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Abstract—Software developers often include available open-
source software packages into their projects to minimize redun-
dant effort. However, adding a package to a project can also
introduce risks, which can propagate through multiple levels of
dependencies. Currently, not much is known about the structure
of open-source package ecosystems of popular programming
languages and the extent to which transitive bug propagation is
possible. This paper analyzes the dependency network structure
and evolution of the JavaScript, Ruby, and Rust ecosystems. The
reported results reveal significant differences across language
ecosystems. The results indicate that the number of transitive
dependencies for JavaScript has grown 60% over the last year,
suggesting that developers should look more carefully into their
dependencies to understand what exactly is included. The study
also reveals that vulnerability to a removal of the most popular
package is increasing, yet most other packages have a decreasing
impact on vulnerability. The findings of this study can inform
the development of dependency management tools.

I. INTRODUCTION

Open-source software development has resulted in an abun-
dance of freely available software packages (libraries) that can
be used as building blocks for new projects. Usage of existing
libraries can increase velocity and reduce the cost of a software
project [1]. However, introducing third-party libraries makes
a project dependent on them. Dependencies need to be kept
up-do-date to prevent exposure to vulnerabilities and bugs [2].
At the same time, bugs can also originate through transitive
dependencies [3]. Developers might not have an overview of
all the transitive dependencies as they did not include them
themselves. Updating dependencies also entails risks, as new
versions may break existing functionality or API correctness
[4].

In March 2016, a single JavaScript package, left-pad was
removed from the central JavaScript package repository npm.
The removal caused issues also for projects that depended
on it indirectly through transitive dependencies [5]. The left-
pad incident illustrates the hidden risks of relying on publicly
available packages. A problem with a single package can
propagate through multiple levels of dependencies.

Over the years, a number of studies have addressed the
question of how to develop maintainable software and how to
cope with software evolution challenges [6], [7]. On the other
hand, dependency management practices have received little
attention, despite being a crucial part of almost all software
projects. A recent study of the JavaScript package ecosystem

[8] revealed that dependency requirement specifications using
semantic versioning with flexible version constraints (e.g. the
latest version) are widely used. This practice often leads to
a new version of dependency being used implicitly every
time a project is built. Another study of Maven packages [4]
revealed that the semantic versioning scheme is not always
used properly and breaking changes are also introduced in
minor version releases. Implicit updates combined with non-
conforming API changes can introduce unexpected behavior or
software defects. Considering the left-pad incident and the lack
of studies on dependency management, we seek to enhance the
understanding of the state of dependency update practices and
the structure of dependency networks.

More recently, data has become available from package
repositories and GitHub repositories that enable us to study
the package ecosystems of different programming languages.
Having access both to packages that are published in a central
repository and applications using these can give us an idea
how often dependencies are updated and what is the state of
the dependency ecosystem.

In this work, we take a novel network-based approach
for studying dependency networks of JavaScript, Ruby, and
Rust. We use data from package repositories and a subset of
GitHub projects. We compose a network of projects based
on dependency relations to understand how the dependency
network evolves and how susceptible it is to a removal of a
random project. We show that dependency networks of popular
languages such as JavaScript and Ruby are growing and have
at least one single package whose removal can affect more
than 30% of projects in the ecosystem.

The goal of this work is to study the state of current
dependency networks, to understand their characteristics, and
to reason about their future evolution. We have formulated the
following research questions to guide our research:
RQ1: What are the static characteristics of package depen-
dency networks?
RQ2: How do package dependency networks evolve?
RQ3: How vulnerable are package dependency networks to a
removal of a random project?

Answers to these questions can help to quantify the state of
the ecosystems, give an overview of the trends in dependency
management, and can inform the development of improved
dependency management tools.



II. BACKGROUND AND RELATED WORK

In this section, we explain the terminology and give an
overview of the related work.

A. Terminology

Current work analyses dependencies among software
projects. We distinguish between two types of software
projects: packages and applications. We define packages as
a reusable code or set of components that can be included
in other applications by using dependency management tools.
Packages are published in repositories and are available to
everyone. Applications are projects that make use of packages,
are not published as a package and thus can not be used in
other projects as a dependency. Packages and applications can
have multiple versions distinguished by version numbers.

A package can depend on another package. If package A
depends on package B we say that A has a dependency (A
is a dependent of B) and B has a reverse dependency (B has
a dependent). Applications can have dependencies but since
they are not published as a reusable package they cannot have
reverse dependencies. A project has a direct dependency if a
package on which the project depends, and which it needs
to be built, is directly included in the project. A project can
have a transitive dependencies on packages that are not needed
for the project itself but needed for the direct dependencies
included in the project to work. Transitive dependencies can
be included through multiple levels of dependencies.

A dependency network is composed of packages, applica-
tions, and dependency relations between them. An ecosystem
is the set of packages and applications involved in the depen-
dency network.

B. Related work

The related work deals with analyzing dependency net-
works, analyzing risks associated with dependency usage, and
API stability in libraries.

Dependency networks. Network-based analysis of pro-
gramming language dependency networks has emerged re-
cently. A first large-scale analysis of the npm ecosystems was
carried out by Wittern et al. [8]. Their analysis concludes
that JavaScript is a striving ecosystem because of frequent
releases of new and existing packages. They use GitHub
applications only to study version numbering practices and
state that there is a prevalence of flexible (not exact) version
number specifications. They conclude that usage of flexible
version constraints should result in the immediate adoption of
a new release.

