
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 1

Developer Testing in the IDE: Patterns, Beliefs,
and Behavior

Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann,
and Andy Zaidman, Members, IEEE

Abstract—Software testing is one of the key activities to achieve software quality in practice. Despite its importance, however, we have
a remarkable lack of knowledge on how developers test in real-world projects. In this paper, we report on a large-scale field study with
2,443 software engineers whose development activities we closely monitored over 2.5 years in four integrated development
environments (IDEs). Our findings, which largely generalized across the studied IDEs and programming languages Java and C#,
question several commonly shared assumptions and beliefs about developer testing: half of the developers in our study do not test;
developers rarely run their tests in the IDE; most programming sessions end without any test execution; only once they start testing, do
developers do it extensively; a quarter of test cases is responsible for three quarters of all test failures; 12% of tests show flaky
behavior; Test-Driven Development (TDD) is not widely practiced; and software developers only spend a quarter of their time
engineering tests, whereas they think they test half of their time. We compile these practices of loosely guiding one’s development
efforts with the help of testing in an initial summary on Test-Guided Development (TGD), a behavior we argue to be closer to the
development reality of most developers than TDD.

Index Terms—Developer Testing, Unit Tests, Testing Effort, Field Study, Test-Driven Development (TDD), JUnit, TestRoots WatchDog,
KaVE FeedBag++.

F

1 INTRODUCTION

H OW much should we test? And when should we stop testing?
Since the beginning of software testing, these questions have

tormented developers and their managers alike. In 2006, twelve
software companies declared them pressing issues during a survey
on unit testing by Runeson [1]. Fast-forward to eleven years later,
and the questions are still open, appearing as one of the grand
research challenges in empirical software engineering [2]. But
before we are able to answer how we should test, we must first
know how we are testing.

Post mortem analyses of software repositories by Pinto et
al. [3] and Zaidman et al. [4] have provided us with insights into
how developers create and evolve tests at the commit level. How-
ever, there is a surprising lack of knowledge of how developers
actually test, as evidenced by Bertolino’s and Mäntylä’s calls to
gain a better understanding of testing practices [5], [6]. This lack
of empirical knowledge of when, how, and why developers test
in their Integrated Development Environments (IDEs) stands in
contrast to a large body of folklore in software engineering [2],
including Brooks’ statement from “The Mythical Man Month” [7]
that “testing consumes half of the development time.”

To replace folklore by real-world observations, we studied
the testing practices of 416 software developers [8] and 40
computer science students [9] with our purpose-built IDE plugin

• M. Beller, G. Gousios, and A. Zaidman are with the Software Engineering
Research Group, Delft University of Technology, The Netherlands.
E-mails: {m.m.beller, g.gousios, a.e.zaidman}@tudelft.nl

• A. Panichella is with the Interdisciplinary Centre for Security, Reliability
and Trust Verification and Validation, University of Luxembourg, Luxem-
bourg.
E-mail: annibale.panichella@uni.lu

• S. Amann and S. Proksch are with Technische Universität Darmstadt,
Germany.
E-mails: {amann, proksch}@st.informatik.tu-darmstadt.de

Manuscript received April 19, 2016; revised ??

WATCHDOG. While these studies started to shed light on how
developers test, they had a number of limitations toward their
generalizability: First, they were based on data from only one
IDE, Eclipse, and one programming language, Java. It was un-
clear how the findings would generalize to other programming
environments and languages. Second, the data collection period of
these studies stretched only a period of five months. This might not
capture a complete real-world “development cycle,” in which long
phases of implementation-heavy work follow phases of test-heavy
development [4], [10]. Third, we did not know how strongly the
incentives we gave developers to install WATCHDOG influenced
their behavior. Fourth, we had no externally collected data set to
validate our observations against.

In this extension of our original WATCHDOG paper [8], built
on top of our initial draft of the WATCHDOG idea [9] and its
technical tool description [11], we address these limitations by
analyzing data from four IDEs, namely Eclipse (EC), IntelliJ (IJ),
Android Studio (AS), and Visual Studio (VS), and two program-
ming languages, Java and C#. We extended our study from 416
developers to an open-ended field study [12] with 2,433 developers
that stretches over a data collection period of 2.5 years. By measur-
ing how developers use the behavior reports WATCHDOG provides
as an incentive, we can now estimate their impact on developers’
behavior. Thanks to Visual Studio data from the FEEDBAG++
plugin, developed independently in the KaVE project [13], we can
compare our findings against an externally collected data set.

In our investigation, we focus on developer tests [14], i.e.,
codified unit, integration, or system tests that are engineered inside
the IDE by the developer. Developer testing in the IDE is often
complemented by work outside the IDE, such as testing on the
CI server [15], executing tests on the command line, manual
testing, automated test generation, and dedicated testers, which we
explicitly leave out of our investigation. By comparing the state of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 2

the practice to the state of the art of testing in the IDE [16]–[18],
we aim to understand the testing patterns and needs of software
engineers, expressed in our five research questions:

RQ1 Which Testing Patterns Are Common In The IDE?
RQ2 What Characterizes The Tests Developers Run In The IDE?
RQ3 How Do Developers Manage Failing Tests In The IDE?
RQ4 Do Developers Follow Test-Driven Development (TDD) In

The IDE?
RQ5 How Much Do Developers Test In The IDE?

If we study these research questions in a large and varied pop-
ulation of software engineers, the answers to them can provide im-
portant implications for practitioners, designers of next-generation
IDEs, and researchers. To this end, we have set up an open-ended
field study [12] that has run for 2.5 years and involved 2,443
programmers from industry and open-source projects around the
world. The field study is enabled by the Eclipse and IntelliJ plugin
WATCHDOG and the Visual Studio plugin FEEDBAG++, which
instrument the IDE and objectively observe how developers work
on and with tests.

Our results indicate that over half of the studied users do not
practice testing; even if the projects contain tests, developers rarely
execute them in the IDE; only a quarter of test cases is responsible
for three quarters of all test failures; 12% of test cases show flaky
behavior; Test-Driven Development is not a widely followed prac-
tice; and, completing the overall low results on testing, developers
overestimate the time they devote to testing almost twofold. These
results counter common beliefs about developer testing and could
help explain the observed bug-proneness of real-world software
systems.

2 STUDY INFRASTRUCTURE DESIGN

In this section, we give a high level overview of our field study
infrastructure design, explore how a practitioner uses WATCHDOG

to convey an intuitive understanding of the plugin, and describe
how our plugins instrument the IDE.

2.1 Field Study Infrastructure

Starting with an initial prototype in 2012, we evolved our IDE
instrumentation infrastructure around WATCHDOG into an open-
source, multi-IDE, and production-ready software solution [19].
As of version 1.5 released in June 2016, it features the three-layer
architecture depicted in Figure 1 with a client, server, and data
analysis layer, designed to scale up to thousands of simultaneous
users. In the remainder of this section, we first describe the client
layer containing the four different IDE plugins for Visual Studio,
IntelliJ, Android Studio and Eclipse (from left to right). We then
describe WATCHDOG’s server and central database and how we
converted the KaVE project’s FEEDBAG++ data to WATCHDOG’s
native interval format. We conclude this high-level overview of
our technical study design with a short description of our analysis
pipeline. In earlier work, we have already given a more technical
description of WATCHDOG’s architecture and the lessons we
learned while implementing it [11].

2.1.1 IDE Clients
We used two distinct clients to collect data from four IDEs: the
WATCHDOG plugin gathers Java testing data from Eclipse and
IntelliJ-based IDEs and the general-purpose interaction tracker
FEEDBAG++ gathers C# testing data from Visual Studio.

WATCHDOG clients for Eclipse and IntelliJ. We origi-
nally implemented WATCHDOG as an Eclipse plugin, because
the Eclipse Java Development Tools edition (JDT) is one of
the most widely used IDEs for Java programming [20]. With
WATCHDOG 1.5, we extended it to support IntelliJ and IntelliJ-
based development platforms, such as Android Studio, “the official
IDE for Android” [21]. Thanks to their integrated JUnit support,
these IDEs facilitate developer testing.

WATCHDOG instruments the Eclipse JDT and IntelliJ environ-
ments and registers listeners for user interface (UI) events related
to programming behavior and test executions. Already on the
client side, we group coherent events as intervals, which comprise
a specific type, a start and an end time. This abstraction allows
us to closely follow the workflow of a developer without being
overwhelmed by hundreds of fine-grained UI events per minute.
Every time a developer reads, modifies, or executes a JUnit test
or production code class, WATCHDOG creates a new interval and
enriches it with type-specific data.

FEEDBAG++ for Visual Studio. FEEDBAG++ is a general-
purpose interaction tracker developed at TU Darmstadt. It is
available for Visual Studio, as an extension to the widely used
ReSharper plugin [22], which provides static analyses and refac-
toring tools to C# developers.

FEEDBAG++ registers listeners for various IDE events from
Visual Studio and the ReSharper extension, effectively capturing
a superset of the WATCHDOG listeners. The captured information
relevant for this paper includes how developers navigate and edit
source files and how they use the test runner provided by Re-
Sharper. The test recognition covers common .NET testing frame-
works, such as NUnit or MSUnit. In contrast to WATCHDOG,
which already groups events into intervals on the client side,
FEEDBAG++ uploads the raw event stream.

2.1.2 WATCHDOG Server
The WATCHDOG IDE plugins cache intervals locally, to allow
offline work, and automatically send them to our server as a JSON
stream. The WATCHDOG server accepts this JSON data via its
REST API. After sanity checking, the intervals are stored in a
NoSQL database. This infrastructure scales up to thousands of
clients and makes changes in the clients’ data format easy to
maintain. Moreover, we can remotely trigger an update of all
WATCHDOG clients, which allows us to fix bugs and extend its
functionality after deployment. Automated ping-services monitor
the health of our web API, so we can immediately react if
an outage occurs. Thereby, our WATCHDOG server achieved an
average uptime of 98% during the 2.5 years of field study.

KaVE to WatchDog
Transformation

Server

Client

Analytics
Pipeline

Core

Reports Reports

EclipseIntelliJ

Visual
Studio

Android Studio

Fig. 1. WATCHDOG’s Three-Layer Architecture.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 2. Exemplary wizard page of WATCHDOG’s project survey.

2.1.3 WATCHDOG Analysis Pipeline
The WATCHDOG pipeline is a software analytics engine written in
R comprising over 3,000 source lines of code without whitespaces
(SLOC). We use it to answer our research questions and to
generate daily reports for the WATCHDOG users. The pipeline
reads in WATCHDOG’s users, projects, and intervals from the
NoSQL database and converts them into intermediate formats fit
for answering our research questions.

2.2 WATCHDOG Developer Survey & Testing Analytics
To give an understanding of the study context and incentives that
WATCHDOG offers, we explore it from a practitioner’s perspective
in this section. Wendy is an open-source developer who wants to
monitor how much she is testing during her daily development
activities inside her IDE. Since Wendy uses IntelliJ, she installs
the WATCHDOG plug-in from the IntelliJ plug-in repository.

Registration. Once installed, a wizard guides Wendy through
the WATCHDOG registration process: First, she registers herself
as a user, then the project for which WATCHDOG should collect
development and testing statistics, and finally, she fills in an
interactive voluntary in-IDE survey about testing. Figure 2 shows
one of the up to five pages of the survey. Key questions regard
developers’ programming expertise, whether and how they test
their software, which testing frameworks they employ and how
much time they think they spend on testing. Since FEEDBAG++
does not collect comparable survey data, we exclude it from
research questions relying on it. Wendy, however, continues to
work on her project using IntelliJ, as usual, while WATCHDOG

silently records her testing behavior in the background.
Developer Statistics. After a short development task, Wendy

wants to know how much of her effort she devoted to testing
and whether she followed TDD. She can retrieve two types
of analytics: the immediate statistics inside the IDE shown in
Figure 3 and her personal project report on our website shown in
Figure 4. Wendy opens the immediate statistics view. WATCHDOG

automatically analyzes the recorded data and generates the view
in Figure 3, which provides information about production and
test code activities within a selected time window. Sub-graph 1©
in Figure 3 shows Wendy that she spent more time (over one
minute) reading than writing (only a few seconds). Moreover, of
the two tests she executed 2©, one was successful and one failed.
Their average execution runtime was 1.5 seconds. Finally, Wendy
observes that the majority (55%) of her development time has been
devoted to engineering tests 3©, not unusual for TDD [8].

1

2 3

Fig. 3. WATCHDOG’s Immediate Statistics View in the IDE (Source: [11]).

2

1

Summary of your Test-Driven Development Practices

You followed Test-Driven Development (TDD) 38.55% of your development changes
(so, in words, quite often). With this TDD followship, your project is in the top 2 (0.1%)
of all WatchDog projects. Your TDD cycle is made up of 64.34% refactoring and
35.66% testing phase.

Description Your value Mean

Total time in which WatchDog was active 195.8h 79h

Time averaged per day 0.6h / day 4.9h / day

Detailed Statistics
In the following table, you can find more detailed statistics on your project.

General Development Behavior Your value Mean

Active Eclipse Usage (of the time Eclipse was open) 58% 40%

Time spent Writing 13% 30%

Time spent Reading 11% 32%
Java Development Behaviour Your value Mean

Time spent writing Java code 55% 49%

Time spent reading Java code 45% 49%

Time spent in debug mode 0% (0h) 2h

Testing Behaviour Your value Mean

Estimated Time Working on Tests 50% 67%

Actual time working on testing 44% 10%

Estimated Time Working on Production 50% 32%

Actual time spent on production code 56% 88%

Test Execution Behaviour Your value Mean

Number of test executions 900 25

Number of test executions per day 3/day 1.58/day

Number of failing tests 370 (41%) 14.29 (57%)

Average test run duration 0.09 sec 3.12 sec

Fig. 4. WATCHDOG’s Project Report (Source: [11]).

While the immediate statistics view provides Wendy with an
overview of recent activities inside the IDE, the project report
gives her a more holistic view of her development behavior, in-
cluding more computationally expensive analyses over the whole
project history. She accesses her report through a link from
the IDE or directly via the TESTROOTS website,1 providing
the project’s ID. Wendy’s online project report summarizes her
development behavior in the IDE over the whole recorded project
lifetime. Reading the report in Figure 4, Wendy observes that
she spent over 195 hours in total on the project under analysis,
an average of 36 minutes per day 1©. She worked actively with
IntelliJ in 58% of the time that the IDE was actually open. The
time spent on writing Java code corresponds to 55% of the total
time, while she spent the remaining 45% reading Java code. When

1. http://testroots.org/report.html

https://web.archive.org/web/20170606220403/https://testroots.org/report.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 4

Time

22

33

11

44 66

...

