there has been a

rise of interest in these, in order to detect and inform on areas of compatible shared

practices. In [1] we argue that it is possible to quantify the level of agility displayed

by Open Source projects. An indicator of agility, the Mean Developer Engagement

(mde) metric is introduced and tested through the analysis of public project data.

Projects sampled from two repositories (kde and SourceForge) are studied and a

null hypothesis is formulated: projects from the two samples display a similar level

of mde.

As developers are a limited resource within the Free Software community it is

important that Free Software projects engage their developer resource in order to

maintain their interest. To this end the mde metric for measuring engagement is

defined as “the ability, on average, over the lifetime of a Free Software project, for

that project to make use of its developer resources.” Mathematically this can be

described as:

d̄e =

∑n
i=1

(
dev(active)

dev(total)

)
i

n
(1)

10

Spinellis et al

Where:

• dev(active) is the number of (distinct) developers active in time period i.

• dev(total) is the total number of developers involved with the project in the

periods 0 . . . i.

• n is the number of time periods over which the project has been evaluated. For

this research these were periods of a week.

The initial failing of this approach is that dev(total) is hard to define. As a

first attempt this was simply taken to be the number of accounts within the project

Subversion repository. This, however, is a näıve approach, because account details

remain within a Subversion repository even after the developer has left the project.

To make this measurement more accurate we introduced a developer “grace period”.

This is a period of developer inactivity where we still consider the developer part

of dev(total). The longer a developer has been involved with a project, the longer

we allow their grace period to grow.

An example plot of mde for the history of the kde projects is provided in Fig. 6.

This plot clearly shows some features common to all Open Software projects:

• mde, mathematically, must start at 1. That is, at least one developer was active

within the first week of the project and, at the time, was the only developer in

the project. Put simply, the projet is founded.

• The mde at the begining of the project shows a fluctuation. This is caused by

changes in dev(active) whilst both dev(total) and n are low.

• The period of fluctutation is followed by a period of greater stability.

A unique element to Fig. 6 is that the stable phase of the project displays no

particular trend (up or downward). Instead the project has successfully maintained

a near 80% level of activity for close to a decade.

We applied mde to the entire history of 40 Open Source projects, 20 randomly

selected from within kde and 20 from within SourceForge.net. We then used the

Wilcoxon test to show that, over their lifetime, projects from SourceForge show a

significantly higher mde than kde projects. This however held a strong correlation

with a n value of only 1 week. To counteract this, we finally produced an “effort”

score. To do this, we first calculated the average mde over the lifetime of the project

by taking the mde value for each week of the project’s lifetime and then making a

simple average. The effort score was simply calculated by multiplying this average

mde score by the maximum value of n, the length of the project in weeks. By

comparing the new effort values we were able to reapply the Wilcoxon test to find

a result of W = 374, p ≤ 2.405e − 06. This allowed us to state with 95% certainty

that a randomly selected kde will show greater engagement of its developers over

time than a randomly selected SourceForge project and therefore the codebase will

encapsulate greater developer effort.

4.3 Cross-Language Metric Tool

The Cross-Language Metric Tool (clmt) calculates software complexity metrics in

a variety of programming languages. clmt implements this by transforming each

11

Spinellis et al

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600

M
ea

n
D

ev
el

op
er

 E
ng

ag
em

en
t

Time (Months)

MDE

Fig. 6. mde for the kde Project

Metric Id Metric Name sqo-oss v0.8

nopa Number of Public Attributes •
noc Number of Children •
dit Depth of Inheritance Tree

ac Afferent Couplings

npm Number of Public Methods

rfc Response for a Class

loc Lines of Code •
com Lines of Comments •
lcom Lack of Cohesion in Methods

noprm Number of Protected Methods •
nocl Number of Classes •
cbo Coupling between Object Classes

wmc Weighted Methods per Class •

Table 1
Supported metrics by clmt

programming language to an Intermediate xml Representation (ixr).

clmt accepts as input an xml file that describes specific metric calculation tasks.

The source files are parsed and ixr files are generated. The metrics are calculated

through a series of queries on the ixr. The results are presented as textual output

or as xml structured documents.

Table 1 lists the metrics that will be supported in the first clmt release. In

the third column we show the metrics that are already supported in the current

version. Although clmt now works with Java programming language, support for C

and C++ is planned for the next release; in fact, support for different programming

languages was one of the main design requirements.