Decan et al. [9] analyze topologies of npm, PyPI, and
CRAN and find that there are differences across ecosystems,
e.g., the PyPI is less interconnected than npm. They state that
analysis results are not generalizable from one ecosystem to
another. Their follow-up work [10] focusing on dependency
version specification usage analysis, points out that current
tools and versioning schemes can introduce resiliency issues
to the ecosystem.

German et al. [11] study packages in the R ecosystem. They
find that most packages do not have any dependencies, but
popular ones are more likely to have. They also find that
growth of the ecosystem comes from user-submitted packages,
and it takes a longer time to build a community around user-
submitted packages than around core contributed packages.
Another analysis of the R ecosystem [12] studies dependency
resolution in R packages finds that lack of dependency con-
straints in package descriptions and backward incompatible
changes often break dependencies. As community contributed
packages are hosted on GitHub, there is no way to resolve
dependencies among GitHub packages, and therefore a small
amount of GitHub packages cannot be automatically installed.

Bogart et al. [13] interview seven maintainers of R and npm
packages to understand how dependencies are maintained.
They find that developers are not aware of the stability of
packages in the ecosystems and make changes on ad-hoc
principles. In a follow-up work [14], they found that npm,
CRAN and Eclipse ecosystems differ substantially in their prac-
tices about resolving API breaking conflicts and expectations
toward change.

Dependency management. A study of dependency man-
agement process in Apache projects [15] found that if the
number of projects in the ecosystem grows linearly, the
dependencies among them grow exponentially. Bavota et al.
[16] also find that new releases often do not contain updates
to their dependencies. Dependencies are updated only if major
new features or bug fixes are released for the dependencies.
Kula et al. [17] measure latency to adopt new versions among
a sample of Java projects that use Maven. They conclude that
over time, the maintainers become more trusting and update
faster, although no reason is known for this behavior. Cox
et al. [2] measure dependency freshness in 75 different closed
source projects of 30 different vendors. Their findings indicate
that projects with low dependency freshness are more than four
times likely to include a security vulnerability.

Besides programming language ecosystems, previous re-
search studied the Debian package ecosystem, how to resolve
strong dependencies in it, and how to improve the planning of
dependency changes [18], [19], [20], [21].

Vulnerabilities. Hejderup [3] studies vulnerability spread-
ing across npm packages. He uses information about known
vulnerabilities, tracks how long it takes for projects to update
from a vulnerable version and shows that vulnerabilities can
affect projects through dependencies. He also observes that
some of the projects have a discussion in the issue tracker
about vulnerable dependencies that need updating. Through
qualitative analysis, he finds that developers were not aware
of the vulnerabilities and the risk of breaking functionality is
what holds back blindly updating vulnerabilities.

Cadariu et al. [22] propose a tool to track known vulnera-
bilities in Java projects. They conduct a case study on private
Dutch enterprise projects and find that 54 out of 75 projects
use at least 1 (and up to 7) vulnerable dependency.

Synthesis of related work. The three research questions
proposed in this paper have received attention in the context of



existing research. There are similarities with existing research,
but none of them fully covers the scope and problem of this
paper. Wittern et al. [8] and Decan et al. look at the network
topologies for npm, PyPI (Python) and CRAN (R). Compared
to [8], our work considers the network analysis in more detail
and includes applications in the network analysis step. Com-
pared to [9], [10] we also focus on the network evolution and
outline more accurate dependency network model. Hejdreup
[3] studies vulnerability spreading among npm projects. Our
work analyses the whole ecosystem and includes evolution
analysis to study if over time such vulnerabilities will become
less or more likely.

III. RESEARCH QUESTIONS

We have formulated three research questions to guide our
research. The overall motivation is to analyze structure and
evolution of dependency networks to get insight into current
dependency usage and possible issues. Next, we explain the
motivation behind each research questions in more detail.

RQ1 (Structure). Currently, not much is known about
the static properties and topologies of programming language
package ecosystems. For example, we know to what extent
dependencies are used in packages only [8], [9]. However,
we do not know if there are differences in dependency
usages across published packages and applications? Modern
package managers allow different conventions for specifying
dependency version numbers such as exact version or version
range. However, we do not know what the most popular way of
specifying dependencies is. Answers to these questions enable
us to understand the current state of dependency ecosystem
and would be the starting point for analyzing ecosystem
evolution.

RQ2 (Evolution). Software projects can add new depen-
dencies and update existing dependencies. Changes in de-
pendencies in a new release of a single package will also
be reflected in the overall dependency network. Studying the
dependency network evolution since its creation can explain
the current state and also provide knowledge to reason and
make predictions about its future evolution. Need for such
analysis was outlined by respondents to a recent survey on
software ecosystems challenges [23]. One of the answers
given by respondents stated: if an ecosystem is not able to
evolve quickly it is going to die [23]. Similarly, our goal
is to understand the current evolution state of the studied
ecosystems and analyze if they are growing or stabilizing.