...

...

...

...
55

JUnitExecution

Reading/Typing

UserActive

Perspective

EclipseOpen

Interval Type

Fig. 5. Exemplary workflow visualization with intervals. Table 1 describes
the interval types in the same order as they appear in the different rows.

registering the project, Wendy estimated the working time she
would spend on testing to equal 50%. With the help of report, she
finds out that her initial estimation was relatively precise, since
she actually spent 44% of her time working on test code.

The project report also provides Wendy with TDD statistics for
the project under analysis, 2© in Figure 4. Moreover, anonymized
and averaged statistics from the large WATCHDOG user base allow
Wendy to put her own development practices into perspective.
This way, project reports foster comparison and learning among
developers. Wendy finds that, for her small change, she was
well above average regarding TDD use: She learned how to
develop TDD-style from the “Let’s Developer” YouTube channel.2

The WATCHDOG project for “Let’s Developer” is the second
highest TDD follower of all WATCHDOG users on 5th June, 2017
(following TDD for 37% of all modifications).3

2.3 IDE Instrumentation
Here, we explain how WATCHDOG clients instrument the IDE.
We then continue with a description of how we transform FEED-
BAG++ events into WATCHDOG intervals.

2.3.1 WATCHDOG Clients
WATCHDOG focuses around the concept of intervals. Table 1 gives
a technical description of the different interval types. They appear
in the same order as rows in Figure 5, which exemplifies a typical
development workflow to demonstrate how WATCHDOG monitors
IDE activity with intervals.

Exemplary Development Workflow. Our developer Wendy
starts her IDE. The integrated WATCHDOG plugin creates three
intervals: EclipseOpen, Perspective, and UserActive
1©. Thereafter, Wendy executes the unit tests of the production

class she needs to change, triggering the creation of a JUnit-
Execution interval, enriched with the test result “Passed” 2©.
Having browsed the source code of the file 3© to understand which
parts need to change (a Reading interval is triggered), Wendy
performs the necessary changes. A re-execution of the unit test

2. http://www.letsdeveloper.com
3. Project report: http://goo.gl/k9KzYj

shows Wendy that there is a failing test after her edit 4©. Wendy
steps through the test with the debugger 5© and fixes the error.
The final re-execution of the test 6© succeeds.

Interval Concept. WATCHDOG starts or prolongs intervals
concerning the user’s activity (Reading, Typing, and other
general activity) once it detects an interval-type preserving action.
For example, if there is a Reading interval on class X started
for 5 seconds and the plugin receives a scroll event, the interval
is prolonged. However, if we detect that the IDE lost focus (end
of EclipseActive interval), or the user switched from reading
file X (Reading) to typing in file Y (Writing), we immediately
end the currently opened interval. WATCHDOG closes all such
activity-based intervals after an inactivity timeout of 16 seconds,
so that we adjust for breaks and interruptions. A timeout length
of roughly 15 seconds is standard in IDE-based observational
plugins [9], [23], [24]. Most interval types may overlap. For
example, WATCHDOG always wraps Typing or Reading in-
tervals inside a UserActive interval (which it, in turn, wraps
in an EclipseActive, Perspective, and EclipseOpen
interval). However, Reading and Typing intervals are by nature
mutually exclusive. We refer to an IDE session as the time span in
which the IDE was continuously running (even in the background)
and not closed or interrupted, for example, because the developer
suspended the computer. All intervals that belong to one IDE
session are hence wrapped within one EclipseOpen interval,
1© in Figure 5.

We enrich Reading and Typing intervals with different
information about the underlying file. To all intervals we add
a hash of the filename and its file type, such as XML or Java
class. For Java classes, we add their SLOC and classify them as
production or test code. As our churn measure for the size of a
change, we also add the Levenshtein edit distance [25] between
the content of the file before and after the modification during the
interval to Typing intervals.

Test Recognition. WATCHDOG has four different recognition
categories for test classes (see Table 1): To designate the file as a
test that can be executed in the IDE, we require the presence of at
least one JUnit import together with at least one method that has
the @Test annotation or that follows the testMethod naming
convention. This way, we support both JUnit3 and JUnit4. Fur-
thermore, we recognize imports of common Java test frameworks
and their annotations (Mockito, PowerMock). As a last resort, we
recognize when a file contains “Test” in its file name or the project
file path. It is a common convention to pre- or postfix the names of
test files with Test [4], or to place all test code in one sub-folder.
For example, the standard Maven directory layout mandates that
tests be placed under src/test/java [26]. Thereby, we can
identify and differentiate between all tests that employ standard
Java testing frameworks as test runners for their unit, integration,
or system tests, test-related utility classes, and even tests that are
not executable in the IDE. We consider any Java class that is
not a test according to this broad test recognition strategy to be
production code.

2.3.2 FEEDBAG++-to-WATCHDOG Interval Transformation

In contrast to the native WATCHDOG clients, FEEDBAG++ pro-
vides us with a raw event stream (see Section 2.1.1). To feed
FEEDBAG++ data into the WATCHDOG pipeline, we derive inter-
vals via a post factum analysis of FEEDBAG++ data. In addition to
this technical difference, several minor semantic differences exist

https://web.archive.org/web/20170606220443/http://letsdeveloper.com/
https://web.archive.org/web/20170606220840/https://testroots.org/reports/project/99e6ea3b01c6584f62948239f507255f44ad69c9.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 1
Overview of WATCHDOG intervals and how we transformed FEEDBAG++ events to them. Related intervals appear without horizontal separation.

Interval Type WATCHDOG Description FEEDBAG++ Transformation

JUnitExecution � Interval creation invoked through the Eclipse JDT-integrated JUnit runner,
which also works for Maven projects (example in Figure 6). Each test
execution is enriched with the SHA-1 hash of its test name (making a link
to a Reading or Typing interval possible), test result, test duration, and
child tests executed.

FEEDBAG++ tracks the ReSharper runner for the execution of NUnit tests.
The results of running tests are easy to match to JUnit’s result states.
However, NUnit does not differentiate between errored and failed tests, so
we map all failing runs to the latter and only report errors for inconclusive
test runs.

Reading Interval in which the user was reading in the IDE-integrated file editor.
Enriched with an abstract representation of the read file, containing the SHA-
1 hash of its filename, its SLOC, and whether it is production or test code.
A test can further be categorized into a test (1) which uses JUnit and is,
therefore, executable in the IDE, (2) which employs a testing framework,
(3) which contains “Test” in its filename, or (4) which contains “test” in the
project file path (case-insensitive). Backed by inactivity timeout.

FEEDBAG++ tracks document and window events, allowing us to identify
when a developer opens a specific file or brings it back to focus. If no other
activity interrupts this, we count it as reading, until the inactivity threshold is
reached.

Typing Interval in which the user was typing in the IDE. Enriched with the
Levenshtein edit distance, backed by inactivity timeout.

We use FEEDBAG++’s edit events to distinguish Reading from Typing
intervals and approximate the Levenshtein distance via the number of
Typing intervals.

UserActive Interval in which the user was actively working in the IDE (evidenced for
example by keyboard or mouse events). Backed by inactivity timeout.

Each user-triggered event extends the current interval (or creates a new one,
if there is none). Once the inactivity threshold is reached or the event stream
ends, we close the current interval.

EclipseActive � * Interval in which the IDE had the focus on the computer. FEEDBAG++ monitors the active window in the same way as WATCHDOG
does. We group events into intervals.

Perspective Interval describing which perspective the IDE was in (Debugging, regular
Java development, ...).

We approximate the manually changed Eclipse Perspectives, with Visual
Studio’s automatically changing perspectives.

WatchDogView * Interval that is created when the user consults the immediate WATCHDOG
statistics. Only available in the Eclipse IDE.

Not provided in FEEDBAG++.

EclipseOpen � Interval in which the IDE was open. If the computer is suspended, the
EclipseOpen is closed and the current sessions ends. Upon resuming,
a new EclipseOpen interval is started, discarding the time in which the
computer was sleeping. Each session has a random, unique identifier.

FEEDBAG++ generates specific events that describe the IDE state. From
the start-up and shutdown events of the IDE, we generate EclipseOpen
intervals.

� As of WATCHDOG 1.5, we support multiple IDEs, so better interval names would have been TestExecution, IDEActive, and IDEOpen.
* Not shown in Figure 5.

in the instrumented IDEs. We had to find congruent concepts for
them and transform FEEDBAG++ events to intervals.

Concept Mapping. The Eclipse, IntelliJ, and the Visual Studio
IDEs are similar conceptually, yet differ in some implementation
details important to our study. In addition to IDE concepts, we had
to map C# concepts to their Java counterparts.

One such central difference is the different testing frameworks
available in the C# ecosystem. FEEDBAG++ recognizes the same
four categories of test classes described in Section 2.3.1: To
designate a file as a test that can be executed in Visual Studio,
we require an import of one of the .NET testing frameworks
NUnit, XUnit, MSUnit, csUnit, MbUnit, or PetaTest. Further-
more, we recognize imports of the C# mocking frameworks moq,
Rhino.Mocks, NSubstitute, and Simple.Mocking.

A difference between Visual Studio and Eclipse is that the
former does not have perspectives that developers can manually
open, but instead it automatically switches between its design view
for writing code, and its debug view for debugging a program
run. We map the concept of these Visual Studio views to the
Perspective intervals in WATCHDOG.

Arguably the largest difference between IDEs is how they
manage different projects and repositories. Eclipse organizes

Fig. 6. Eclipse’s visualization of the JUnitExecution constituents.

source code in a workspace that may contain many potentially
unrelated projects. IntelliJ groups several modules in a project.
Visual Studio organizes code in a solution, which contains a
number of usually cohesive projects. In Java, a single project or
module often contains both the production code and test code.
This is not the case in Visual Studio, where the two kinds of
source code are typically split into two separate projects. If not
accounted for, this leads to a higher number of observed projects in
Visual Studio and distorts the answers to some of our project-level
research questions. To counter this problem, we need functions to
map test code from one project to its corresponding production
code in another. The notion of a Visual Studio solution and even
more so, IntelliJ’s project matches the definition of a Watchdog
project, understood as a cohesive software development effort. To
avoid confusion about the overloaded “project” term, we asked
the user explicitly whether “all Eclipse projects in this workspace
belong to one ‘larger’ project?” in the WATCHDOG registration
dialogues (see Section 2.2).

FEEDBAG++ does not measure the Levenshtein distance in
Typing intervals. However, WATCHDOG data shows that the edit
distance generally correlates strongly with the number of edits:
The number of production code edits correlates at ρ = 0.88 with
production code churn, i.e., the amount of changed code [27],
and the number of test edits is correlated at ρ = 0.86 with test
code churn. Hence, we use the number of edits as a proxy for the
missing churn in FEEDBAG++ data.

Event Transformation. As a second step, we transformed
the event stream to intervals. We re-implemented transformation
rules that work on the raw FEEDBAG++ event stream based on
the interval detection logic that the WATCHDOG plugin family
performs within the IDE. We then store it in WATCHDOG’s central
NoSQL database store (see Figure 1). In the right column of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 6

Table 1, we sketch how we derive the various WATCHDOG interval
types from the events that FEEDBAG++ captures. From there, we
simply re-use the existing WATCHDOG analysis pipeline.

3 RESEARCH METHODS

In this section, we describe the methods with which we analyze
the data for our research questions.

3.1 Correlation Analyses (RQ1, RQ2)

We address our research questions RQ1 and RQ2 with the help
of correlation analyses. For example, one of the steps to answer
RQ1 is to correlate the test code churn introduced in all Typing
intervals with the number of test executions.

Intuitively, we have the assumption that if developers change
a lot of code, they would run their tests more often. Like all
correlation analyses, we first compute the churn and the number
of test executions for each IDE session and then calculate the
correlation over these summed-up values of each session. IDE
sessions form a natural divider between work tasks, as we expect
that developers typically do not close their IDE or laptop at
random, but exactly when they have finished a certain task or
work step (see Table 1).

3.2 Analysis of Induced Test Failures (RQ3)

We abstract and aggregate the tests of multiple projects to derive
general statements like “only 25% of tests are responsible for 75%
of test failures in the IDE.” Algorithm 1 outlines the steps we
use to count the number of executed test cases and the number of
corresponding test failures they have caused per project. We iterate
over all failed test cases (line 9), determine which percentage
of failed test executions they are responsible for (line 10) and
put the resulting list of test cases in descending order, starting
with the test case with the highest responsibility of test failures
(line 12). We then normalize the absolute count numbers to the
relative amount of test cases in the project (line 14) by calling
CALCFAILINGTESTPERCENTAGE on every project, average the
results so that each project has the same weight in the graph, and
plot them.

The algorithm makes assumptions that lead to a likely under-
estimation of the percentage of test failures caused by a specific
test: First, it assumes that test names are stable. If test names
change during our field study, they count as two different tests,
even though their implementation might stay the same. Second,
it excludes projects that only have a small number of test cases
(< 10). If, for instance, a project only has two test cases, the result
that 50% (i.e., one) of them is responsible for all test failures
would be too coarse-grained for our purposes.

3.3 Sequentialization of Intervals (RQ3, RQ4)

For RQ3 and RQ4, we need a linearized stream of intervals
following each other. We generate such a sequence by ordering the
intervals according to their start time. For example, in Figure 5,
the sequenced stream after the first test failure in (4) is:
Failing Test→ Switch Perspective→ Start
JUnit Test→ Read Production Code→ ...