12

Spinellis et al

SQO-OSSMetric Plugins

Cross-
Language

Metric Plugin
Accepts source code input (Java, C, and C++)

Transform to IXR (Intermediate XML
Representation)

Calculate Code Metrics and Stores them

Fig. 7. The clmt architecture

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

U
nn

ee
de

d
in

cl
ud

e
di

re
ct

iv
es

 (
lo

g
sc

al
e)

Project size (kLOC - log scale)

0

Fig. 8. Unneeded include directives in projects of various sizes.

clmt leads an independent existence from sqo-oss as a stand-alone applica-

tion, but has also been integrated with the latter, although the integration was not

straightforward. In Figure 7 we depict the clmt architecture as a sqo-oss plug-in.

4.4 Unneeded Header File Include Directives

A number of widely used programming languages use lexically included files as a

way to share and encapsulate declarations, definitions, code, and data. As the

code evolves files included in a compilation unit are often no longer required, yet

13

Spinellis et al

locating and removing them is a haphazard operation, which is therefore neglected.

Needlessly included files are detrimental to the quality of a project, because they

contribute to namespace pollution, they introduce spurious dependencies, and they

increase compilation time. The difficulty of reasoning about included files stems

primarily from the fact that the definition and use of macros complicates the notions

of scope and of identifier boundaries. By defining four successively refined identifier

equivalence classes we can accurately derive dependencies between identifiers [26].

A mapping of those dependencies on a relationship graph between included files can

then be used to determine included files that are not required in a given compilation

unit [29]. Specifically, a header file is required only if it

• contains a definition for an identifier;

• includes another file that is required; or

• provides code or data to the compilation unit that includes it.

We tested our approach on 32 medium and large–sized open-source projects.

These were: the Apache httpd 1.3.27, Lucent’s awk as of Mar 14th, 2003, bash 3.1,

cvs 1.11.22, Emacs 22.1, the kernel of Freebsd head branch as of September 9th,

2006 lint configuration processed for the i386, amd64, and sparc64 architectures,

gdb 6.7, Ghostscript 7.05, gnuplot 4.2.2, at&t GraphViz 2.16, the default configura-

tion of the Linux kernel 2.6.18.8-0.5 processed for the x86-64 (amd64) architecture,

the kernel of OpenSolaris as of August 8th, 2007 configured for the Sun4v Sun4u

and sparc architectures, the Microsoft Windows Research Kernel 1.2 processed for

the i386 and amd64 architectures, Perl 5.8.8, Postgresql 8.2.5, Xen 3.1.0, and the

versions of the programs bind, ed, lex, mail, make, ntpd, nvi, pax, pppd, routed,

sendmail, tcpdump, tcsh, window, xlint, and zsh distributed with Freebsd 6.2. The

Freebsd programs were processed under Freebsd 6.2 running on an i386 processor

architecture, while the rest, where not specified, were configured under opensuse

Linux 10.2 running on an amd64 processor architecture. For expediency, we se-

lected the projects by looking for representative, widely-used, large-scale systems

that were written in C and could be compiled standalone. The processed source

code size was 14.2 million lines of code.

A summary of the results appears in Figure 8. As we can see, unneeded header

files are rarely a problem for projects smaller than 20 kloc, but become a significant

one as the project’s size increases. (The chart’s abscissa also includes a notional

value of zero where projects without include directive problems are indicated.)

4.5 A Metric for Developer Contributions

In software engineering, contribution assessment entails the measurement of the

contribution of a person in terms of lines of code or function points towards the de-

velopment of a software project. In the recent years however, the shift to more agile

development practices and the proliferation of software and project management

tools has reduced the estimation capacity of classic software estimation models. A

software developer today is not only required to write code, but also to communicate

with colleagues effectively and to use a variety of tools that produce and modify

code with minimal input from his side.

14

Spinellis et al

Asset Action Type

Code and
Documentation
Repository

Add lines of code of good/bad quality P/N

Commit new source file or directory P

Commit code that generates/closes a bug N/P

Add/Change code documentation P

Commit fixes to code style P

Commit more than X files in a single commit N

Commit documentation files P

Commit translation files P

Commit binary files N

Commit with empty commit comment N

Commit comment that awards a pointy hat P

Commit comment that includes a bug report num P

Mailing lists -
Forums

First reply to thread P

Start a new thread P

Participate in a flamewar N

Close a lingering thread P

Bug Database Close a bug P

Report a confirmed/invalid bug P/N

Close a bug that is then reopened N

Comment on a bug report P

Wiki Start a new wiki page P

Update a wiki page P

Link a wiki page from documentation/mail file P

irc Frequent participation to irc P

Prompt replies to directed questions P

Table 2
Project resources and actions that can be performed on them. The Type column denotes whether an

action has positive (P) or negative (N) impact.