RQ3 (Vulnerability). When selecting a package use, several
factors are important besides the functionality it provides.
Developers ideally would like to be sure that the package
quality is good, it is maintained, and is trustworthy. As these
properties are not explicitly visible, developers might end up
using packages of varying quality. For example, if an attacker
publishes packages with names very similar to the names of
popular packages, developers making a typo could end up
using them unwillingly [24]. The left-pad incident happened
because the developer decided to remove the package. How

vulnerable are ecosystems to such scenarios? We define vul-
nerability as the number of projects that are affected if we
remove a package or a specific version of it. This scenario also
helps to estimate what fraction of the dependency network is
impacted if a package contains a bug. Such information could
be incorporated in measuring package importance with regards
to vulnerability in an ecosystem.

IV. METHOD

In the following section, we describe the data collection
method, preprocessing steps and our approach for modeling
dependency networks using graphs.

A. Context

In this work, we study three package ecosystems for the
programming languages, i.e., JavaScript, Ruby, and Rust. We
chose these three languages as the majority of their packages
and applications are hosted on GitHub. These languages
have central repositories for hosting packages, namely npm,
RubyGems, and Crates. Developers specify required pack-
ages in their project’s dependency files (package.json,
Gemfile, Cargo.toml) and packages are retrieved by
the dependency manager (npm, Bundler, Cargo). The packages
contain source code and developers can use functionality from
packages in their project. In addition to packages, we study
applications download from GitHub. By adding applications,
we can analyze package usage from the end-user viewpoint.

We chose to study JavaScript and Ruby, both dynamically
typed languages popular choices for among web application
development. Rust, on the other hand, is a multi-paradigm
language that supports static typing primarily meant for sys-
tems programming. JavaScript and Ruby have been used since
the 1990s and their corresponding central package managers
appeared in 2010 and 2004. Rust first appeared in 2010 and
its central package management in 2014. Our analysis of
JavaScript revolves around the packages used in the node.js
environment and managed through npm tool, but also includes
packages only needed for web development, such as front-end
frameworks. JavaScript differs from the other languages used
in the study as it supports multiple versions of a project in
its dependency chains. For example, if package A depends
on package B version 1.0 and package C version 2.0, and
package B depends again on package C version 3.0, then
npm downloads both versions of the package C. Rust and
Ruby do not allow such scenario and a single version of
package C is required. In practice, JavaScript developers can
have more freedom in including dependencies, but Rust and
Ruby developers need to make sure their dependencies do not
conflict.

B. Data collection

We used multiple sources for composing the dataset. For
JavaScript and Ruby, we downloaded the full list of packages,
release dates, dependencies, and other relevant meta-data from
their central repositories, npm and RubyGems respectively.
For getting data from npm, we used the public API [25].



For RubyGems, we used a copy of their meta-data database
available on-line [26].

Central repositories such as npm and RubyGems host only
projects that are typically libraries, frameworks, command line
applications or resource bundles for web development. We
also include end user applications from GitHub in our study
to understand the package usage in practice. We used the
GHTorrent [27] database of March 2016 to select projects
whose repository language identified by GitHub was either
Rust, JavaScript or Ruby, were not forks, and the project
GitHub repository did not appear in the npm or RubyGems
hosted project list. After composing the initial list of projects,
we made an HTTP request to every repository to check if it
had a dependency file in the root folder of the latest revision.
We only cloned repositories that had a dependency file present
in the latest revision. For Rust, we cloned all projects listed
in GHTorrent, but for JavaScript and Ruby, we only cloned
those that either had at least one fork or at least one star, to
minimize the number of projects to collect. We acknowledge
that we were not trying to collect all the projects from GitHub.

Rust has a central repository called Crates.io, but the meta-
data is not available from there in a structured machine-
readable format. Therefore, for Rust, we only rely on the
packages from GitHub by first selecting all Rust language
projects from the GHTorrent database and then filtering out
those that do not have a dependency file named Cargo.toml.
The Rust data can be considered as a sample of the whole
package universe of Cargo and additional applications written
in Rust.

Data collection took place during April and May 2016. We
collected the package repository data after collecting applica-
tions from GitHub. We excluded all updates and changes after
April 2016, to get a comparable time scale for all ecosystems.

C. Parsing GitHub projects

The projects obtained from GitHub have their dependency
information recorded in dependency files. To extract depen-
dencies, we consider all revisions of the dependency files to
recover the dependency history. We used the git log command
to extract all changes to the dependency file. For accurate
modeling, we had to know when each version of a project
was released. JavaScript’s package.json and Rust’s cargo.toml
provide explicit version information of the project. Ruby’s
dependency files (.gemspec and Gemfile) are written in Ruby
code and sometimes the version number is expressed as
a variable or read in from a file. This makes reading the
exact version numbers hard, as there is no general pattern.
Extracting this is therefore not feasible, as it would require
manual inspection or executing the code. In cases we could
not extract explicit version numbers, we used the time of the
last modification of the dependency file. This only affects
applications and does not impact the dependency network
structure as they do not have dependents. The limitation of
this approach is that there might be many more revisions
than actual releases. If multiple revisions of a dependency
file exist with the same version number, we use the latest

revisions for the version. Developers might change contents
of the file during development with the new version number
already entered but after the release the contents will not
change.