Algorithm 1 Sketch of Test Failure Percentage Calculation
1: procedure CALCFAILINGTESTPERCENTAGE(project)
2: tcs.ok← successful(testcases(project)) . List of every

single successful execution of a test case
3: tcs.failed ← failed(testcases(project)) . List of every

single failed or errored execution of a test case
4: tcs← tcs.ok ∪ tcs.failed
5: if n(unique(tcs) < 10) then . Not enough test cases
6: return
7: end if
8: fail.tc . Map between a test case name (key) and the

relative amount of test executions in which it failed (value)
9: for tc ∈ unique(tcs.failed) do

10: fail.tc(tc)← n(tc ∈ tcs) / n(failed(tests(project)))
11: end for
12: values(fail.tc)← order(values(fail.tc), descending)
13: fail.perc . Per percentage of all test cases, returns which

percentage of failures they are responsible for . Invariants:
fail.perc(0) = 0 and fail.perc(1) = 1

14: for i ∈ {0%,0.1%,0.2%, ...,100%} do
15: first.i.tcs← head(fail.rate, round(i · n(unique(tcs))))
16: failure.rate(i)← sum(values(first.i.tcs))
17: end for
18: return fail.perc
19: end procedure

3.4 Test Flakiness Detection (RQ3)

Flaky tests are defined as tests that show non-deterministic runtime
behavior: they pass one time and fail another time without modi-
fications of the underlying source code or test [28]. Applied to the
WATCHDOG interval concept, we look for subsequent executions
of test cases embedded in JUnitExecution intervals that
have no Typing interval to either production or source code
in-between them in the above linearized interval stream from
Section 3.3. If the result of those subsequent executions differs,
for example Failing Test → ... → Passing Test, we
regard such a test as flaky. To control for external influences, we
only do this within the confines of a session, not across sessions.
Otherwise, the risk for external influences becomes too large,
for example through updating the project via the command line
without our IDE plugin noticing.

3.5 Recognition of Test-Driven Development (RQ4)

Test-Driven development (TDD) is a software development pro-
cess originally proposed by Beck [29]. While a plethora of
studies have been performed to quantify the supposed benefits
of TDD [30], [31], it is unclear how many developers use it in
practice. In RQ4, we investigate how many developers follow
TDD to which extent. In the following, we apply Beck’s definition
of TDD to the WATCHDOG interval concept, providing a formally
verifiable definition of TDD in practice. Since TDD is a process
sequence of connected activities, it lends itself toward modeling
as a state machine [32].

TDD is a cyclic process comprising a functionality-evolution
phase depicted in Figure 7, optionally followed by a functionality-
preserving refactoring phase depicted in Figure 8. We can best
illustrate the first phase with the strict non-finite automaton (NFA,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 7

[33]) in Figure 7a and our developer Wendy, who is now following
TDD: before Wendy introduces a new feature or performs a bug
fix, she assures herself that the test for the production class she
needs to change passes (JOk in Figure 7 stands for a JUnit-
Execution that contains a successful execution of the test under
investigation). Thereafter, she first changes the test class (hence
the name “test-first” software development) to assert the precise
expected behavior of the new feature or to document the bug she
is about to fix. We record such changes in a Typing interval on
test code. Naturally, as Wendy has not yet touched the production
code, the test must fail (JFail). Once work on the test is finished,
Wendy switches to production code (Type Prod.), in which she
makes precisely the minimal required set of changes for his failing
test to pass again (JOk). The TDD cycle can begin anew.

When we applied this strict TDD process, we found that it
is difficult to follow in reality, specifically the clear separation
between changes to test code and later changes to production code.
Especially when developing a new feature like the Board of a
board game in Figure 9, developers face compilation errors during
the test creation phase of TDD, because the class or method they
want to assert on (Board) does not exist yet, since the test has
to be created before the production code. To be able to have an
executing, but failing test, they have to mix in the modification
or creation of production code. Moreover, developers often know
the result of a test without executing it (for example, because it
contains obvious compile errors like in Figure 9), and that a test
case succeeds before they start to work on it (for example, because
they fixed the test on their previous day at work). To adjust for
these deviations between a strict interpretation of TDD and its
application, we created the lenient non-finite automaton (ε-NFA,
[33]) in Figure 7b, which is more suitable for the recognition of
TDD in practice. Due to the ε-edge, a TDD cycle can directly start
with modifications of test code.

TDD does not only comprise a functionality-changing phase,
but also the code refactor phase depicted in Figure 8. In this phase,
developers have the chance to perform functionality-preserving
refactorings. Once they are finished with refactoring, the tests
must still pass [29]. It is impossible to separate changes between
production and test classes in the refactoring phase in practice, as
the latter rely on the API of the first.

(a) Strict

(b) Lenient

Fig. 7. Strict and lenient NFAs of TDD. JOk stands for a passing and
JFail for a failing test execution (JUnitExecution).

Fig. 8. NFA for the refactoring phase of TDD.

Fig. 9. Compile errors while creating a TDD test.

To assess how strictly developers follow TDD, we convert
all three NFAs to their equivalent regular expressions and match
them against the linearized sequence of intervals (see Section 3.3).
For a more efficient analysis, we can remove all intervals from
the sequentialized stream except for JUnitExecution and
Typing intervals, which we need to recognize TDD. To be able
to draw a fine-grained picture of developers’ TDD habits, we
performed the analysis for each session individually. We count
refactoring activity towards the total usage of TDD. The portion of
matches in the whole string sequence gives us a precise indication
of a developer’s adherence to TDD.

3.6 Statistical Evaluation (RQ1–RQ5)
When applying statistical tests in the remainder of this paper,
we regard results as significant at a 95% confidence interval
(α = 0.05), i.e., iff p 6 α . All results of tests ti are statistically
significant at this level, i.e., ∀i : p(ti)6 α .

For each test ti, we first perform a Shapiro-Wilk Normality test
si [34]. Since all our distributions significantly deviate from a nor-
mal distribution according to Shapiro-Wilk (∀i : p(si)< 0.016α),
we use non-parametric tests: 1) For testing whether there is a
significant statistical difference between two distributions, we use
the non-parametric Wilcoxon Rank Sum test. 2) For performing
correlation analyses, we use the non-parametric Spearman rank-
order (ρ) correlation coefficient [35]. Hopkins’s guidelines facil-
itate the interpretation of ρ [36]: they describe 0 6 |ρ| < 0.3 as
no, 0.3 6 |ρ|< 0.5 as a weak, 0.5 6 |ρ|< 0.7 as a moderate, and
0.7 6 |ρ|6 1 as a strong correlation.

4 STUDY PARTICIPANTS

In this section, we first explain how we attracted study participants,
report on their demographics, and then show how we produced a
normalized sample.

4.1 Acquisition of Participants
We reached out to potential developers to install WATCHDOG

(WD) and FEEDBAG++ (FB) in their IDE by:
1) Providing project websites (WD, FB).4

4. http://www.testroots.org, http://kave.cc

https://web.archive.org/web/20170606225704/https://testroots.org/
https://web.archive.org/web/20170606225810/http://www.kave.cc/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Descriptive statistics of study data and participants.

IDE Language Plugin & Version #Users #Countries #Projects Work Time #Sessions #Intervals Collection Period Runtime

EC Java WD 1.0 – 2.0.2 2,200 115 2,695 146.2 years 66,623 12,728,351 15 Sept. 2014 – 1 March 2017 488 min
IJ Java WD 1.5 – 2.0.2 117 30 212 3.9 years 5,511 950,998 27 June 2015 – 1 March 2017 25 min

AS Java WD 1.7 – 2.0.2 71 27 178 1.0 year 2,717 347,468 26 Jan. 2016 – 1 March 2017 13 min
VS C# FB 0.1010 – 0.1015 55 unknown 423 9.7 years 2,259 239,866 12 June 2016 – 1 March 2017 13 min

Σ Java, C# WD, FB 2,443 118 3,508 161 years 77,110 14,266,683 15 Sep. 2014 – 1 March 2017 541 min
ΣCN Java, C# WD, FB 181 38 434 33.9 years 15,928 3,137,761 15 Sep. 2014 – 1 March 2017 83 min

2) Raffling off prizes (WD).
3) Delivering value to WATCHDOG users in that it gives

feedback on their development behavior (WD).
4) Writing articles in magazines and blogs relevant to Java

and Eclipse developers: Eclipse Magazin, Jaxenter, Eclipse-
Planet, Heise News (WD).

5) Giving talks and presentations at developer conferences:
Dutch Testing Day, EclipseCon (WD).

6) Presenting at research conferences [8], [9], [13], [23], [37]
(WD, FB).

7) Participating in a YouTube Java Developer series [38]
(WD).

8) Penetrating social media: Reddit, Hackernews, Twitter,
Facebook (WD, FB).

9) Approaching software development companies (WD, FB).
10) Contacting developers, among them 16,058 Java developers

on GitHub (WD).
11) Promoting our plugins in well-established Eclipse [39],

IntelliJ [40], and Visual Studio [41] marketplaces (WD,
FB).

12) Launching a second marketplace that increases the visibility
of scientific plugins within the Eclipse ecosystem, together
with the Eclipse Code Recommenders project [42] (WD).

13) Promoting the plugin in software engineering labs at TU
Darmstadt (FB).

14) Approaching an electrical engineering research group work-
ing with Visual Studio (FB).

We put emphasis on the testing reports of WATCHDOG to
attract developers interested in testing. Instead, for FEEDBAG++,
we mainly advertised its integrated code completion support.

4.2 Demographics of Study Subjects
Table 2 and Figure 10 provide an overview of the observational
data we collected for this paper. In total, we observed 14,266,683
user interactions (so-called intervals, see Section 2.1) in 77,110
distinct IDE sessions. Figure 10a shows how 10% of our 2,443
users contributed the wealth of our data (80%). The majority
of users and, thus, data stems from the Eclipse IDE, shown in
Figure 10b. Reasons include that the collection period for Eclipse
is longer than that of the other IDEs and that we advertised it
more heavily. In this paper, we report on an observatory field
study stretching over a period of 2.5 years, on data we collected
from the 15th of September 2014 to March 1st 2017, excluding
student data that we had analyzed separately [9], but including
our original developer data [8]. Data periods for other plugins are
shorter due to their later release date. As we updated WATCHDOG

to fix bugs and integrate new features (see Section 2.1.2), we also
filtered out data from deprecated versions 1.0 and 1.1.

Our users stem from 118 different countries. The most frequent
country of is the United States (19% of users), followed by

China (10%), India (9%), Germany (6%), The Netherlands (4%),
and Brazil (4%). The other half comes from the 112 remaining
countries, with less than 4% total share each. Our developers
predominately use some variant of Windows (81% of users),
MacOS (11%), or Linux (8%). Their programming experience
in Figure 10c is normally distributed (a Shapiro-Wilks test fails
to reject the null hypothesis that it is not normally distributed at
p = 0.15). Generally, we have more inexperienced (< 3 years,
69% of users) than experienced users. On the other hand, very
experienced developers (> 7 years) represent more than 13% of
our population.

Overall, the 2,443 participants registered 3,508 unique proj-
ects. The registered projects stem from industry as well as famous
open-source initiatives, such as the Apache Foundation, but also
include private projects.

Using the average work time for OECD countries of 1770
hours per year,5 we observed a total work time of 161 developer
years on these registered projects in the IDE. The last column
in Table 2 denotes the runtime of our analysis pipeline running
on a dedicated server with 128GB RAM using eight Intel Xeon
E5-2643 cores at 3.50GHz.

This paper broadens our single-IDE study on developer testing
in the IDE to a very large set of developers (a ten-fold increase
over our original WATCHDOG data [9]). Survey responses from
2,291 registrations of WATCHDOG users and projects complement
our technical IDE observations that now stem from four IDEs
in two mainstream programming languages. FEEDBAG++ data
stems from the March 1st, 2017 event data set [43].

4.3 Data Normalization
As discussed in Section 4.2, the majority of our intervals (80%)
stems from only 378 users. The long tail of users that contributed
only little data might impact some of our analyses (see Fig-
ure 10a). Conversely, the large amount of data we received from
few developers might affect our results with a bias toward the
individual development preferences of those few developers. To
reduce both biases, we cap and normalize our data using stratified
random sampling on the number of sessions per user. We chose
sessions, because they are at a finer granularity than projects, but
still allow analyses such as the TDD recognition, which would not
work when sampling random intervals that have no connection to
each other.

We first order our users by the number of sessions each user
submitted and cap at below the user at which we reached 80% of
all sessions. This leaves in users with at least 88 sessions each,
effectively removing the bulk of users who barely contributed
data and might, thus, skew user- or project-based analyses. The
problem that few users have a disproportionately large impact

5. http://stats.oecd.org/index.aspx?DataSetCode=ANHRS

https://web.archive.org/web/20170606230059/http://stats.oecd.org/loading.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 9

(a) Sessions per User

0

500

1000

0 500 1000 1500 2000
Developer−ID

#S
es

si
on

s
(b) Sessions per IDE

100

101

102

103

104

105

AS EC IJ VS
IDE

#S
es

si
on

s

(c) User Experience

0

300

600

900

1200

< 1 1−2 3−6 7−10 > 10
Programming Experience (Years)

#D
ev

el
op

er
s

0

300

600

900

1200

< 1 1−2 3−6 7−10 > 10
Programming Experience (Years)

N
um

be
r

of
 d

ev
el

op
er

s

IDE
AS
EC
IJ
VS

Fig. 10. Distributions of the number of sessions per developer (all IDEs), per IDE (log scale), and their programming experience (WATCHDOG).

on the analyzed data remains. Hence, we normalize the data by
randomly sampling 88 of the available sessions for each user.
After this, every user has the same influence on the results in
our new capped, normalized data set, depicted as ΣCN in Table 2.
In comparison to our overall population Σ, the distribution of orig-
inating countries and IDEs is similar. The only apparent change in
population demographics is an almost three-fold increase of very
experienced developers to 32% in ΣCN .

Since our study is a large-scale observatory field study, we pri-
marily use our non-normalized data set Σ when answering research
questions. Filtering criteria remain to some extent arbitrary and
might induce a bias themselves. Whenever there is a significant
difference in the capped normalized data set ΣCN , we report and
discuss this in the answer to the appropriate research question.

5 RESULTS

In the following, we report the results to each of our research
questions individually per subsection.

5.1 RQ1: Which Testing Patterns Are Common In the
IDE?

To answer how and why developers test, we must first assess:
RQ1.1 How Common Is Codified Testing in the IDE?
When we apply our broad recognition of test classes as

described in Section 2.3.1 and Table 1, we detect test activities
in only 43% of projects in our data set (EC: 46%, IJ: 26%, AS:
28%, VS: 26%), meaning that, in total, only 1,498 projects out of
3,508 contain tests that a user either read, changed, or executed in
the IDE. This is one of the analyses that is potentially impacted
by data skews due to a short amount of observed development
behavior for many users. However, even in ΣCN , only 255 projects
out of 434 (58%) showed testing activity.