In [9] we present a model that exploits the availability of publicly accessible soft-

ware repositories to extract process data and combines them in a single contribution

factor. Table 2 presents an overview of actions on project assets that our model

evaluates. The number of actions for each action type is calculated per developer,

while weights are applied to each action, depending on how often this action appears

across an array of projects. The extracted contribution factor is then combined with

the developer’s total lines of code to extract the developer’s contribution.

4.6 The Effects of Refactoring on Software Quality

Refactoring is considered as one of the most important means of transforming a piece

of software in order to improve its quality. Its aim is to decrease the complexity of

a system at design and source code level, allowing it to evolve further in a low-cost

manner by ensuring the developers’ productivity and leaving less room for design

errors[18]. Here we are interested in the effect of refactorings on the quality of well

known open source projects, as presented in our study reported in [34].

Most of the studies examining the relation between software quality and metrics,

like [35,14,33], or refactoring and software quality, do not correlate the evolution of

a system with changes in metrics measurements. We tried to show how refactoring

has affected metrics in popular open source software projects. Various established

software quality metrics were measured before and after the application of refac-

toring transformations. The source control system history was used as a source of

15

Spinellis et al

Fig. 9. The process used to evaluate the effect of refactorings

information to detect the refactorings performed between consequent revisions.

A surprising finding of this study has been that refactoring has an adverse effect

on the values of software quality metrics on a sample of 4 oss projects. Specifically it

seems that refactoring caused a non trivial increase in metrics such as lcom (Lack of

Cohesion in Methods, expresses the similarity of methods), Ca (Afferent Coupling,

the number of other packages depending upon a class) and rfc (Response for a Class,

the sum of the number of methods of the class itself and all other methods it calls),

indicating that it caused classes to become less coherent as more responsibilities

are assigned to them. The same principles seem to apply in procedural systems as

well, in which case the effect is captured as an increase in complexity metrics. Since

it is a common conjecture that the metrics used can actually indicate a system’s

quality, these results suggest that either the refactoring process does not always

improve the quality of a system in a measurable way or that developers still have

not managed to use refactoring effectively as a means to improve software quality.

In other words, these results may indicate that either refactoring was not used in

a way that improves the quality of the studied projects or that software quality

metrics are not the best method to measure the quality improvements introduced

by refactoring.

4.7 Power Laws in Software

The notion of power laws as a descriptive device has been around for more than a

century [20]. During this period power laws have cropped up in different guises in

various contexts. Mathematically, a power law is a probability distribution function

in which the probability that a random variable takes a value is proportional to a

negative power of that value:

P (X = x) ∝ cx−k where c > 0, k > 0(2)

The availability of large open-source software systems allowed us to study the

existence of scale-free networks their modules [16]. We chose modules of varying size

and functionality, ranging from simple Java classes to systems using self-contained

libraries written in C, Perl, and Ruby. For our purposes, the links connecting the

modules are given by their dependencies. For two modules A and B we add a

directed link from B to A when B depends on A. This produces a directed graph.

We explore the structure of both the incoming links and the outgoing links.

Note that measuring fan-in and fan-out is not new, and has been used as a

measure for procedural complexity [11]. Here we are not interested in measuring

complexity, but in seeing whether incoming and outgoing links in different levels of

abstraction show similar patterns. Such patterns could then be related to various

quality metrics.

16

Spinellis et al

Dataset size k r2

in/out in/out

j2se sdk 13,055 2.09/3.12 .99/.86

Eclipse 22,001 2.02/3.15 .99/.87

OpenOffice 3,019 1.93/2.87 .99/.94

bea WebLogic 80,095 2.01/3.52 .99/.86

cpan packages 27,895 1.93/3.70 .98/.95

Linux libraries 4,047 1.68/2.56 .92/.62

Freebsd libraries 2,682 1.68/2.56 .91/.58

MS-Windows binaries 1,355 1.66/3.14 .98/.76

Freebsd ports, libraries deps 5,104 1.75/2.97 .94/.76

Freebsd ports, build deps 8,494 1.82/3.50 .99/.98

Freebsd ports, runtime deps 7,816 1.96/3.18 .99/.99

TEX 1,364 2.00/2.84 .91/.85

meta-font 1,189 1.94/2.85 .96/.85

Ruby 603 2.62/3.14 .97/.95

The errors of TEX 1,229 3.36 .94

Linux system calls (242) 3,908 1.40 .89

Linux C libraries functions (135) 3,908 1.37 .84

Freebsd system calls (295) 3,103 1.59 .81

Freebsd C libraries functions (135) 3,103 1.22 .80

Table 3
Software Power Laws.