D. Resolving dependencies

When parsing dependency files, we encountered situations
where some of the dependencies were not available. A depen-
dency might not be available in a case where a single revision
of a dependency file committed to the repository contained
typos or incorrect version constraints, thus the dependency
does not exist. We only kept those dependencies that we could
match in the central repositories for JavaScript and Ruby. For
Rust, we kept all dependencies we could match among the
projects as we did not use official package repository data. If
a dependency is specified as a reference to a git source code
repository, we only kept this in the case of Rust projects and
the repository was in the list of collected projects.

Dependency version constraints can be specified in dif-
ferent ways, for example as exact version, latest version or
pattern based matching using the semantic versioning nota-
tion. A version number is typically written in the format of
MAJOR.MINOR.PATCH. An increase in the MAJOR number
denotes incompatible API changes, an increase in the MINOR
number indicates an addition of backward compatible changes,
and an increase in the PATCH number indicates a bug fix.
A version requirement specification has specific notations for
describing valid version. JavaScript and Rust support similar
notation formats. To obtain any version or the latest version,
the requirement should be specified as the wild-card (*) or
with an explicit condition (≥ 0). The tilde operator (˜) matches
the most recent MINOR version. For example ˜3.0.3 matches
the highest version in the range [3.0.3, 3.1), but will not
match 3.1. The caret (ˆ) will select the most recent MAJOR
version (the first number). For example, ˆ1.2.3 matches highest
version in the range [1.2.3, 2.0). Ruby does not support the
tilde and the caret directly, but has something similar called
the pessimistic operator, expressed by ∼>. For example,
∼> 3.0.3 is equivalent to ˜3.0.3. Requirement ∼> 1.1 is
equivalent to ˆ1.2, i.e., matches the highest version in the range
[1.2.3, 2.0).

For network construction, we must be able to represent the
state of dependencies as they were at the time a package was
released or an application was committed to the repository.
With inexact version requirements the actual version that might
be included in the project might differ every time the project
is built, as a more up-to-date version of a dependency that
satisfies the requirements might have become available. We
resolved all dependency version requirements to the version
that would have been used when the package was released or
a GitHub commit was made. Therefore, we knew when the re-
lease was made and also could trace back which packages and
versions were available at that time. For JavaScript projects,
we used the package semver to find for each dependency the
highest version candidate available. For Ruby projects, we
used Gem library code for finding the latest revision among
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Fig. 1. Dependency network construction approaches

all matching candidates. For Rust, we implemented our own
dependency resolution.

Dependency version resolution did not take into account
transitive dependencies and possible version conflicts. We are
aware that in practice, some other version might have been
chosen. To resolve all dependencies we would have needed
to re-implement the corresponding language dependency res-
olution algorithm because dependency management tools do
not support resolving dependencies as they would have been
resolved at any arbitrary time in the past.

E. Network construction

When modeling a system with a network, we need to define
what nodes and edges represent. A straightforward approach
to represent dependency relations in networks is to model
projects as nodes, and directed edges between them denote
dependencies between projects. The limitation of this solution
is the lack of differentiation between project versions and
thus this modeling approach could give misleading informa-
tion about the network. Figure 1 illustrates three different
approaches for network modeling. Packages A and B depend
on different versions of C, but only C version 0.4 depends on
D. The aggregated network model would indicate that package
B is dependent on package D, which is not true. The number
of different packages dependent on D is two (A and C) in the
actual network, but aggregated version would give us three
projects (C, A, and B). We also studied an approach where we
annotate network edges with attributes. We have a list of pairs
(source version, target version) for which this edge is valid.
When traversing the network, we have to make sure that the
target version on the edge that was used to access the node
has a corresponding source node for taking the next step. For
evolution analysis, both aggregated network and aggregated
network with attributes are unsuitable. If we want to answer
questions such as what is the number of transitive dependen-
cies, we have to consider all project versions. A new release
of a project can update its dependencies, thus increasing the
connectivity in the aggregated graph. For example, all versions
of the aggregated graphs (Figure 1) would give us that project
C has two dependencies, however, at any time it only has one.
Considering this, it might affect all the projects and we would
get a more connected graph than the actual and the number
of dependencies would not reflect the actual value.

We chose an approach where a node represents a specific
project version. The edges denote dependency relations be-
tween specific versions (Figure 1, actual). With this modeling
approach, we can have correct answers to queries such as how
many different versions depend on a project and how many of
these are unique projects.

In our analysis, we sometimes used the aggregated modeling
version with edge attributes for some calculations. Whenever
we did so, we mention it explicitly in the following. By
analyzing the top 10 projects for JavaScript based on the
number of dependencies, we confirmed that the aggregated
network without edge attributes overestimates the dependency
counts. Therefore we decided to use edge attribute information
when analyzing dependency chains.

Or choice of dependency network model makes it hard to
compare our results with existing research, which uses the
aggregated network without attributes [8], [9]. Only Hejderup
[3] uses a similar approach to our actual network. The differ-
ence is that Hejderup also keeps meta-nodes in the network
to represent a project. Each meta node has links to the
corresponding project’s version node.

We only use projects that have at least one dependency or
one reverse dependency. If a project does not have dependen-
cies nor is a dependency for others, it does not appear in the
network. As soon as a project adds a dependency, it will appear
in the network. Due to this filtering, single isolated nodes can
not exist in the network, while isolated clusters of connected
nodes can.