If we restrict the recognition to tests that can be run through
the IDEs, we find that 594 projects have such tests (EC: 436,
IJ: 88, AS: 27, VS: 40), about 17% of the registered projects
(EC: 16%, IJ: 22%, AS: 15%, VS: 9%). In ΣCN , this percentage
is somewhat higher at 29%, with 124 projects with executable
tests. By comparing the WATCHDOG projects IDE data to what
developers claimed in the survey, we could technically detect
JUnit tests in our interval data (as either Reading, Typing,
or JUnitExecution) for only 43% of projects that should
have such tests according to the survey (EC: 42%, IJ: 61%, AS:

32%). Here, we find the only obvious difference in ΣCN , where
the percentage of users who claimed to have JUnit tests and who
actually had them, is 73%.

Our second sub-research question is:
RQ1.2 How Frequently Do Developers Execute Tests?

Of the 594 projects with tests, we observed in-IDE test executions
in 431 projects (73%, EC: 75%, IJ: 68%, AS: 37%, VS: 80%).
In these 431 projects, developers performed 70,951 test runs (EC:
63,912, IJ: 3,614, AS: 472, VS: 2,942). From 59,198 sessions
in which tests could have been run because we observed the
corresponding project to contain an executable test at some point
in our field study, we observed that in only 8% or 4,726 sessions
(EC: 8.1%, IJ: 7.4%, AS: 3.4%, VS: 8.9%) developers made use
of them and executed at least one test. The average number of
executed tests per session is, thus, relatively small, at 1.20 for
these 431 projects. When we consider only sessions in which at
least one test was run, the average number of test runs per session
is 15 (EC: 15.3, IJ: 11.1, AS: 7.6, VS: 17.9).

When developers work on tests, we expect that the more
they change their tests, the more they run their tests to inform
themselves about the current execution status of the test they
are working on. RQ1.3 and following can, therefore, give an
indication as to why and when developers test:

RQ1.3 Do Developers Test Their Test Code Changes?
The correlation between test code changes and the number of

test runs yields a moderately strong ρ = 0.65 (EC: 0.64, IJ: 0.60,
AS: 0.41, VS: 0.66) in our data sample (p-value < 0.01). In other
words, the more changes developers make to a test, the more likely
are they to execute this test (and vice versa).

A logical next step is to assess whether developers run tests
when they change the production code: Do developers assert that
their production code still passes the tests?

RQ1.4 Do Developers Test Their Production Code
Changes?

The correlation between the number of test runs and number of
production code changes is generally weaker, with ρ = 0.39 (EC:
0.38, IJ: 0.47, AS: 0.20, VS: 0.60) and p-value < 0.01.

Finally, in how many cases do developers modify their tests,
when they touch their production code (or vice versa), expressed
in:

RQ1.5 Do Developers Co-Evolve Test and Production
Code?

In this case, the Spearman rank correlation test indicates no
correlation (ρ = 0.31, EC: 0.26, IJ: 0.58, AS: 0.43, VS: 0.73)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 10

between the number of changes applied to test and production
code. This means that developers do not modify their tests for
every production code change, and vice versa.

5.2 RQ2: What Characterizes The Tests Developers
Run In The IDE?

When developers run tests in the IDE, they naturally want to see
their execution result as fast as possible. To be able to explain how
and why developers execute tests, we must, therefore, first know
how long developers have to wait before they see a test run finish:

RQ2.1 How Long Does a Test Run Take?
In all IDEs except for Visual Studio, 50% of all test executions

finish within half a second (EC: 0.42, AS: 1.8s, IJ: 0.47s, VS:
10.9s), and over 75% within five seconds (EC: 2.37s, IJ: 2.17s,
AS: 3.95s, VS: 163s), see Table 3 for the average values. Test
durations longer than one minute represent only 8.4% (EC: 4.2%,
IJ: 6.9%, AS: 6.1%, VS: 32.0%) of the JUnitExecutions.

Having observed that most test runs are short, our next step is
to examine whether short tests facilitate testing:

RQ2.2 Do Quick Tests Lead to More Test Executions?
To answer this research question, we collect and average the

test runtime and the number of times developers executed tests in
each session, as in Section 5.1. Then, we compute the correlation
between the two distributions. If our hypothesis was true, we
would receive a negative correlation between the test runtime and
the number of test executions. This would mean that short tests
are related to more frequent executions. However, the Spearman
rank correlation test shows that this is not the case, as there is
no correlation at ρ = 0.27 (EC: 0.40, IJ: 0.24, AS: 0.83, VS:
0.41). In Android Studio’s case, the opposite is true, indicating a
strong relationship between the runtime of a test and its execution
frequency. Combined with the fact that only a small number of
tests are executed, our results suggest that developers explicitly
select test cases [44]. While test selection is a complex problem
on build servers, it is interesting to investigate how developers
perform it locally in their IDE:

RQ2.3 Do Developers Practice Test Selection?
A test execution that we capture in a JUnitExecution

interval may comprise multiple child test cases. However, 86%
of test executions contain only one test case (EC: 86%, IJ: 88%,
AS: 80%, VS: 85%), while only 7.7% of test executions comprise
more than 5 tests (EC: 7.8%, IJ: 4.8%, AS: 7.6%, VS: 10.3%),
and only 2.2% more than 50 tests (Table 3, EC: 2.2%, IJ: 0.1%,
AS: 0.0%, VS: 4.4%).

Test selection likely happened if the number of executed tests
in one JUnitExecution is smaller than the total number of
tests for the given project (modulo test renames, moves, and
deletions). The ratio between these two measures allows us to
estimate the percentage of selected test cases. If it is significantly
smaller than 100%, developers practiced test selection. Our data
in Table 3 shows that 86.4% of test executions include only one
test case.

To explain how and why this test selection happens with regard
to a previous test run, we investigate two possible scenarios: First,
we assume that the developer picks out only one of the tests run
in the previous test execution, for example to examine why the
selected test failed. In the second scenario, we assume that the
developer excludes a few disturbing tests from the previous test
execution. In the 1719 cases in which developers performed test
selection, we can attribute 94.6% (EC: 94.6%, IJ: 91.8%, AS:

82.4%, VS: 95.5%) of selections to scenario 1, and 4.9% (EC:
5.2%, IJ: 0.0%, AS: 5.8%, VS: 3.6%) to scenario 2. Hence, our
two scenarios together are able to explain 99.5% (EC: 99.8%, IJ:
91.8%, AS: 88.2%, VS: 99.1%) of test selections in the IDE.

5.3 RQ3: How Do Developers Manage Failing Tests?

Having established how often programmers execute tests in their
IDE in the previous research questions, it remains to assess:

RQ3.1 How Frequently Do Tests Pass and Fail?
There are three scenarios under which a test execution can

return an unsuccessful result: The compiler might detect compila-
tion errors, an unhandled runtime exception is thrown during the
test case execution, or a test assertion is not met. In either case,
the test acceptance criterion is never reached, and we therefore
consider them as a test failure, following JUnit’s definition.

In the aggregated results of all observed 70,951 test executions,
57.4% of executions fail, i.e., 40,700 JUnitExecutions (EC:
57.4%, IJ: 60.7%, AS: 56.8%, VS: 43.2%), and only 42.6% pass
successfully. Moreover, when we regard the child test cases that
are responsible for causing a failed test execution, we find that in
86% (EC: 95%, IJ: 84%, AS: 88%, VS: 94%) of test executions
only one single test case fails, and is, thus, responsible for making
the whole test execution fail, even though other test cases from the
same test class might pass, as exemplified in Figure 6.

To zoom into the phenomenon of broken tests, we ask:
RQ3.2 Are All Test Cases Equally Responsible for Test

Failures?
In this question, we regard all test cases that have ever been

executed and observed. We then calculate and track how many
times each of them failed, as described in detail in Section 3.2.
Since we cannot track renames of files and, therefore, treat them
as two different files, it is likely that the real error percentage for
test cases is slightly higher. Figure 11 depicts the results, showing
that only 25% of test cases are responsible for over 75% of test
failures in Eclipse and Visual Studio. In all IDEs, 50% of test cases
are responsible for over 80% of all test errors. While slightly lower
for IntelliJ-based IDEs, the failure and growth rate of the curve is
similar across IDEs, suggesting a near-logarithmic growth.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Ratio of All Executed Test Cases

R
at

io
 o

f I
nd

uc
ed

 T
es

t F
ai

lu
re

s

IDE
AS
EC
IJ
VS

Fig. 11. Accumulated error responsibility of test cases per IDE. Based
on 134 projects with ≥ 10 run test cases (EC: 112, IJ: 9, AS: 1, VS 12).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3
Descriptive statistics for RQ2 and RQ3 in the ∑ data (similar across IDEs, hence abbreviated).

Variable Unit Min 25% Median Mean 75% Max Log-Histogram

JUnitExecution duration Sec 0 0 0.5 107.2 3.1 652,600

Tests per JUnitExecution Items 1 1 1 5.0 1 2,260

Time to fix failing test Min 0 0.9 3.7 44.6 14.9 7,048

Test flakiness per project Percent 0 0 0 12.2 15.8 100

As developers apparently often face test failures, we ask:
RQ3.3 How Do Developers React to a Failing Test?
For each failing test execution in our data sets, we generate a

linearized stream of subsequently following intervals, as explained
in Section 3.3. By counting and summing up developers’ actions
after each failing test for up to 3.3 minutes (200 seconds), we can
draw a precise picture of how developers manage a failing test
in Figure 12. Across all IDEs, the most widespread immediate
reaction in ∼50% of cases within the first seconds is to read
test code.6 The second most common reaction, at stable 20% of
reactions across the time, is to read production code.

The next most common reactions – switching focus away from
the IDE (for example, to turn to the web browser), switching
perspective in the IDE (for example to a dedicated debugging per-
spective), typing test code, and being inactive – appear in different
order among IDEs. Typing test code, however, is a more common
reaction to a failing test in all IDEs than typing production code.
Starting another test execution is a fairly common course of action
within the first minute across all IDEs, reaching ∼15% frequency.
Switching perspective is only prevalent in the first seconds (see
Figure 12d), since it is an automated feature of Visual Studio (see
Section 2.3.2). Altogether quitting the IDE almost never happens
and is, therefore, not shown. After two minutes (120 seconds), the
reactions trend asymptotically toward their overall distribution,
with little variability.

The logical follow-up to RQ3.3 is to ask whether developers’
reactions to a failing test are in the end successful, and:

RQ3.4 How Long Does It Take to Fix a Failing Test?
To answer this question, we determine the set of unique test cases
per project and their execution result. The 40,700 failing test
executions were caused by 15,696 unique test classes according
to their file name hash (EC: 13,371, IJ: 959, AS: 94, VS: 1,271).
We never saw a successful execution of 32% (EC: 28%, IJ: 50%,
AS: 46%, VS: 54%) of tests, and at least one successful execution
of the others.

For the 10,701 failing tests that we know have been fixed
later, we examine how long developers take to fix a failing test.
Table 3 shows that a quarter of test repairs happen within less than
a minute, half within 4 minutes, and 75% within 15 minutes.

One reason why in some cases the time between a failing and
succeeding test might be so short is that developers did not actually
have to make repairs to their tests. Instead, they might have just
executed the tests without changes, since it might be flaky. A flaky
test is a test that shows non-deterministic pass behavior [45], [46],

6. While writing this extension, we uncovered a bug in the analysis code to
RQ3.3. The bug swapped the “Read Test Code” with the “Read Production
Code” label. This lead us to wrongly claim in the original WATCHDOG
paper [8] that developers dived into offending production code first, which
was never the case.

meaning it (randomly) fails or succeeds. To answer this question,
we ask for the IDE:

RQ3.5 Do Developers Experience Flaky Tests?
Following the research method described in Section 3.4, we

measure the “test flakiness” per project, the percentage of tests
that show non-deterministic behavior despite the fact that there
are no changes to the project in the meantime, including changes
to test, production, or configuration files. Table 3 shows that the
mean flakiness value is 12.2%, with outliers of zero and 100%
flaky test percentages.

5.4 RQ4: Do Developers Follow TDD In The IDE?

In RQ4, we aim to give an answer to the adoption of TDD in
practice.

Our results reveal that sessions of only 43 developers match
against a strict TDD definition, the top NFA in Figure 7a (EC:
42, IJ: 0, AS: 0, VS: 1). This makes 1.7% of all developers, or
11.8% of developers who executed tests, see Section 5.1. In total,
only 2.2% of sessions with test executions contain strict TDD
patterns. Only one developer uses strict TDD in more than 20% of
the development process on average. Seven of the 43 developers
use TDD for at least 5h of their development. The remaining
35 developers use strict TDD in less than 5h of their intervals.
Refactoring is the dominant phase in TDD: 39 of the 43 developers
did some form of refactoring. At 69%, the majority of the intervals
of the 43 developers are devoted to the refactoring phase of TDD
(depicted in Figure 8). Most developers who practiced strict TDD
have a long programming experience: 23 declared an experience
between 7 and 10 years.

Sessions from 136 developers match against the lenient TDD
NFA in Figure 7b (EC: 42, IJ: 18, AS: 3, VS: 3). This makes
5.6% of all developers, or 37% of developers who executed tests
(EC: 15%, IJ: 38%, AS: 33%, VS: 19%), see Section 5.1. Sixteen
developers use lenient TDD in more than 20% of their intervals,
including the developer who has over 20% strict TDD matches.
28 developers use lenient TDD in more than 10%, but less than
20% of their intervals. 98 of the 136 developers who use lenient
TDD also refactor their code according to the TDD refactoring
process in Figure 8. For them, 48% of intervals that match against
the lenient TDD are due to refactoring. Of the 136 developers,
49 have little programming experience (0–2 years), 25 have some
experience (3–6 years), and the majority of 59 is very experienced
(> 7 years).

In our normalized data set, the results on the use of TDD
are somewhat higher, with 6% of users following strict, and 22%
following lenient TDD. The distribution of testing- and refactoring
is similar to the Σ values.