A summary of our findings is shown in Table 4.7. In each row we list the number

of nodes, the exponent for the incoming links and outgoing links, where applicable,

and the corresponding correlation coefficient. The long, fat tails observed in our

data impact on several aspects of software engineering, such as quality, design, reuse,

and optimization. Based on our results, we propose taking into account the power

laws present in software to focus development efforts and save resources in quality

assurance tasks.

Even though, as software developers, we may not be able to locate troublespots

in a system, we have a measure of the impact of our efforts. Selecting modules at

random, we may expect that around a percent of the dependencies will not lead

to bugs propagated from bugs in the selected modules. If, however, we focus on

the top (in terms of dependent modules) a percent of the modules in a system, we

may avoid the propagation of errors to up to aθ other dependent modules, where

θ = 1− 1
k−1 (for details see [16])—a significant improvement.

For instance, the success and failure of beta-testing can be illuminated if we con-

sider the scale-free distribution of bugs; beta-testers will discover quickly the small

number of defects that make up a large proportion of those that can be found; at

the same time, there will always be other effects, with a much lower probability to

be found during testing, that will continue to torment unlucky users during produc-

tion. However, despite the best of efforts, a system may still fail. Recovery-Oriented

Computing accepts this as a fact of life and demands that systems appropriate for

rapid recovery should be identified at various levels of abstraction [2]. This suggests

that hub modules could be suitable candidates.

17

Spinellis et al

SQO-OSS Quality Characteristics

Product (Code) Quality

Community Quality

Maintainability

Reliability

Security

Mailing list quality

Documentation quality

Developer base quality

Analyzability

Changeability

Stability

Testability

Maturity

Effectiveness

Fig. 10. The sqo-oss quality model

4.8 A Quality Model for Open Source Software

In the context of the sqo-oss project we defined a model for software quality eval-

uation, based on software models [15] that define and measure software quality.

This particular model aims at capturing the particularities arising from the special

nature of open source software development process. Moreover, it focuses both on

source code and the community around a project.

The model is presented in [23]. The model construction process followed a

gqm [25] approach. The outcome was a hierarchical tree view of the quality at-

tributes, shown in Figure 10. The leaves of the tree are further analyzed into

metrics measured by the system and used for evaluation of selected criteria. The

metrics are presented in Table 4. In order to combine all the measurements in

one single view, that is to aggregate the measurements, we used the profile based

evaluation process described in detail in [21]. Profile based aggregation allows us

to categorize software quality into four categories: Excellent, Good, Fair and Poor.

For these categories, we constructed corresponding profiles, with certain measure-

ment values indicated by the existing literature. For example, the ideal candidate

for the Excellent Analyzability quality attribute should have a McCabe Cyclomatic

number equal to 4, Average function’s number of statements equal to 10, Comments

frequency equal to 0.5 and an Avarage size of statements equal to 2.

4.9 A Comparison of Four Operating System Kernels

In another study [30] we looked at quality differences between software developed

as a proprietary product and software developed in an open-source fashion. Specifi-

cally, the Freebsd, gnu/Linux, Solaris, and Windows (wrk) operating systems have

kernels that provide comparable facilities, but their code bases share almost no com-

mon parts, while their development processes vary dramatically. We analyzed the

source code of the four systems by collecting metrics in the areas of file organization,

18

Spinellis et al

Attribute Metric

Analyzability Cyclomatic number

Number of statements

Comments frequency

Average size of statements

Weighted methods per class (wmc)

Number of base classes

Class comments frequency

Changeability Average size of statements

Vocabulary frequency

Number of unconditional jumps

Number of nested levels

Coupling between objects (cbo)

Lack of cohesion (lcom)

Depth of inheritance tree (dit)