We kept snapshots of the network for each month. A
snapshot records how the ecosystem looked at the end of the
corresponding month. Snapshots are cumulative, adding new
projects and dependency links. Neither projects nor links are
ever removed. All analyses involving the temporal evolution is
also cumulative, i.e., if we calculate some property at a specific
time, we calculate the property for all the projects published
until that point.

We manually removed three projects from our dataset that
appeared to be outliers. Two JavaScript applications and one
Ruby package had been engineered so that they would contain
all possible packages in their dependency file.

V. RESULTS

A. Description of dependency networks (RQ1)

In this subsection, we describe the data sets and basic
properties of the dependency networks.

1) Static properties: Table I lists basic properties of the
language ecosystems used in our study, the number of projects
initially collected, and different releases in the network.

We initially collected 11037 Rust, 339453 JavaScript, and
184919 Ruby projects. However, not all packages have depen-
dencies or are used as a dependent, and therefore we exclude
those projects in the network based analysis. The exclusion
was based on the latest snapshot and included projects that
never had any dependencies. The final dataset comprises 7978,
246670 and 147449 projects for Rust, JavaScript, and Ruby
correspondingly.



TABLE I
SUMMARY OF DATASETS

Projects in the network Initially collected
Projects Dependencies Applications Packages Version Version dependencies Applications Packages

Rust 7,978 25,144 0 7,978 22,105 66,055 0 11,037
JS 246,670 1,182,114 78,657 168,013 1,319,919 7,260,426 84,987 254,466
Ruby 147,449 776,061 69,544 77,905 1,231,480 10,747,737 62,133 122,786

TABLE II
MEAN (MEDIAN) NUMBER OF DEPENDENCIES AND DEPENDENTS

Transitive Direct
Dependencies Dependents Dependencies Dependents

JS 54.6 (17) 15.5 (0) 5.5 (3) 1.3 (0)
Ruby 34.1 (22) 6.4 (0) 8.7 (4) 1.2 (0)
Rust 9.3 (5) 7.4 (0) 3.0 (2) 1.6 (0)

Table II lists the number of dependencies and dependents
(reverse dependencies) per release. Comparing languages, we
see that Ruby projects have more direct dependencies on aver-
age (8.8) than JavaScript (5.5) and Rust (3.0). The differences
in the number of direct dependents are smaller, i.e., 1.2, 1.3,
and 1.6, respectively. However, we again see larger differ-
ences across transitive dependencies and transitive dependents
(the average number of projects that depend on a project).
JavaScript has the largest amount of transitive dependencies
and dependents, 54.6 and 15.5, respectively. Ruby has 34.1 and
6.4, and Rust 9.3 and 7.4, respectively. The number of transi-
tive dependents for JavaScript is almost two times larger than
for other languages. Ruby has the highest average number of
direct dependencies and Rust has the highest number of direct
dependents. Differences in the amount dependencies across
ecosystems reveal that the internal structures of dependency
networks are different across ecosystems. JavaScript’s large
dependency count could possibly be attributed to tool support
for different versions of a single package in dependencies.

2) Direct and transitive dependents: The left-pad inci-
dent had a high impact not because it was directly used in
many projects but indirectly, through transitive dependencies.
Figure 2 shows the relationship between the total number
of dependents (direct and transitive dependents) and direct
dependents for all projects at the beginning of April 2016. For
all ecosystems, we can see that there exist projects that have a
small amount of direct dependents (less than 100) and a large
number of transitive dependents. We can see that this pattern is
stronger in JavaScript (Figure 2b) and Ruby(Figure 2b) than
for Rust. Ruby also exhibits a clear pattern with a package
having an equal amount of direct and transitive dependents,
meaning that a package is only involved in direct dependencies
but not transitive ones.

3) Weakly connected components: Even though we limited
our analysis to projects that have at least one dependency
relation, the ecosystems under study are not fully connected

TABLE III
DISTRIBUTION OF VERSION UPDATE COUNTS

Type 5p median mean 95p max

explicit JS Package 1.0 1.0 1.06 1.0 69.0
Application 1.0 1.0 1.37 3.0 253.0

Ruby Package 1.0 1.0 1.19 2.0 96.0
Application 1.0 1.0 1.53 3.0 343.0

Rust 1.0 1.0 1.19 2.0 62.0
implicit JS Package 1.0 1.0 1.11 2.0 66.0

Application 1.0 1.0 1.70 4.0 280.0
Ruby Package 1.0 1.0 1.91 6.0 95.0

Application 1.0 1.0 2.17 6.0 344.0
Rust 1.0 1.0 1.44 4.0 63.0

for Rust and JavaScript. We calculated the number of weakly
connected components in the dependency graphs for all lan-
guages. A weakly connected component in a directed graph
is a subgraph where each node is connected with every other
node in the subgraph via an undirected path. We observed the
emergence of a giant weakly connected component in each
of the three analyzed ecosystems. For Rust, JavaScript and
Ruby, 96.14%, 98.2%, 100% of projects belong to the largest
weakly connected component in the latest snapshot. Many
real-world networks such as social networks exhibit the giant
component property [28]. The remaining projects are part of
components with a small number of projects. The existence of
a giant component illustrates the fact that existing packages,
even being developed by different developers, can be used
together in applications. The ability to be used together makes
the ecosystem valuable.