However, even top TDD users do not follow TDD in most
sessions. For example, the user with the highest TDD usage has

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 12

(a) Eclipse

●

●
●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

F
re

qu
en

cy
 o

f R
ea

ct
io

n

(b) IntelliJ

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

(c) Android Studio

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

F
re

qu
en

cy
 o

f R
ea

ct
io

n

(d) Visual Studio

●

● ●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

●

●
●

0%

20%

40%

60%

0 50 100 150 200
Time (s)

F
re

qu
en

cy
 o

f R
ea

ct
io

n

Reaction ●
Switched Focus
Ran a Junit Test

Switched Persp.
Read Prod. Code

Read Test Code
Typed Prod. Code

Typed Test Code
Were inactive

Fig. 12. Frequency of immediate reactions to a failing test over time, separated by IDE.

one session with 69% compliance to TDD. On the other hand, in
the majority of the remaining sessions, the developer did not use
TDD at all (0%). We verified this to be common also for the other
developers who partially used TDD. These low results on TDD are
complemented by 574 projects where users claimed to use TDD,
but in reality only 47 of the 574 did according to our definition.

5.5 RQ5: How Much Do Developers Test In The IDE?
In WATCHDOG clients, we asked developers how much time they
spend on engineering tests. To compare survey answers to their
actual development behavior, we consider Reading and Typing
intervals, and further split the two intervals according to the type
of the document the developer works on: either a production or
test class. The duration of test executions does not contribute
to it, as developers can typically work while tests execute. The
mostly short test duration is negligible compared to the time spent

on reading and typing (see Section 5.2). When registering new
projects, developers estimated the time they spend on testing in the
project. Hence, we have the possibility to verify how accurate their
estimation was by comparing it to their actual testing behavior.

There are two ways to aggregate this data at different levels
of granularity. The first is to explore the phenomenon on a per-
project basis: we separately sum up the time developers are
engineering (reading and writing) production classes and test
classes, and divide it by the sum of the two. Then, we compare
this value to the developers’ estimation for the project. This way,
we measure how accurate each individual prediction was. The
second way is to explore the phenomenon in our whole data set, by
averaging across project and not normalizing for the contributed
development time (only multiplying each estimation with it).

Per-project measurement. Following Halkjelsvik et al. [47],
Figure 13 shows the relative directional error of estimations as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 13

(a) Eclipse

0

30

60

90

−100 −50 0 50 100
Delta production−% reality vs. estimation (% points)

N
um

be
r

of
 p

ro
je

ct
s

(b) IntelliJ

0

2

4

6

8

−100 −50 0 50
Delta production−% reality vs. estimation (% points)

N
um

be
r

of
 p

ro
je

ct
s

(c) Android Studio

0

2

4

6

−100 −50 0 50
Delta production−% reality vs. estimation (% points)

N
um

be
r

of
 p

ro
je

ct
s

Fig. 13. Difference between estimated and actual time spent on testing split per IDE (no data for FEEDBAG++).

a histogram of the differences between the measured production
percentage and its estimation per project. A value of 0 means
that the estimation was accurate. A value of 100 denotes that the
programmer expected to only work on tests, but in reality only
worked on production code (-100, precisely the opposite). The
picture on the correctness of estimations is diverse. In Eclipse,
developers tend to overestimate their testing effort by 17%-points,
see Figure 13a, where the median of the distribution is shifted
to the right of 0, marked by the red line. While there are much
fewer observations, the reverse is true for Figure 13c with an error
of -23.4%-points. At an average estimation difference of -2.2%,
IntelliJ developers seemed to be most accurate. Moreover, they
have fewer extreme outliers than Eclipse (axes labels of Figure 13a
and Figure 13b). However, the distribution of estimations in
Figure 13b shows that the average mean value can be deceiving,
as the graph demonstrates a broad proliferation of evening-out
estimations from -40% to +50%, but no spike at 0%. There are
relatively few observations for Android Studio (20) and IntelliJ
(67) in comparison to Eclipse. On a per project-base, the average
mean time spent testing is 28% (EC: 27%, IJ: 38%, AS: 51%, VS:
27%). However, developers estimated a distribution of 51% on
production code (EC: 56%, IJ: 64%, AS: 73%), and 49% on tests,
so they overestimated the time spent on testing by 21% percentage
points, or 1.75 times.

Averaged measurement. When we do not normalize the data
per project for our whole data set Σ, we find that all developers
spend in total 89% of their time writing or reading production
classes (EC: 89.3%, IJ: 98.5%, AS: 84.0% VS: 60.0%), and 11%
of their time on testing (EC: 10.7%, IJ: 1.5%, AS: 16.0%, VS:
40.0%). These implausibly large differences to the normalized
testing percentage of 28% and between the IDEs remind us to
consider ΣCN again. Its average mean test percentage of 26.2%
confirms the per-project normalized measurement we reported
above (28%). We therefore use these values in the discussion.

Moreover, reading and writing are relatively uniformly spread
across test and production code: while developers read production
classes for 96.6% of the total time they spend in them, they read
tests longer, namely 96.9% of the total time they spend in them.

6 DISCUSSION

In this section, we interpret the results to our research questions
and put them in a broader perspective.

6.1 RQ1: Which Testing Patterns Are Common In the
IDE?

In RQ1, we established that in over half of the projects, we
did not see a single opened test, even when considering a very
lenient definition that likely overestimates the number of tests.
The test detection rate in the Eclipse-based client is almost twice
as high as in the other clients. A possible reason might be that
we concentrated our testing advertisement efforts on Eclipse.
An investigation of testing practices on the popular Continuous
Integration (CI) server Travis CI showed a somewhat higher test
rate at 69% for Java projects [15]. Reasons might be that testing
is the central phase of CI [15], [48] and that projects that have set
up Travis CI might be more mature in general. This frequency is
closer to the 58% we found in our normalized data set. Moreover,
our IDE observation does not mean that the projects contain no
tests (a repository analysis might find that there exist some), but it
does indicate that testing is not a prime activity of the registered
WATCHDOG developers. Alarmingly, only 43% of the projects
that claimed to have JUnit tests in the survey actually had intervals
showing tests (“truth tellers”). For the other 57%, their developer
did not execute, read, or modify any test in the observation period.
The varying amount of data we received from users impacts this
measure, since we are more likely to detect test activity within a
large amount of general activity for one user than when we have
little data overall. Our data distribution suggests that normalization
should give us a more realistic picture, see Figure 10a. Conse-
quently, ΣCN has a “truth teller” ratio of 73%. Since we likely
overestimate tests, these two discoveries raise questions: Which
value does testing have in practice? And, further, are (anonymous)
developers’ survey answers true and which measures are suitable
to ensure correctness of our conclusions?

Roughly half of projects and users do not practice testing in
the IDE actively.

Only 17% of all projects comprise tests that developers can
run in the IDE. The values across IDEs are relatively similar. We
assume the real percentage is similar for Visual Studio, but shows
lower due to the fact that tests are organized in their own project,
see Section 2.3.2. For 27% of projects that have executable IDE
tests developers never exercise the option to execute them. This
gives a hint that testing might not be as popular as we thought [49].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 14

Reasons might include that there are often no pre-existing tests for
the developers to modify, that they are not aware of existing tests,
or that testing is too time-consuming or difficult to do on a constant
basis. The apparent lack of automated developer tests might be one
factor for the bug-proneness of many current software systems.

Even for projects that have tests, developers did not execute
them in most of the sessions. In contrast, the mean number of test
runs for sessions with at least one test execution was high (15).

Developers largely do not run tests in the IDE. However,
when they do, they do it extensively.

One reason why some developers do not execute tests in the
IDE is that the tests would render their machine unusable, for
example during the execution of UI tests in the Eclipse Platform
UI project. The Eclipse developers push their untested changes to
the Gerrit review tool [50] and rely on it to trigger the execution
of the tests on the CI server. In this case, the changes only become
part of the “holy repository” if the tests execute successfully.
Otherwise, the developer is notified via email. Despite the tool
overhead and a possibly slower reaction time, both anecdotal
evidence and our low results on test executions in the IDE suggest
that developers increasingly prefer such more complex setups to
manually executing their tests in the IDE. IDE creators could
improve the CI server support in future releases to facilitate this
new workflow of developers.

Every developer is familiar with the phrase “Oops, I broke
the build” [51]. The weak correlations between test churn and
test executions (RQ1.3), and production churn and test executions
(RQ1.4) suggest an explanation: developers simply do not assert
for every change that their tests still run, because “this change
cannot possibly break the tests.” Even when the modifications to
production or test code get larger, developers do not necessarily
execute tests in the IDE more often [52]. These observations could
stem from a development culture that embraces build failures and
sees them as part of the normal development life cycle, especially
when the changes are not yet integrated into the main development
line.

The weak correlation between production and test code churn
in RQ1.5 is, on the one hand, expected: tests often serve as
documentation and specification of how production code should
work, and are, therefore, less prone to change. This conclusion is
in line with previous findings from repository analyses [4], [53]. If,
on the other hand, a practice like TDD was widely adopted (RQ4),
we would expect more co-evolution of tests and production code,
expressed in a higher correlation. Supporting this observation,
Romano et al. found that, even when following TDD, developers
“write quick-and-dirty production code to pass the tests, [and] do
not update their tests often” [54].

Tests and production code do not co-evolve gracefully.

6.2 RQ2: What Characterizes The Tests Developers
Run?

Another factor that could influence how often developer run tests,
is how long they take to run. In RQ2, we found that testing in the
IDE happens fast-paced. Most tests finish within five seconds, or
less.

Tests run in the IDE take a very short amount of time.

While still being fast, a notable exception to this are the tests
run in Visual Studio, which took an order of magnitude longer.
One reason for this could be that many C# tests might rely on
additional base tests that take longer to setup. For example, the
tests for FEEDBAG++ require a specific base test of ReSharper,
which takes 60 seconds to initialize. Another reason could be
that Visual Studio facilitates debugging by running tests in the
debugger automatically. Pausing on a breakpoint would be added
to the tests’ runtime.

We could generally not observe a relation between the test
duration and their execution frequency. The reason for this could
be that there is little difference between a test that takes 0.1
seconds and one that takes 5 seconds in practice. Both give
almost immediate feedback to the programmer. Hence, it seems
unlikely that software engineers choose not to run tests because
of their duration. Instead, our positive correlation values suggest
that developers prefer tests that take slightly longer, for example
because they assert more complex constructions. Thus, they might
be more beneficial to developers than straight-forward, very short
tests. In fact, short tests might be so limited in their coverage
that developers might not find them useful enough to run them
more often. This might be particularly relevant for testing mobile
applications, where the typically longer running integration tests
require developers to start up an the differentiation between
integration and unit tests might be having to load an Android
Emulator. Our strong correlation for Android Studio suggests that
developers prefer running such longer tests.

One reason for the generally short test duration is that de-
velopers typically do not execute all their tests in one test run.
Instead, they practice test selection, and run only a small subset of
their tests, mostly less than 1% of all available tests. This observed
manual behavior differs strongly from an automated test execution
as part of the build, which typically executes all tests.

Developers frequently select a specific set of tests to run in
the IDE. In most cases, developers execute one test.

We can explain 99.5% of these test selections with two
scenarios: developers either want to investigate a possibly failing
test case in isolation (94.6% of test selections), or exclude such
an irritating test case from a larger set of tests (4.9%). This
finding complements and strengthens a study by Gligoric et al.,
who compared manual test selection in the IDE to automated test
selection in a population of 14 developers [55].

6.3 RQ3: How Do Developers Manage Failing Tests?

One other possible explanation for the short time it takes tests to
run in the IDE is that 65% of them fail (RQ3.1): once a test fails,
the developer might abort the execution of the remaining tests and
focus on the failing test, as discovered for RQ2.3.

Most test executions in the IDE fail.

This is a substantial difference to testing on TRAVIS CI, where
only 4% of Java builds fail due to failing tests [15]. For 32% of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 15

failing test cases, we never saw a successful execution (RQ3.4).
We built the set of tests in a project on a unique hash of their
file names, which means we cannot make a connection between
a failed and a successful test execution when it was renamed in-
between. However, this specific scenario is rare, as observed at
the commit-level by Pinto et al. [3]. Consequently, a substantial
part of tests (up to 32%) are broken and not repaired immediately.
As a result, developers exclude such “broken” tests from tests
executions in the IDE, as observed for RQ2.3.

This observation motivated us to explore which test cases
failures typically stem from.

Only 25% of test cases are responsible for 75% of test
execution failures in the IDE.

This statement reminds us of the Pareto principle [56], the
startling observation that, for many events, roughly 80% of the
effects stem from 20% of the causes. The principle has been
observed in Software Engineering in alike circumstances before,
for example that 20% of the code contains 80% of its errors [57].

On the CI side, test executions are the main part of how
fast a project builds [15]. To manage the problem of long and
expensive builds, Herzig et al. built an elaborate cost model
deciding which tests to skip [58]. A simulation of their model on
Microsoft Windows and Office demonstrated that they would have
skipped 40% of test executions. Using association rule mining
based on recent historical data, such as test failure frequency,
Anderson et al. demonstrated how they could reduce the duration
of regression testing for another Microsoft product by also leaving
out a substantial amount of tests [59]. Similarly, Figure 11 shows
that at least in Eclipse and Android Studio, running the right
60% of test cases (and skipping 40%) results in catching all
test failures. For IntelliJ and Visual Studio, the results are at a
comparable ∼90%. Thus, if we can select them efficiently, we can
skip executing∼40% of test cases that always give a passing result
in the IDE.

Both Microsoft studies have been performed on the build
level, not as deep down as our findings in the “working mines
of software development,” the IDE. This observation on the
build level trickles down to the IDE, where one would expect
more changes than on the CI level. Moreover, it also shows that
some tests never fail, even during the change-prone phases of
development, reducing the value of such tests at least for bug-
uncovering purposes.

Since test failures in the IDE are such a frequently recurring
event, software engineers must have good strategies to manage
and react to them.

The typical immediate reaction to a failing test is to dive into
the offending test code.

All observed IDEs support this work flow by presenting the
developer with the location of the test failure in the test class when
double-clicking a failed execution. It is, thus, a conscious choice
of the programmers to instead dive into production code (20% of
reactions) that is being tested. Closing the IDE, perhaps out of
frustration that the test fails, or opening the debug perspective to
examine the test are very rare reactions. It is only prevalent in
Figure 12d because Visual Studio automatically switches to this

perspective when running tests. Five seconds after a test failure,
∼15% of programmers have already switched focus to another
application on their computer. An explanation could be that they
search for a solution elsewhere, for example in a documentation
PDF or on the Internet. This is useful if the test failure originates
from (mis-)using a language construct, the standard library, or
other well-known APIs and frameworks. Researchers try to in-
tegrate answers from internet fora such as Stack Overflow into
the IDE [60], to make this possibly interrupting context switch
unnecessary.