Stability Number of unconditional jumps

Number of entry nodes

Number of exit nodes

Directly called components

Number of children (noc)

Coupling between objects (cbo)

Depth of inheritance tree (dit)

Testability Number of exits of conditional structs

Cyclomatic number

Number of nested levels

Number of unconditional jumps

Response for a class (rfc)

Average cyclomatic complexity per method

Number of children (noc)

Maturity Number of open critical bugs in the last 6 months

Number of open bugs in the last six months

Effectiveness Number of critical bugs fixed in the last 6 months

Number of bugs fixed in the last 6 months

Security Null dereferences

Undefined values

Mailing list Number of unique subscribers

Number of messages in user/support list per month

Number of messages in developers list per month

Average thread depth

Documentation Available documentation documents

Update frequency

Developer base Rate of developer intake

Rate of developer turnover

Growth in active developers

Quality of individual developers

Table 4
Metrics used by the sqo-oss Quality Model

code structure, code style, the use of the C preprocessor, and data organization (see

Table 5 and Figure 11). The aggregate results indicated that across various areas

and many different metrics, four systems developed using wildly different processes

scored comparably. This allowed us to posit that the structure and internal quality

attributes of a working, non-trivial software artifact will represent first and foremost

the engineering requirements of its construction, with the influence of process being

marginal, if any.

19

Spinellis et al

Metric Freebsd Linux Solaris wrk
A. Overview

Version 2006-09-18 2.6.18.8-0.5 2007-08-28 1.2

Lines (thousands) 2,599 4,150 3,000 829

Comments (thousands) 232 377 299 190

Statements (thousands) 948 1,772 1,042 192

Source files 4,479 8,372 3,851 653

Linked modules 1,224 1,563 561 3

C functions 38,371 86,245 39,966 4,820

Macro definitions 727,410 703,940 136,953 31,908

B. File Organization

Files per directory ↘ 6.8 20.4 8.9 15.9

Header files per C source file ≈ 1 1.05 1.96 1.09 1.92

Average structure complexity in files ↘ 2.2 1014 1.3 1013 5.4 1012 2.6 1013

C. Code Structure

% global functions ↘ 36.7 21.2 45.9 99.8

% strictly structured functions ↗ 27.1 68.4 65.8 72.1

% labeled statements ↘ 0.64 0.93 0.44 0.28

Average # function parameters ↘ 2.08 1.97 2.20 2.13

Average depth of maximum nesting ↘ 0.86 0.88 1.06 1.16

Tokens per statement ↘ 9.14 9.07 9.19 8.44

% tokens in replicated code ↘ 4.68 4.60 3.00 3.81

Average function structure complexity ↘ 7.1 104 1.3 108 3.0 106 6.6 105

D. Code Style

% style conforming lines ↗ 77.27 77.96 84.32 33.30

% style conforming typedef identifiers ↗ 57.1 59.2 86.9 100.0

% style conforming aggregate tags ↗ 0.0 0.0 20.7 98.2

Characters per line ↘ 30.8 29.4 27.2 28.6

% numeric constants in operands ↘ 10.6 13.3 7.7 7.7

% unsafe function-like macros ↘ 3.99 4.44 9.79 4.04

% misspelled comment words ↘ 33.0 31.5 46.4 10.1

% unique misspelled comment words ↘ 6.33 6.16 5.76 3.23

E. Preprocessing

% preprocessor directives in header files ↘ 22.4 21.9 21.6 10.8

% non-#include directives in C files ↘ 2.2 1.9 1.2 1.7

% preprocessor directives in functions ↘ 1.56 0.85 0.75 1.07

% preprocessor conditionals in functions ↘ 0.68 0.38 0.34 0.48

% function-like macros in functions ↘ 26 20 25 64

% macros in unique identifiers ↘ 66 50 24 25

% macros in identifiers ↘ 32.5 26.7 22.0 27.1

F. Data Organization

% global scope variable declarations ↘ 0.36 0.19 1.02 1.86

% global scope variable operands ↘ 3.3 0.5 1.3 2.3

% identifiers with wrongly global scope ↘ 0.28 0.17 1.51 3.53

% variable declarations with file scope ↘ 2.4 4.0 4.5 6.4

% variable operands with file scope ↘ 10.0 6.1 12.7 16.7

Variables per typedef or aggregate ↘ 15.13 25.90 15.49 7.70

Data elements per aggregate or enum ↘ 8.5 10.0 8.6 7.3

Metric interpretation: ↘ means lower is better; ↗ means higher is better.