4) Dependency updates and constraint notation practices:
We define explicit dependency version change as a manually
changed version constraint for a dependency by a developer.
The number of explicit changes is similar across ecosystems
(Table III). The number of implicit changes denotes the num-
ber of times a dependency was resolved to a different version
after each project release or dependency file commit, but
without modifying the dependency requirement specification.
An implicit update happens when dependencies are specified
with flexible constraints, and there are newer versions released
matching the constraints. The number of implicit updates has
a larger variation across projects, with the highest mean of
2.17 for Ruby, 1.7 for Rust, and 1.44 for JavaScript. The
mean number of implicit updates for the published packages
are smaller than for applications, 1.91 and 1.1 for Ruby and
JavaScript. We also see that the maximum values for both
explicit and implicit updates are larger for applications which
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Fig. 2. Relationships between the number of direct dependents and total dependents in April 2016. A sample of project names are plotted.

can be explained by higher velocity in development as these
projects do not have dependents. For both types of projects,
packages and applications, Ruby seems to have higher update
counts which can be explained by longer history. Another
insight is that there are more implicit updates than explicit, in-
dicating dependencies are updated more often than a developer
would manually do this. In the following, we analyze more
closely the popular ways of specifying dependency version
requirements that lead to implicit updates.

Table IV lists the relative popularity of each requirement
specification scheme in each ecosystem. Note that we distin-
guish here also between published packages and applications.
The different ways to specify versions are: any or latest version
(any), exact version (exact), explicitly specified version range
such as [2.0, 4), and one-sided ranges (range), the most recent
minor version (tilde), the most recent major version (caret) or
anything else, such as manually specified git version (other).

The dominating approaches for Rust version specifications
are exact and any versions, used in 32% and 47.8% of
the cases. Besides these, all different possible schemes for
specification are used by developers. Rust developers prefer to
specify specific versions or latest versions, as the ecosystem
is growing.

Among the most popular approaches for JavaScript are the
caret, exact, and the tilde notation. Exact versions are used
only in 22% of the cases for different JavaScript projects.
The difference between JavaScript GitHub projects and pub-
lished packages is non-existent, whereas for Ruby, there are
differences in the fraction of exact versions and range based
specifications. We looked more into range usage in packages
and found that a most of range specification in published pack-
ages comes from specifications that require larger than specific
major version. We used Pearson’s chi-squared test to confirm
that Ruby’s applications and published packages have different
preferences in specifying version requirements (χ2 = 884540,
df = 5, p-value < 2.2 · 10−16). Ruby also has the least
amount of exact dependencies, which in turn can explain our
observation of Ruby having the highest number of implicit
version updates on average (Table III). In the end, we used
Pearson’s chi-squared on the full contingency table (Figure IV
with absolute values) to confirm that dependency management
preferences differ across languages (χ2 = 8025600, df = 20,
p-value < 2.2 · 10−16).

TABLE IV
RELATIVE POPULARITY OF DEPENDENCY SPECIFICATION NOTATIONS.

Type any(*) caret(ˆ) exact other range tilde(˜)
Ecosystem

JS Application 0.047 0.498 0.221 0.005 0.019 0.210
JS Package 0.037 0.536 0.217 0.007 0.029 0.174
Ruby Application 0.583 0.157 0.135 0.000 0.063 0.062
Ruby Package 0.360 0.178 0.070 0.000 0.249 0.143
Rust 0.320 0.034 0.478 0.109 0.007 0.052
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Fig. 3. Number of unique projects (N), dependencies between projects (E),
the number of versions (NV) and dependencies between versions (EV).

B. Dependency network evolution (RQ2)

In this subsection, we will look in more detail the evolution
of the dependency networks.

1) General growth: To understand how the ecosystems are
growing, we first analyzed the number of projects and de-
pendency relations between them. Figure 3 shows the number
of projects and unique relations in the dependency network.
We also show the number of releases and the number of
dependency links between them. We see that in almost all
cases, the speed at which the number of relations is growing is
getting faster compared to the number of nodes in the network,
especially visible for JavaScript (JS N on Figure 3), where the
difference between the number of projects and dependencies
is tenfold. The figure also indicates the growth of Rust is
still continuing. JavaScript has become larger than Ruby, both
in terms of versions and dependencies between versions. The



growth of Ruby in general is leveling off and becomes steady,
whereas JavaScript is growing even at accelerated rate.

Figure 3 highlights the size differences when analyzing ac-
tual networks and aggregated networks with annotated edges.
There is more than ten times difference between the number
of nodes and edges in both networks and the difference
is growing. Therefore, there are differences in the network
structure which confirms our initial discussion on the choice
of network modeling approach.

As the ecosystem is composed of multiple projects, we next
analyzed the project level changes in dependencies. What is
the number of dependencies and dependents for projects and
the full size of the transitive dependency chain? Figure 4a
shows the number of dependencies and dependents for each
project release. We see a faster growth for the number of de-
pendents in Ruby and JavaScript. The number of dependencies
has been growing at a slower rate. When comparing JavaScript
and Ruby, we see that the difference between the number
of dependents is larger than the number of dependencies.
One possible explanation could be that the overall number
of packages published in RubyGems is smaller than in npm
and there are fewer alternatives for packages, leading to higher
number of dependents.