12% of test case executions show a non-deterministic result.

Flaky tests are a phenomenon that has been studied on the
repository [28] and build [45], [61] level. Luo et al. classified
root causes of flaky tests. They found that asynchronous waiting,
concurrency, and test order dependency problems represent 77%
of test flakiness causes. Including all potential factors, we have
calculated a flakiness score of on average 12% of test cases per
project in the IDE. A study on the flakiness of tests run on the CI
server Travis CI [62] found a similar flakiness rate of 12.8% [61].
This is another instance of a finding on a build server level that
seems to directly translate to the IDE of individual developers.
Moreover, the test flakiness of 12% fits well to an observed
reaction of (re-)executing tests 10 seconds after the initial test
failure in 15% of cases for most IDEs in Figure 12.

Findings on the CI level on test flakiness and error re-
sponsibility seem to trickle down to the IDE of individual
developers.

6.4 RQ4: Do Developers Follow TDD?
TDD is one of the most widely studied software development
methodologies [30], [31], [63].7 Even so, little research has been
performed on how widespread its use is in practice. In Section 3.5,
we developed a formal technique that can precisely measure how
strictly developers follow TDD. In all our 594 projects, we found
only 16 developers that employed TDD for more than 20% of
their changes. Similar to RQ1, we notice a stark contrast between
survey answers and the observed behavior of developers, even in
our normalized control data set. Only in 12% of the projects in
which developers claimed to do TDD, did they actually follow it
(to a small degree).

According to our definition, TDD is not widely practiced.
Programmers who claim to do TDD, neither follow it strictly
nor for all their modifications.

The developers who partially employed TDD in our data set
were more experienced in comparison to the general population.
We also found a higher TDD rate in our normalized data set, likely
due to the fact that ΣCN has more experienced users compared to
Σ and TDD followship correlates with experience.

Two recent studies support these discoveries on TDD. Borle et
al. found an almost complete lack of evidence for TDD adoption

7. A Google Scholar search for “Test Driven Development” returned 15,400
hits on May, 18th, 2016, while the much older “Cleanroom Software Engineer-
ing” only returned 1,350 hits and the popular “Code Review” 17,300 hits.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 16

in the repositories of open source GitHub projects [64]. Romano
et al. found that both novice and expert programmers apply TDD
in a shallow fashion even in a controlled lab experiment dedicated
to TDD [65]. As a cardinal difference to our field study Romano
et al. found that “refactoring [...] is not performed as often as
the process requires” [66], while we found developers devoting
over 50% of their TDD development intervals to the re-adoption
of code. A reason might be that refactoring is inevitable in most
real-world software projects, but can perhaps be avoided in a lab
assignment setting.

In the following, we discuss a number of possible reasons for
the apparently small adoption of TDD in practice:

1) There is no consensus on the usefulness and value of TDD.
While there have been many controlled experiments and
case studies in which TDD was found to be beneficial,
there seems to be an equally high number of studies that
showed no, or even adverse effects [67]–[69]. Moreover,
some of the pro-TDD studies contradict each other on its
concrete benefits: For example, Erdogmus measured that the
use of TDD leads to a higher number of tests and increases
productivity [70], while in a case study at IBM, TDD did not
affect productivity, yet decreased the number of defects [71].
Another study at IBM and Microsoft, done in part by the
same authors, found that defects decreased drastically, yet
productivity declined with the introduction of TDD [72]. In
light of no clear evidence for TDD, developers might simply
choose not to employ it.

2) Technical practicalities prohibit the use of TDD. Some
libraries or frameworks do not lend themselves for devel-
opment in a TDD-fashion. As an example, few graphical
toolkits allow development in a test-first manner for a UI.

3) Time or cost pressure prohibits the use of TDD. TDD is often
associated with a slower initial development time, and the
hope that the higher quality of code it produces offsets this
cost in the longer run [73], [74]. At high pressure phases or
for short-lived projects, a concise decision not to use TDD
might be made.

4) Developers might not see value in testing a certain func-
tionality TDD-style. We received anecdotal evidence from
developers saying that they do not think the current piece
of functionality they are working on mandates thorough
testing, or “simply cannot be wrong.”

5) Developers skip certain phases of the required TDD process.
We received anecdotal evidence from developers saying
that they “sometimes know the result of a test execution.”
Consequently, they might skip the mandatory test executions
in Figure 7.

6) The application of TDD might be unnatural. Instead of
working toward a solution, TDD puts writing its spec-
ification first. This often requires developers to specify
an interface without knowing the evolution and needs of
the implementation. Romano et al. accordingly report that
developers found the “red” test phase of TDD, in which
developers are supposed to perform the above steps, partic-
ularly challenging and demotivating [66].

7) Developers might not know how to employ TDD. TDD is
a relatively light-weight development methodology that is
taught in numerous books [29], blog posts, articles, YouTube
videos, and even part of the ACM’s recommendations on
a curriculum for undergraduate Software Engineering pro-
grams [75]. By contrast, Janzen and Saiedian noted that one

common misconception among developers was that “TDD
equals automated testing.” [76] Since Beck defines TDD
as “driv[ing] development with automated tests” [29], we
believe practitioners have understood it correctly and that a
lack of education on TDD or a wrong understanding of it is
not a likely reason in most cases.

While TDD might be clear enough for all practitioners, for
academic studies, we still miss a precise, formally agreed-upon
definition. In fact, the lack of it might explain some of the
variability in the outcomes of research on the benefits of TDD.
We hope that our precise definition of TDD in terms of automata
from Section 3.5 can help future research on a technical level.

We need to convene on a generally agreed-upon, formal
definition of TDD.

In his 2014 keynote at Railsconf and subsequent blog
posts [77], [78], Heinemeier Hansson sparked a debate on the
usefulness and adoption of TDD, leading to a series of broadcast
discussions together with Fowler and Beck on the topic “Is TDD
dead?” [79]. Since our WATCHDOG results seemed relevant to
their discussion, we approached Beck, Fowler, and Heinemeier
Hansson with our paper [8] to uncover if we made any method-
ological mistakes, for example that our model of TDD might be
erroneous. Fowler and Heinemeier Hansson replied that they were
generally interested in the results of the study and identified the
potential sampling bias also discussed in Section 7.4. Regarding
the low TDD use, Fowler stated that he would not be surprised if
developer testing of any kind remains uncommon.

6.5 RQ5: How Much Do Developers Test?
The question of how much time software engineers put into testing
their application was first asked (and anecdotally answered) by
Brooks in 1975 [7]. Nowadays, it is widely believed that “testing
takes 50% of your time.” While their estimation was remarkably
on-par with Brooks’ general estimation (average mean 50.5%
production time to 49.5% test time, median 50%) in Figure 2,
WATCHDOG developers tested considerably less than they thought
they would at only 28% of their time, overestimating the real
testing time nearly two-fold. The time developers spend testing is
relatively similar across all IDEs, with the only apparent outlier
of Android Studio (51%). Mobile application developers might
indeed spend more time testing since the Android framework
facilitates unit, integration, and UI testing (“Android Studio is
designed to make testing simple. With just a few clicks, you can
set up a JUnit test that runs on the local JVM or an instrumented
test that runs on a device” [80]), or our developer sample from
Android Studio might be too small. We need more research to
better understand this phenomenon and the reasons behind it.

Developers spend a quarter of their time engineering tests in
the IDE. They overestimated this number nearly twofold.

In comparison, students tested 9% of their time [9], and overes-
timated their testing effort threefold. Hence, real-world developers
test more and have a better understanding of how much they test
than students. Surprisingly, their perception is still far from reality.

The ability to accurately predict the effort and time needed for
the main tasks of a software project (such as testing) is important

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 17

for its coordination, planning, budgeting and, finally, successful
on-time completion. In a comprehensive review of the research
on human judgments of task completion durations, Halkjelsvik
and Jørgensen merged the two research lines of effort prediction
from engineering domains and time-duration estimation from
psychology [47]. Their results showed that duration predictions
frequently (more than 60% of predictions) fall outside even a
90% confidence interval given by the estimators, meaning that
it is normal for predictions to be as inaccurate as observed in
our study. While engineers generally seem to overestimate the
duration of small tasks, they underestimate larger tasks. As testing
is the smaller activity in comparison to production code for most
projects (∼25%:75% of work time overall), this observation fits
the measured overestimation of testing effort in our study. There
might be a tendency to underestimate difficult and overestimate
easy tasks, particularly in software development projects [81]. As
developers often dislike testing and consider it “tedious” [82],
[83], this might be a contributing factor to our observed over-
estimation of testing. In a study on software maintenance tasks by
Hatton [84], developers consistently overestimated the duration
of small change requests, while they consistently underestimated
larger ones. Many developers might perceive testing as the smaller
task in relation to the seemingly endless complexity of coming
up with a working production implementation. Consequently,
Hatton’s findings could help explain why our participants overes-
timated it. Similar to our study, Halkjelsvik and Jørgensen report
that working professional engineers, while still not accurate, were
better in their predictions than students [47].

A prime reason for developers’ inaccurate estimations might
be that predicting is an inherently difficult task, especially in fast-
changing domains like software development. Another reason for
the inaccuracy of predictions could be that people remember the
time previous tasks took incorrectly [85]. When participants had
written records of their past prediction performances, however,
they became quite accurate [86]. Highly overestimating the testing
effort of a software product can have adverse implications on
the quality of the resulting product. Software developers should,
therefore, be aware of how much they test, and how much their
perception deviates from the actual effort they invest in testing in
the IDE. WATCHDOG supplies developers with both immediate
and accumulated statistics, hopefully allowing them to make more
precise estimations and better planning in the future.

In conjunction with RQ1 and RQ3, our discrepancy between
survey answers and real-world behavior casts doubt on whether we
can trust untriaged answers from developers in surveys, especially
if the respondents are unknown to the survey authors.

Objectively observed behavior in the IDE often contradicted
survey answers on developers’ self-estimation about testing
and TDD, showcasing the importance of data triangulation.

6.6 A Note On Generality And Replicability
Long-running field studies and studies that generalize over mul-
tiple factors, such as IDEs or languages, are rare in software
engineering [5], [12], [87], [88], because building and maintaining
the necessary tools requires significant time efforts over prolonged
periods of time. Moreover, we show that it is possible to re-cycle
data that was originally not intended for this study by including
the FEEDBAG++ client. This paper demonstrates that even con-

troversial, unexpected results such as our original observations on
testing patterns [9], can generalize across different state-of-the art
IDEs. Our larger study – comprising ten times more data and three
more IDEs – confirmed most of the observations we drew from a
much shorter, less resource-intense 5-month study in only Eclipse.

If argued correctly, relatively few observations in one en-
vironment can generalize to similar contexts in Software
Engineering.

We needed to normalize only relatively few of our results,
leaving most of our observations straight-forward to derive from
our data. However, for some research questions, for example to
counter the appearance that developers might test 20 times longer
in one IDE than in another (see RQ5, Section 5.5), normalization
was critical. Since filter criteria always induce a bias, this paper
also shows how an observational field study can use unfiltered
and easy-to-interpret and replicate data and combine it with the
smaller normalized data sample where necessary.

Our mixed-methods study also showcased the problem of
reporting survey answers without further triaging. While normal-
izing the data improved their credibility, even with it, there was
a considerable mismatch between developers’ actions and their
surveyed answers and beliefs. A diverse set of factors, including
psychological ones, seems to play a key role in this.

6.7 Toward A Theory of Test-Guided Development

Combining results from RQ1–RQ5, we find that most developers
spend a substantial amount of their time working on codified tests,
in some cases more than 50%. However, this time is shorter than
expected generally and specifically by the developers themselves.
Many of the tests developers work on cannot be executed in
the IDE and could, therefore, not provide immediate feedback.
There are relatively short development phases when programmers
execute IDE-based tests heavily, followed by periods when they
invoke almost no tests.

Test and production code evolution in general is only loosely
coupled. This corroborates with our finding that no developer
follows TDD continuously and that it, thus, seems to be a rather
idealistic software development method that a small percentage
of developers occasionally employs with overall little adoption in
practice. We call the development practice of loosely guiding one’s
development with the help of tests, as the majority of developers
does, relying on testing to varying degrees, Test-Guided Devel-
opment (TGD). We argue that TGD is closer to the development
reality of most programmers than TDD.

Two insights from our study, test flakiness and test failure
rate, seem to be almost identical in the context of CI, showing
the strong connection to individual developer testing in the IDE.
However, there are also significant differences, namely that CI
provides no fast feedback loop to developers, by taking on average
20 minutes, several orders of magnitudes longer than a typical IDE
test execution [15]. Test failures are much more infrequent in Java
builds than in test executions in the IDE. We, therefore, argue that
it plays a different, complimentary role to testing in the IDE. Due
to its different and less immediate nature, CI testing cannot (fully)
explain the observed low values on developer testing.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 18

7 THREATS TO VALIDITY

In this section, we discuss limitations and threats that can affect
the validity of our study and show how we mitigated them.

7.1 Limitations

Our study has two main limitations, scope and a lack of value
judgments, which we describe in the following.

Scope Definition. An endemic limitation of our study is that
we can only capture what happens inside the IDE. Conversely,
if developers perform work outside the IDE, we cannot record it.
Examples for such behavior include pulling-in changes through an
external version-control tool, such as git or svn, or modifying
a file with an external editor. To reduce the likelihood and impact
of such modifications, we typically limit analyses of our research
questions, for example RQ3.5 regarding test flakiness, to one IDE
session only.

Naturally, for RQ5, we cannot detect work on a whiteboard
or thought processes of developers, which are generally hard to
quantify. However, in our research questions, we are not interested
in the absolute time of work processes, but in their ratio. As such,
it seems reasonable to assume that work outside the IDE happens
in the same ratio as in the IDE. For example, we have no indication
to assume that test design requires more planning or white board
time than production code.

Our conclusions are drawn from the precisely-defined and
scoped setting of codified developer testing in IDEs. To draw
a holistic picture of the state of testing, we need more multi-
faceted research in environments including dedicated testers.