Table 5
Key scalar metrics for four operating system kernels

20

Spinellis et al

 0

 20

 40

 60

 80

 100

FreeBSD Linux Solaris Windows
 0

 10

 20

 30

 40

 50

 60

 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

FreeBSD Linux Solaris Windows

10,917

3,412

1,328

2,270

30 44 718

62

Fig. 11. Common coupling at file and global scope (left); comment density in C and header files (right).

5 Conclusions

By combining both product and process metrics we are able to answer novel issues

in software development, with particular emphasis on quality aspects. In sqo-oss

we take that view in earnest, and we have designed and implemented a platform

that allows both kinds of data to be captured and analysed in an efficient way.

It is important to note that sqo-oss is not (another) metrics evaluation system.

It is a platform on which metrics can be developed, plugged it, and run, on projects

of any size. Our plans include extending and maintaining sqo-oss so as to function

as a digital repository for Open Source software research.

As shown in Section 4, we have already tackled a number of interesting research

questions based on quantitative measurements of quality attributes of Open Source

projects. The availability of an open platform for supporting this sort of inquiry will

enable us to pursue further research questions; we also hope that other researchers

will wish to take advantage of our infrastructure by working on new metrics and

evaluating them with large scale measurements on sqo-oss.

References

[1] Adams, P. J., A. Capiluppi and A. de Groot, Detecting agility of open source projects through developer
engagement, in: OSS2008: Proceedings of the Fourth International Conference on Open Source Systems,
2008.

[2] Candea, G., A. B. Brown, A. Fox and D. Patterson, Recovery-oriented computing: Building multitier
dependability, IEEE Computer 37 (2004), pp. 60–67.

[3] Coleman, D., D. Ash, B. Lowther and P. W. Oman, Using metrics to evaluate software system
maintainability, Computer 27 (1994), pp. 44–49.

[4] Cusumano, M. A. and R. W. Selby, “Microsoft Secrets,” The Free Press, New York, 1995.

[5] Debenest, P., E. F. Fukushima, Y. Tojo and S. Hirose, A new approach to humanitarian demining. part
1: Mobile platform for operation on unstructured terrain, Autonomous Robots 18 (2005), pp. 303–321.

[6] Forrester, J. E. and B. P. Miller, An empirical study of the robustness of Windows NT applications
using random testing, in: WSS’00: Proceedings of the 4th conference on USENIX Windows Systems
Symposium (2000), pp. 59–68.

[7] The FreeBSD Project, “Style—Kernel Source File Style Guide,” (1995), freeBSD Kernel Developer’s
Manual: style(9). Available online http://www.freebsd.org/docs.html (January 2006).

21

http://www.freebsd.org/docs.html

Spinellis et al

[8] Ghosh, R. A., Study on the: Economic impact of open source software on innovation and the
competitiveness of the information and communication technologies (ICT) sector in the EU,
Available online http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf.
(2006), prepared by MERIT for the European Commission under the contract ENTR/04/112.

[9] Gousios, G., E. Kalliamvakou and D. Spinellis, Measuring developer contribution from software
repository data, in: A. E. Hassan, M. Lanza and M. W. Godfrey, editors, MSR ’08: Mining Software
Repositories (2008), pp. 129–132.

[10] Hassan, A. E., R. C. Holt and A. Mockus, Report on MSR 2004: International workshop on mining
software repositories, SIGSOFT Software Engineering Notes 30 (2005), p. 4.

[11] Henry, S. and D. Kafura, Software structure metrics based on information flow, IEEE Transactions on
Software Engineering 7 (1981), pp. 510–518.

[12] International Organization for Standardization, Software Engineering—Product Quality—Part 1:
Quality Model (2001), iSO/IEC 9126-1:2001.

[13] Jørgensen, N., Putting it all in the trunk: Incremental software development in the FreeBSD open
source project, Information Systems Journal 11 (2001), pp. 321–336.

[14] Kan, S. H., Metrics and models in software quality engineering (2nd edition) (2002).
URL http://www.amazon.co.uk/exec/obidos/ASIN/0201729156/citeulike-21

[15] Kanellopoulos, Y., I. Heitlager, C. Tjortjis and J. Visser, Interpretation of source code clusters in terms
of the ISO/IEC-9126 maintainability characteristics, in: K. Kontogiannis, C. Tjorjis and A. Winter,
editors, 12th European Conference on Software Maintenance and Reengineering (2008), pp. 63–72.