Figure 4b shows the total amount of dependencies for each
project release. We observe fast growth for JavaScript projects
and slower, steadier growth for Ruby and Rust projects. The
average size of total dependencies for JavaScript was 34.3 in
April 2015 but grew to 54.6 in April 2016, more than 60 %
yearly growth. Growth at such speed is unlikely to continue
and most likely will be lower in the future.

When comparing JavaScript’s and Ruby’s numbers of direct
dependencies (Figure 4a) and the total amount of transitive
dependencies, we see that JavaScript projects have more
transitive dependencies, but less direct dependencies. This
behavior indicates differences across these two ecosystems.
Ruby has packages that are used mostly by applications and
do not have dependencies themselves, but JavaScript published
packages have dependencies themselves, making the ecosys-
tem more connected and complex. One possible explanation
for JavaScript’s larger amount of transitive dependencies is the
fact that npm allows multiple versions of the same project to
be included through transitive dependencies.

Judging by these observations, it is hard to predict the exact
number of transitive dependencies for Rust as both Ruby and
JavaScript have shown different behavior. We argue that this
may be because Rust is a very new ecosystem at its initial
stages of evolution.

2) Conflict evolution: The ecosystems keep growing and
the number of dependencies between projects is also growing.
We analyze next what is the number projects that have a
single dependency included through multiple packages, which
could leave to conflicts if the package version requirement
specification would not match.

We define a dependency overlap as a situation when a
project appears as a dependency through multiple different
paths for a single project. In practice, overlap could lead to

conflict, which would occur only if the version specification
would not match and it would not be possible to find the best
matching version. Dependency overlap illustrates how much
dependencies are co-used in projects. On the other hand, it
illustrates the need for consistent usage of version number
specification by package maintainers. Increasing dependency
overlap should give developers a signal to look their de-
pendency version requirements and use as loose criteria as
possible, to allow dependency managers to find a suitable
version.

Figure 4c lists the fraction of projects that have dependency
overlap in their dependency chains. The overall trends are sim-
ilar to the overall growth of the ecosystems. More than two-
thirds of Ruby and half of JavaScript projects have a single
dependency appear through multiple dependency chains. The
result indicates package reuse, but also the event of depen-
dency version conflicts might become more likely. Increasing
overlap can lead to issues which prevent different packages to
be used together due to not satisfiable dependencies. Similar
behavior has been observed for Debian software packages
[29].

C. Fragility and vulnerability (RQ3)

Next we analyze dependency network tolerance to a removal
of a single project or a single release. We define vulnerability
of a package as the fraction of the network nodes that is
impacted by a removal of a single package or a single package
version. This approach enables to analyze the impact of
incidents such as the left-pad project removal. While complete
removal of a project removes all versions from the dependency
networks, we can also study removal of a single version. For
example, bugs or security vulnerabilities might not impact all
project version, only selected specific of them might contain
the bug.

We first calculate the vulnerability on the network where
each node denotes the different version. For each package
version, we calculate the number of total dependents. Next,
we have the list with the number of total dependents for all
packages. Among this list, we look at the maximum value
and the 90th percentile value. We chose these values as the
distribution of the number of dependents is skewed and the
median value is typically either 0 or 1 depending on the
snapshot date.

Figure 5a shows the maximum and 90th percentile vulner-
ability score normalized with respect to the full network size
at each snapshot. We see that the maximum is fluctuating and
having a positive trend, which means that there is a version in
the network which importance is growing. Looking at the 90th
percentile value, we see decreasing trend, which indicates that
most of the other packages int he ecosystem are not central
and are not included in the majority of dependency paths.

We also look at the vulnerability on the aggregated graph.
Figure 5b shows the same vulnerability calculation on the
aggregated network, meaning we remove a project and all its
versions. It is evident that the maximum score is growing and
impact a single project is growing. This is even interesting
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Fig. 4. Dependency network evolution

in the context of growing ecosystems, the absolute values are
also increasing therefore. The 90th percentile vulnerability is
again decreasing.

To find differences between packages and application, we
analyzed the mean vulnerability rate for different types of
JavaScript and Ruby projects. Figure 5c shows the average
number of projects affected by a single package removal. The
figure illustrates the dependence on a single package. We see
that right after the creation of the package ecosystem, it starts
to decrease. In a later phase, the positive trend of JavaScript
is more visible. The average number of impacted applications
remains larger than the packages.

Table V list the top five releases based on unique dependent
projects and unique dependent releases. For JavaScript, the
list is composed of unique utility packages, such isarray or
inherits. For Ruby and Rust we see that multiple versions of
a single packages have made to the top lists. The top five
packages for ruby are related to webserver (rack) or templates
(erubis, tilt). Rust packages are interface to system level types
and libraries (libc), a serialization library (rustc-serialize), and
a logging library(log).

VI. DISCUSSION

In the following, we discuss our results, their practical
implications, compare results with the related work and outline
limitations of the research. The results differ to some extent
for all studied languages, but generalizing conclusions can be
brought out.

A. Results

Network modeling. Previous research on package depen-
dency networks has not found an agreement on how to model
dependencies using graphs. We propose an approach for mod-
eling and constructing the network from dependency data. We
believe that the chosen approach captures the actual network
most accurately, enabling us to analyze dependencies on their
version level. Although the analysis of aggregated network
can yield similar conclusions [10], the real dependencies
are still using version information and in future evolution
stages it might not be sufficient anymore. We believe that our

contribution in network modeling is a single step forward more
unified software dependency network modeling.