Value Judgments. If we want to gain insight into whether
more developer testing manifests in an improvement for the
project, we would need to define a suitable outcome measure, for
example bugs per release. One could then, for example, compare
the testing effort in days across several releases, and identify
whether there is a correlation. However, different projects would
have different, possibly contradicting, definitions of the outcome
measure: A self-managed server project in the cloud might pay
no attention to bugs per release, as releases are short-lived and
upgrading the software is essentially cost free. On the other hand,
a server installed at a customer that cannot be reached from the
outside might have this metric as its only priority. We have not
defined a uniform outcome measure because (1) we could not
define a sensible uniform outcome measure across all participating
projects of their different priorities, (2) many developers preferred
to stay anonymous, and (3) do not have or (4) would not have
given us access to this highly sensible data. One can argue that if
a project reaches its desired outcome with the limited amount of
testing we generally found in this study, this is better than having
to spend a lot of effort on testing, it in principle wastes resources
without contributing to the project’s functionality. This remains a
fruitful future area for deep studies on a small set of projects.

This paper does not contain an outcome measurement. As
such, all statements are comparative to the respective groups
and non-judgmental. A relative high (or low) description does
not mean imply “good” or “bad.”

7.2 Construct Validity
Construct validity concerns errors caused by the way we collect
data. For capturing developers’ activities we use WATCHDOG and
FEEDBAG++ (described in Section 2.1), which we thoroughly
tested with end-to-end, integration, and developer tests. Moreover,
40 students had already used WATCHDOG before the start of our
data collection phase [9]. Similarly, FEEDBAG++ had been de-
ployed at a company during 2015 [23] before we made it publicly
available in 2016. To verify the integrity of our infrastructure
and the correctness of the analysis results, we performed end-
to-end tests on Linux, Windows, and MacOS with short staged
development sessions, which we replicated in Eclipse, IntelliJ, and
Visual Studio. We then ran our analysis pipeline and ensured the
analyzed results were comparable.

When we compare data across IDEs, it is paramount that the
logic that gathers and abstracts this data (to intervals) works in the
same way. WATCHDOG’s architecture with its mutually shared
core guarantees this by design (see Section 2.1). Moreover, we
had a professional software tester examine WATCHDOG.

To ensure the correctness of the transformation from FEED-
BAG++ events to WATCHDOG intervals, we implemented an
extensive test suite for the transformation on the FEEDBAG++
side and created a debugger that visualizes intervals similarly to
the diagram shown in Figure 5. We used this visualization for an
analysis of several manually defined usage scenarios, in which
we verified that the generated intervals are accurate and that they
reflect the actually recorded interactions. Moreover, we recorded
artificial mini-scenarios with FEEDBAG++, transferred them to
WATCHDOG intervals and ran parts of the analysis pipeline, for
example for the recognition of TDD behavior, effectively creating
end-to-end tests.

7.3 Internal Validity
Internal validity regards threats inherent to our study.

Our study subject population shows no peculiarity (see Sec-
tion 4.2), such as an unusually high number of users from one
IP address or from a country where the software industry is weak.
Combined with the fact that we use a mild form of security (HTTP
access authentication), we have no reason to believe that our data
has been tampered with (for example, in order to increase the
chances of winning a prize).

A relatively small set of power-users contribute the majority
of development sessions (Figure 10a). To control for the possible
effects of a distorted distribution, we created a normalized data
set ΣCN , which showed little practical difference to our main
sample. Moreover, contrary to the idea of conducting an open
field study, we run the risk of arbitrarily selecting for certain
behavior by sampling. Since WATCHDOG and FEEDBAG++ are
freely available, we cannot control who installs it. Due to the
way we advertise it (see Section 4.1), our sample might be biased
toward developers who are actively interested in testing.

In the wizard in Figure 2 for RQ5, the default slider position to
estimate between production and test effort was set to 50%. This
could be a reason for why we received an estimation of 51%:49%.
To mitigate this, WATCHDOG users had to move the slider before
they were allowed to progress the wizard, forcing them to think
about their own distribution.

The Hawthorne effect [89] poses a similar threat: participants
of our study would be more prone to use, run, and edit tests than
they would do in general, because they know (1) that they are

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 19

being measured and (2) they can preview a limited part of their
behavior. As discussed in Section 4.1, it was necessary to give
users an incentive to install WATCHDOG. Without the preview
functionality, we would likely not have had any users. To measure
the potential impact of our immediate IDE statistics (see Figure 3),
we tracked how often and how long developers consulted it via the
WatchDogView interval. In total, only 192 of the 2,200 Eclipse
developers opened the view in total 720 times in 422 of 39,855
possible sessions (1%), with a median open time of 2.4 minutes
per user. This is similar with 58 times for 181 developers in
ΣCN . We believe that these measures demonstrate that developers
did not constantly monitor their WATCHDOG recorded testing
behavior, otherwise the numbers would be significantly higher.
That users engage with reports about their behavior only for a
short amount of time is not unique to our study: Meyer et al. found
similar numbers when presenting developers with a report of their
productivity [90]. Even the commercial RescueTime only had user
engagement lengths of on average five seconds per day [91]. Our
long observation period is another suitable countermeasure to the
Hawthorne effect, as developers might change their behavior for a
day, but unlikely for several months.

All internal threats point in the direction that our low results
on testing are still an overestimation of the real testing practices.

7.4 External Validity

Threats to external validity concern the generalizability of our
results. While we observed 161 years of development worktime
(collected in 14,266,683 intervals originating from 2,443 devel-
opers over a period of five months), the testing practices of
particular individuals, organizations, or companies are naturally
going to deviate from our population phenomenon observation.
Our contribution is an observation of the general state of developer
testing among a large corpus of developers and projects. However,
we also examined if certain sub-groups deviated significantly form
our general observations. As an example of this, we identified that
mainly very experienced programmers follow TDD to some extent
in Section 5.4.

By capturing not only data from Eclipse, but also IntelliJ,
Android Studio, and Visual Studio, we believe to have sufficiently
excluded the threat that a certain behavior might be IDE-specific.
While we have data from two programming languages (Java and
C#), other programming language communities, especially non-
object-oriented ones, might have different testing cultures and use
other IDEs that might not facilitate testing in the same way the
Eclipse, IntelliJ, and Visual Studio IDEs do. Hence, their results
might deviate from the relatively mature and test-aware Java and
C# communities.

Finally, the time we measure for an activity such as testing
in the IDE does not equal the effort an organization has to
invest in it overall. Arguments against this are that developer
testing per hour is as expensive as development (since both are
done by the same set of persons), and that time is typically
the critical resource in software development [47]. An in-depth
investigation with management data such as real project costs is
necessary to validate this in practice. To exclude the risk of a
different understanding of the word testing, we specifically asked
developers about JUnit testing, i.e., automated, codified developer
tests (see the description in Figure 2).

8 RELATED WORK

In this section, we first describe tools and plugins that are method-
ically similar to WATCHDOG, and then proceed with a description
of related research.

8.1 Related Tools and Plugins

A number of tools have been developed to assess development ac-
tivity at the sub-commit level. These tools include Hackystat [92],
Syde [93], Spyware [94], CodingTracker [95], DFlow [96], the
“Change-Oriented Programming Environment,”8 the “Eclipse Us-
age Data Collector,”9 QuantifiedDev,10, Codealike,11 and Rescue-
Time.12 However, none of these focused on time-related developer
testing.

Hackystat with its Zorro extension was one of the first solu-
tions that aimed at detecting TDD activities [97], [98], similar
to the education-oriented TDD-Guide [99] and the prototype
TestFirstGauge [100]. In contrast to WATCHDOG, Hackystat did
not focus on the IDE, but offered a multitude of sensors, from
bug trackers such as Bugzilla to build tool such as ant. One
of Hackystat’s challenges that we addressed with WATCHDOG

was attracting a broader user base that allowed the recording and
processing of their data.

8.2 Related Research

To investigate the presence or absence of tests, Kochar et al. mined
20,000 open-source projects and found that 62% contained unit
tests [101]. LaToza et al. [102] surveyed 344 software engineers,
testers and architects at Microsoft, with 79% of the respondents
indicating that they use unit tests. Our findings indicate that only
35% of projects are concerned with testing. One factor why our
figure might be smaller is that we do not simply observe the
presence of some tests, but that we take into account whether
they are actually being worked with.

In a study on GitHub using a repository-mining approach,
Borle et al. found that a mere 3.7% of over 250,000 analyzed
repositories could be classified to be using TDD [64]. This result
strengthens our observed low TDD use in IDE sessions.

Pham et al. [103] interviewed 97 computer science students
and observed that novice developer perceive testing as a secondary
task. The authors conjectured that students are not motivated to
test as they have not experienced its long-term benefits. Similarly,
Meyer et al. found that 47 out of 379 surveyed software engi-
neering professionals perceive tasks such as testing as unproduc-
tive [83].

Zaidman et al. [4] and Marsavina et al. [53] studied when tests
are introduced and changed. They found that test and production
code typically do not gracefully co-evolve. Our findings confirm
this observation on a more fine-grained level. Moreover, Zaidman
and Marsavina found that writing test code is phased: after a longer
period of production code development, developers switch to test
code. Marinescu et al. [104] observed that test coverage usually
remains constant, because already existing tests execute part of
the newly added code. Feldt [105] on the other hand notes that
test cases “grow old”: if test cases are not updated, they are less

8. http://cope.eecs.oregonstate.edu
9. https://eclipse.org/epp/usagedata
10. https://www.youtube.com/watch?v=7QKWo5SulP8
11. https://codealike.com
12. https://rescuetime.com

https://web.archive.org/web/20170606230323/http://cope.eecs.oregonstate.edu/
https://web.archive.org/web/20170606230426/https://eclipse.org/epp/usagedata/
https://www.youtube.com/watch?v=7QKWo5SulP8
https://web.archive.org/web/20170606230903/https://codealike.com
https://web.archive.org/web/20170707155137/https://www.rescuetime.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 20

likely to identify failures. In contrast, Pinto et al. [3] found that test
cases evolve over time. They highlight that tests are repaired when
the production code evolves, but they also found that non-repair
test modifications occurred nearly four times as frequently as test
repairs. Deletions of tests are quite rare and if they happen, this
is mainly due to refactoring the production code. A considerable
portion of test modifications is related to the augmentation of test
suites. Additionally, Athanasiou et al. investigated the quality of
developer tests, noting that completeness, effectiveness, and main-
tainability of tests tend to vary among the observed projects [106].

The work presented in this paper differs from the aforemen-
tioned works in that the data that we use is not obtained (1) from
a software repository [3], [4], [53], [101], [105] or (2) purely by
means of a survey or interview [83], [102], [103], [107]. Instead,
our data is automatically gathered inside the IDE, which makes
it (1) more fine-grained than commit-level activities and (2) more
objective than surveys alone.

9 CONCLUSION

Our work studies how developers test in their IDE. Our goal
was to uncover the underlying habits of how developers drive
software development with tests. To this end, we performed a
large-scale field study using low-interference observation instru-
ments installed within the developers’ working environment to
extract developer activity. We complemented and contrasted these
objective observations with surveys of said developers. We found
that automated developer testing (at least in the IDE) is not as
popular as often assumed, that developers do not test as much as
they believe they do, and that TDD is not a popular development
paradigm. We called the concept of loosely steering software
development with the help of testing Test-Guided Development.

This work makes the following key contributions:
1) A low interference method and its implementation to record

fine-grained activity data from within the developers’ IDEs.
2) A formalized approach to detect the use of TDD.
3) A thorough statistical analysis of the activity data resulting

in both qualitative and quantitative answers in developers’
testing activity habits, test run frequency and time spent on
testing.

4) A generalized investigation of developer testing patterns
across four IDEs in two programming languages.

In general, we find a distorting gap between expectations and
beliefs about how testing is done in the IDE, and the real practice.
This gap manifests itself in the following implications:
Software Engineers should be aware that they tend to overes-

timate their testing effort and do not follow Test-Driven
Development by the book. This might lead to a lower-
than-expected quality in their software. Our work suggests
that different tools and languages that are conceptually
similar might not impact the practice as much as individuals
often think, since we found few differences between data
originating from them.

IDE creators could design next-generation IDEs that support
developers with testing by integrating: 1) solutions from
Internet fora, 2) reminders for developers to execute tests
during large code changes, 3) automatic test selection, and
4) remote testing on the build server.

Researchers can acknowledge the difference between common
beliefs about software testing, and our observations from
studying developer testing in the real world. Specifically,

there is a discrepancy between the general attention to
testing and TDD in research, and their observed popularity
in practice. More abstractly, developers’ survey answers
only partially matched their behavior in practice, and student
data deviated significantly from real-world observations.
This may have implications on the credibility of certain
research methods in software engineering and showcases the
importance of triangulation with mixed-method approaches.
On a positive note, we also found that even relatively small
samples from one population group might generalize well.

ACKNOWLEDGMENTS

We owe our biggest gratitude to the hundreds of WATCHDOG

users. Moreover, we thank Margaret-Anne Storey, Eric Verbeek,
Maryi Arciniegas-Mendez, Alan Richardson, Nepomuk Seiler,
Shane McIntosh, Michaela Greiler, Diana Kupfer, Lars Vogel,
Anja Reuter, Marcel Bruch, Ian Bull, Katrin Kehrbusch, Maaike
Beliën, and the anonymous reviewers. We thank Andreas Bauer
for help with the WATCHDOG transformer.

This work was funded by the Dutch Science Foundation
(NWO), project TestRoots (016.133.324) and the German Federal
Ministry of Education and Research (BMBF) within the Software
Campus project Eko, grant no. 01IS12054, and by the DFG as part
of CRC 1119 CROSSING.

REFERENCES

[1] P. Runeson, “A survey of unit testing practices,” IEEE Software,
vol. 23, no. 4, pp. 22–29, 2006. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/MS.2006.91

[2] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2014, pp. 12–13.
[Online]. Available: http://doi.acm.org/10.1145/2568225.2568233

[3] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and realities
of test-suite evolution,” in Proceedings of the Symposium on the Foun-
dations of Software Engineering (FSE). ACM, 2012, pp. 33:1–33:11.

[4] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,”
Empirical Software Engineering, vol. 16, no. 3, pp. 325–364, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10664-010-9143-7

[5] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in Proceedings of the International Conference on
Software Engineering (ISCE), Workshop on the Future of Software
Engineering (FOSE), 2007, pp. 85–103. [Online]. Available:
http://doi.acm.org/10.1145/1253532.1254712

[6] M. V. Mäntylä, J. Itkonen, and J. Iivonen, “Who tested my software?
testing as an organizationally cross-cutting activity,” Software Quality
Journal, vol. 20, no. 1, pp. 145–172, 2012.