[16] Louridas, P., D. Spinellis and V. Vlachos, Power laws in software, ACM Transactions on Software
Engineering and Methodology (2008), to appear.

[17] Matthies, L., M. Maimone, A. Johnson, Y. Cheng, R. Willson, C. Villalpando, S. Goldberg, A. Huertas,
A. Stein and A. Angelova, Computer vision on Mars, International Journal of Computer Vision 75
(2007), pp. 67–92.

[18] Mens, T. and T. Tourwé, A Survey of Software Refactoring, IEEE Transactions on Software Engineering
30 (2004), pp. 126–139.

[19] Miller, B. P., L. Fredriksen and B. So, An empirical study of the reliability of UNIX utilities,
Communications of the ACM 33 (1990), pp. 32–44.

[20] Mitzenmacher, M., A brief history of generative models for power law and lognormal distributions,
Internet Mathematics 1 (2004), pp. 226–251.

[21] Morisio, M., I. Stamelos and A. Tsoukias, Software product and process assessment through profile-
based evaluation, International Journal of Software Engineering and Knowledge Engineering 13 (2003),
pp. 495–512.

[22] Payne, C., On the security of open source software, Information Systems Journal 12 (2002), pp. 61–78.

[23] Samoladas, I., G. Gousios, D. Spinellis and I. Stamelos, The sqo-oss quality model: measurement based
open source software evaluation, in: OSS ’08: Proceedings of the International Conference on Open
Source Systems 2008 (2008), to appear.

[24] Samoladas, I., I. Stamelos, L. Angelis and A. Oikonomou, Open source software development should
strive for even greater code maintainability, Communications of the ACM 47 (2004), pp. 83–87.

[25] Solingen, R. V., The goal/question/metric approach, Encyclopedia of Software Engineering 2 (2002),
pp. 578–583.

[26] Spinellis, D., Global analysis and transformations in preprocessed languages, IEEE Transactions on
Software Engineering 29 (2003), pp. 1019–1030.

[27] Spinellis, D., “Code Quality: The Open Source Perspective,” Addison-Wesley, Boston, MA, 2006.

[28] Spinellis, D., Global software development in the FreeBSD project, in: P. Kruchten, Y. Hsieh,
E. MacGregor, D. Moitra and W. Strigel, editors, International Workshop on Global Software
Development for the Practitioner (2006), pp. 73–79.

[29] Spinellis, D., Optimizing header file include directives, Journal of Software Maintenance and Evolution:
Research and Practice (2008), .To appear.

[30] Spinellis, D., A tale of four kernels, in: W. Schäfer, M. B. Dwyer and V. Gruhn, editors, ICSE ’08:
Proceedings of the 30th International Conference on Software Engineering (2008), pp. 381–390.

22

http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf
http://www.amazon.co.uk/exec/obidos/ASIN/0201729156/citeulike-21

Spinellis et al

[31] Spinellis, D. and C. Szyperski, How is open source affecting software development?, IEEE Software 21
(2004), pp. 28–33.

[32] Stamelos, I., L. Angelis, A. Oikonomou and G. L. Bleris, Code quality analysis in open source software
development, Information Systems Journal 12 (2002), pp. 43–60.

[33] Stamelos, I., L. Angelis, A. Oikonomou and G. L. Bleris, Code quality analysis in open source software
development., Information Systems Journal 12 (2002), pp. 43–60.

[34] Stroggylos, K. and D. Spinellis, Refactoring: Does it improve software quality?, in: B. Boehm,
S. Chulani, J. Verner and B. Wong, editors, 5th International Workshop on Software Quality (2007),
pp. 1–6.

[35] Subramanyam, R. and M. S. Krishnan, Empirical analysis of ck metrics for object-oriented design
complexity: Implications for software defects, IEEE Transactions on Software Engineering 29 (2003),
pp. 297–310.

23

	Introduction
	Overview
	System Architecture and Implementation
	Research on Open Source Software Quality
	Quality in Global Software Development
	Mean Developer Engagement
	Cross-Language Metric Tool
	Unneeded Header File Include Directives
	A Metric for Developer Contributions
	The Effects of Refactoring on Software Quality
	Power Laws in Software
	A Quality Model for Open Source Software
	A Comparison of Four Operating System Kernels

	Conclusions
	References