Structure. Analysis of dependency network structure re-
veals differences between ecosystems. Although this has been
observed before [9] for the dependencies, we have also shown
differences in dependency version constraint specifications
across ecosystems. The findings complement previous research
[14] that found that different ecosystems approached API
changes differently, which could impact dependency manage-
ment. Our findings indicate that there are more implicit version
updates than explicit, which suggests that there may be a need
for tools to automatically monitor the dependencies that are
included through implicit updates and reveal possible breaking
API changes.

Evolution. Our evolution analysis revealed that the amount
of transitive dependencies for JavaScript projects has been
growing over 60% over the past year. A large amount of
dependencies can lead to issues such as extended build time
because of fetching the dependencies and increased software
package size. Exponential growth has been observed inside
Apache ecosystem as well [15]. Recently, a newer dependency
management tool compatible with npm was introduced [30].
One of the key new functionality is improved concurrent
dependency download. The tools tries to solve the depen-
dency abundance problem by providing a faster download.
Alternatively, a future solution could study how to reduce
dependencies by better static code analysis. Our finding il-
lustrates that observing network evolution, such troubles can
be anticipated. Analysis of trends and number of transitive
dependencies over time could be useful for other package
based language ecosystems.

Vulnerability. Our vulnerability analysis, inspired by the
left-pad incident [5], reveals that each studied ecosystem has
packages whose removal could impact up to 30% of the other
packages and applications. We showed that ecosystems have a
few central packages that they depend on, which could enable
bug spreading if they are not up to date. The high vulnerability
score of a package should also alert developers and maintainers
to make sure all security bugs are fixed quickly. A package
with a high vulnerability score can be of interest to attackers
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TABLE V
TOP PROJECTS BASED ON TRANSITIVE DEPENDENTS(UNIQUE PROJECT RELEASES)

JavaScript Ruby Rust
package direct transitive vulnerability package direct transitive vulnerability package direct transitive vulnerability

inherits 2.0.1 8131 499254 0,38 erubis 2.7.0 9014 519555 0,42 libc 0.1.1 44 5520 0,25
isarray 0.0.1 727 384907 0,29 rack 1.4.1 4707 490329 0,40 rustc-serialize 0.3.16 1651 5379 0,24
core-util-is 1.0.1 524 371871 0,28 rack-test 0.6.2 1566 386937 0,31 libc 0.2.1 141 4840 0,22
string decoder 0.10.25 39 303116 0,23 rack 1.3.10 3248 362810 0,29 libc 0.1.4 79 4598 0,21
sigmund 1.0.0 256 283319 0,21 tilt 1.3.3 2084 359862 0,29 log 0.3.1 1030 4415 0,20

as an opportunity to exploit projects depending on it.

B. Design implications

By using our findings, one could design a better package
ecosystem and dependency management tooling. First, we
would propose making dependency relations explicitly visible
to understand the importance of packages in the ecosystems.
Having an up to date view which packages are most popular
and important in the ecosystem can make sure they receive
maintenance and support effort from the community.

We would also investigate alternatives to semantic version-
ing to allow stricter dependency specification and version
numbers from packages to help to minimize dependency
conflicts. Overall, the ecosystem and tooling should improve
awareness of what dependencies are used, make dependency
listing explicit and help to minimize irrelevant dependencies.

C. Limitations

The limitation of our dependency network construction ap-
proach is that it will not compose the exact representation that
the build tool would have. When resolving wildcard version
specifications to a matching version, we look all dependencies
separately for given projects. In practice, when using build
tools, the whole transitive closure of dependencies would
be resolved and if a package is included through multiple
paths, a matching version would be calculated that shares all
requirements. To recreate the exact dependencies for a project
historically is complicated as dependency management tools
do not support backdated retrieval.

VII. CONCLUSION AND FUTURE WORK

Our analysis of dependency networks of JavaScript, Ruby,
and Rust shows that all analyzed ecosystems are alive and

growing, with JavaScript having the fastest growth. JavaScript
also shows the largest amount of transitive dependencies per
project among studied languages. All ecosystems have some
popular packages used in the majority of the projects. Yet,
over time, ecosystems have become less dependent on a single
popular package and a removal of a random project will not
cause ecosystem collapse.

The main contributions of this paper are: (i) proposal of
a network modeling approach specifically for dependency
networks, (ii) insights into the structure and evolution of
JavaScript, Ruby, and Rust, (iii) analysis of vulnerability
reveals that ecosystems are not as vulnerable to a removal
of a single package as they used to be.

This work opens up possibilities for multiple lines of future
work. The dependency management process should be studied
also studied by qualitatively to understand issues developers
are facing. Second, based on the vulnerability measures and
network aspects, a measure quantifying dependency health
should be developed. Combining network information with
data about testing efforts, code analysis, the number of main-
tainers etc, into a aggregated dependency health measure. The
broad level goal of the future research is to support developers
with tools in dependency management and maintenance and
provide analytics for package maintainers about their packages
and the overall ecosystem trends. Our next goal is to turn the
code used in this paper into a set of reusable tools to analyze
any package ecosystem based on GitHub and repository data.

SUPPLEMENTARY INFORMATION

Datasets used in this research are available at https://github.
com/riivo/package-dependency-networks.
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