[7] F. Brooks, The mythical man-month. Addison-Wesley, 1975.
[8] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,

and why developers (do not) test in their IDEs,” in Proceedings of the
10th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2015, pp. 179–190.

[9] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in Proceedings of the 37th International Conference on Software
Engineering (ICSE), NIER Track. IEEE, 2015, pp. 559–562.

[10] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in Software Testing, Verification, and Validation, 2008 1st
International Conference on. IEEE, 2008, pp. 220–229.

[11] M. Beller, I. Levaja, A. Panichella, G. Gousios, and A. Zaidman, “How
to catch ’em all: Watchdog, a family of ide plug-ins to assess testing,”
in 3rd International Workshop on Software Engineering Research and
Industrial Practice (SER&IP 2016). IEEE, 2016, pp. 53–56.

[12] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. Wiley, 2012.

http://doi.ieeecomputersociety.org/10.1109/MS.2006.91
http://doi.ieeecomputersociety.org/10.1109/MS.2006.91
http://doi.acm.org/10.1145/2568225.2568233
http://dx.doi.org/10.1007/s10664-010-9143-7
http://doi.acm.org/10.1145/1253532.1254712

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 21

[13] S. Proksch, S. Nadi, S. Amann, and M. Mezini, “Enriching in-ide pro-
cess information with fine-grained source code history,” in Proceedings
of the 24th International Conference on Software Analysis, Evolution,
and Reengineering. IEEE, 2017, pp. 250–260.

[14] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[15] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An explorative analysis of Travis CI with GitHub,” in Proceedings of the
14th International Conference on Mining Software Repositories (MSR),
2017.

[16] R. L. Glass, R. Collard, A. Bertolino, J. Bach, and C. Kaner, “Software
testing and industry needs,” IEEE Software, vol. 23, no. 4, pp. 55–57,
2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
MS.2006.113

[17] A. Bertolino, “The (im)maturity level of software testing,” SIGSOFT
Softw. Eng. Notes, vol. 29, no. 5, pp. 1–4, Sep. 2004. [Online].
Available: http://doi.acm.org/10.1145/1022494.1022540

[18] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in the
wild: The social and organisational dimensions of real world
practice,” Comput. Supported Coop. Work, vol. 18, no. 5-6, pp.
559–580, Dec. 2009. [Online]. Available: http://dx.doi.org/10.1007/
s10606-009-9098-7

[19] “TestRoots WatchDog,” https://github.com/TestRoots/watchdog, Ac-
cessed June 6, 2017.

[20] P. Muntean, C. Eckert, and A. Ibing, “Context-sensitive detection of
information exposure bugs with symbolic execution,” in Proceedings
of the International Workshop on Innovative Software Development
Methodologies and Practices (InnoSWDev). ACM, 2014, pp. 84–93.

[21] G. Inc. and the Open Handset Alliance, “Download android studio and
sdk tools,” accessed 2017/05/31.

[22] “ReSharper Plugin Gallery,” https://www.jetbrains.com/resharper/, Ac-
cessed June 6, 2017.

[23] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering. IEEE,
2016, pp. 124–134.

[24] M. Beller, N. Spruit, and A. Zaidman, “How developers debug,” PeerJ
Preprints, vol. 5, p. e2743v1, 2017.

[25] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[26] “Apache Maven Conventions,” http://maven.apache.org/guides/
getting-started, Accessed June 6, 2017.

[27] J. C. Munson and S. G. Elbaum, “Code churn: A measure for
estimating the impact of code change,” in Proceedings of the
International Conference on Software Maintenance (ICSM). IEEE,
1998, p. 24. [Online]. Available: http://dlib.computer.org/conferen/
icsm/8779/pdf/87790024.pdf

[28] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
643–653.

[29] K. Beck, Test Driven Development – by Example. Addison Wesley,
2003.

[30] H. Munir, K. Wnuk, K. Petersen, and M. Moayyed, “An
experimental evaluation of test driven development vs. test-last
development with industry professionals,” in Proceedings of the
International Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM, 2014, pp. 50:1–50:10. [Online]. Available:
http://doi.acm.org/10.1145/2601248.2601267

[31] Y. Rafique and V. B. Misic, “The effects of test-driven development on
external quality and productivity: A meta-analysis,” IEEE Transactions
on Software Engineering, vol. 39, no. 6, pp. 835–856, 2013.

[32] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education,
2004.

[33] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
theory, languages, and computation. Prentice Hall, 2007.

[34] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.

[35] J. L. Devore and N. Farnum, Applied Statistics for Engineers and
Scientists. Duxbury, 1999.

[36] W. G. Hopkins, A new view of statistics, 1997, http://sportsci.org/
resource/stats/, Accessed March 27, 2017.

[37] S. Amann, S. Proksch, and S. Nadi, “FeedBaG: An Interaction Tracker
for Visual Studio,” in Proceedings of the 24th International Conference
on Program Comprehension. IEEE, 2016, pp. 1–3.

[38] “Let’s Develop With TestRoots’ WatchDog,” http://youtu.be/
-06ymo7dSHk, Accessed June 7, 2017.

[39] “Eclipse Marketplace: WatchDog Plugin,” https://marketplace.eclipse.
org/content/testroots-watchdog, Accessed June 6, 2017.

[40] “IntelliJ Marketplace: WatchDog Plugin,” https://plugins.jetbrains.com/
plugin/7828-watchdog, Accessed June 6, 2017.

[41] “ReSharper Plugin Gallery: FeedBaG++ Plugin,” https:
//resharper-plugins.jetbrains.com/packages/KaVE.Project/, Accessed
June 6, 2017.

[42] “Code Trails Marketplace: WatchDog Plugin,” http://www.codetrails.
com/blog/test-analytics-testroots-watchdog, Accessed June 6, 2017.

[43] “KAVE Datasets: Interaction Data, March 1, 2017,” http://www.kave.
cc/datasets/, Accessed June 6, 2017.

[44] G. Rothermel and S. Elbaum, “Putting your best tests forward,” IEEE
Software, vol. 20, no. 5, pp. 74–77, Sept 2003.

[45] J. Bell, G. Kaiser, E. Melski, and M. Datattreya, “Efficient dependency
detection for safe java test acceleration,” in Proceedings of the 10th joint
meeting on the Foundations of Software Engineering. ACM, 2015, pp.
770–781.

[46] F. Palomba and A. Zaidman, “Does refactoring of test smells induce
fixing flaky tests?” in Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 1–12.

[47] T. Halkjelsvik and M. Jørgensen, “From origami to software develop-
ment: A review of studies on judgment-based predictions of perfor-
mance time.” Psychological Bulletin, vol. 138, no. 2, p. 238, 2012.

[48] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-
man, M. D. Penta, and S. Panichella, “A tale of ci build failures: an
open source and a financial organization perspective,” in Proceedings of
the International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. pages 183–193.

[49] A. Patterson, M. Kölling, and J. Rosenberg, “Introducing unit testing
with BlueJ,” ACM SIGCSE Bulletin, vol. 35, no. 3, pp. 11–15, Jun.
2003. [Online]. Available: http://doi.acm.org/10.1145/961290.961518

[50] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: which problems do they fix?” in Pro-
ceedings of the Working Conference on Mining Software Repositories
(MSR). ACM, 2014, pp. 202–211.

[51] E. Derby, D. Larsen, and K. Schwaber, Agile retrospectives: Making
good teams great. Pragmatic Bookshelf, 2006.

[52] V. Hurdugaci and A. Zaidman, “Aiding software developers to main-
tain developer tests,” in Proceedings of the European Conference on
Software Maintenance and Reengineering (CSMR). IEEE, 2012, pp.
11–20.

[53] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained
co-evolution patterns of production and test code,” in Proceedings
International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2014, pp. 195–204. [Online]. Available:
http://dx.doi.org/10.1109/SCAM.2014.28

[54] S. Romano, D. Fucci, G. Scanniello, B. Turhan, and N. Juristo,
“Findings from a multi-method study on test-driven development,”
Information and Software Technology, 2017.

[55] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An empirical
evaluation and comparison of manual and automated test selection,”
in Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM, 2014, pp. 361–372.

[56] A. Bookstein, “Informetric distributions, part i: Unified overview,”
Journal of the American Society for Information Science (1986-1998),
vol. 41, no. 5, p. 368, 1990.

[57] R. S. Pressman, Software engineering: a practitioner’s approach. Pal-
grave Macmillan, 2005.

[58] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
483–493.

[59] J. Anderson, S. Salem, and H. Do, “Improving the effectiveness of
test suite through mining historical data,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, ser. MSR 2014.
New York, NY, USA: ACM, 2014, pp. 142–151. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597084

[60] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident program-
ming prompter,” in Proceedings of the Working Conference on Mining
Software Repositories (MSR). ACM, 2014, pp. 102–111.

[61] Inozemtseva, Laura Michelle McLean, “Data science for software
maintenance,” Ph.D. dissertation, 2017. [Online]. Available: http:
//hdl.handle.net/10012/11753

http://doi.ieeecomputersociety.org/10.1109/MS.2006.113
http://doi.ieeecomputersociety.org/10.1109/MS.2006.113
http://doi.acm.org/10.1145/1022494.1022540
http://dx.doi.org/10.1007/s10606-009-9098-7
http://dx.doi.org/10.1007/s10606-009-9098-7
https://web.archive.org/web/20170606215822/https://github.com/TestRoots/watchdog
https://web.archive.org/web/20170606220245/https://www.jetbrains.com/resharper/
https://web.archive.org/web/20170606225553/http://maven.apache.org/guides/getting-started/
https://web.archive.org/web/20170606225553/http://maven.apache.org/guides/getting-started/
http://dlib.computer.org/conferen/icsm/8779/pdf/87790024.pdf
http://dlib.computer.org/conferen/icsm/8779/pdf/87790024.pdf
http://doi.acm.org/10.1145/2601248.2601267
http://web.archive.org/web/20170327121843/http://sportsci.org/resource/stats/
http://web.archive.org/web/20170327121843/http://sportsci.org/resource/stats/
http://youtu.be/-06ymo7dSHk
http://youtu.be/-06ymo7dSHk
https://web.archive.org/web/20170606225828/https://marketplace.eclipse.org/content/testroots-watchdog
https://web.archive.org/web/20170606225828/https://marketplace.eclipse.org/content/testroots-watchdog
https://web.archive.org/web/20170606225855/https://plugins.jetbrains.com/plugin/7828-watchdog
https://web.archive.org/web/20170606225855/https://plugins.jetbrains.com/plugin/7828-watchdog
https://web.archive.org/web/20170606225928/https://resharper-plugins.jetbrains.com/packages/KaVE.Project/
https://web.archive.org/web/20170606225928/https://resharper-plugins.jetbrains.com/packages/KaVE.Project/
https://web.archive.org/web/20170606225940/http://www.codetrails.com/blog/test-analytics-testroots-watchdog
https://web.archive.org/web/20170606225940/http://www.codetrails.com/blog/test-analytics-testroots-watchdog
https://web.archive.org/web/20170606230130/http://www.kave.cc/datasets/
https://web.archive.org/web/20170606230130/http://www.kave.cc/datasets/
http://doi.acm.org/10.1145/961290.961518
http://dx.doi.org/10.1109/SCAM.2014.28
http://doi.acm.org/10.1145/2597073.2597084
http://hdl.handle.net/10012/11753
http://hdl.handle.net/10012/11753

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 22

[62] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,”
in Proceedings of the Proceedings of the 14th International Conference
on Mining Software Repositories (MSR), 2017.

[63] D. Janzen and H. Saiedian, “Test-driven development: Concepts, taxon-
omy, and future direction,” Computer, no. 9, pp. 43–50, 2005.

[64] H. A. Borle N, Feghhi M, “Analysis of test driven development on
sentiment and coding activities in github repositories,” 2016. [Online].
Available: https://doi.org/10.7287/peerj.preprints.1920v2

[65] S. Romano, D. D. Fucci, G. Scanniello, B. Turhan, and N. Juristo,
“Results from an ethnographically-informed study in the context of test-
driven development,” PeerJ Preprints, Tech. Rep., 2016.

[66] S. Romano, D. Fucci, G. Scanniello, B. Turhan, and N. Juristo,
“Results from an ethnographically-informed study in the context of
test driven development,” in Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering,
ser. EASE ’16. New York, NY, USA: ACM, 2016, pp. 10:1–10:10.
[Online]. Available: http://doi.acm.org/10.1145/2915970.2915996

[67] J. W. Wilkerson, J. F. Nunamaker Jr, and R. Mercer, “Comparing the
defect reduction benefits of code inspection and test-driven develop-
ment,” Software Engineering, IEEE Transactions on, vol. 38, no. 3, pp.
547–560, 2012.

[68] A. Oram and G. Wilson, Making software: What really works, and why
we believe it. ” O’Reilly Media, Inc.”, 2010.

[69] S. Kollanus, “Test-driven development-still a promising approach?” in
Quality of Information and Communications Technology (QUATIC),
2010 Seventh International Conference on the. IEEE, 2010, pp. 403–
408.

[70] H. Erdogmus, “On the effectiveness of test-first approach to program-
ming,” 2005.

[71] L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven development
as a defect-reduction practice,” in Software Reliability Engineering,
2003. ISSRE 2003. 14th International Symposium on. IEEE, 2003,
pp. 34–45.

[72] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, “Realizing
quality improvement through test driven development: results and
experiences of four industrial teams,” Empirical Software Engineering,
vol. 13, no. 3, pp. 289–302, 2008.

[73] M. M. Müller and F. Padberg, “About the return on investment of
test-driven development,” in 5th International Workshop on Economic-
driven Software Engineering Research, 2003, p. 26.

[74] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio,
“Evaluating advantages of test driven development: a controlled ex-
periment with professionals,” in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering. ACM,
2006, pp. 364–371.

[75] Joint Task Force on Computing Curricula, IEEE Computer Society,
and Association for Computing Machinery, “Curriculum guidelines for
undergraduate degree programs in software engineering,” http://www.
acm.org/binaries/content/assets/education/se2014.pdf, Accessed June 6,
2017.

[76] D. S. Janzen and H. Saiedian, “Does test-driven development really
improve software design quality?” Software, IEEE, vol. 25, no. 2, pp.
77–84, 2008.

[77] D. Heinemeier Hansson, “TDD is dead. long live testing.” http://david.
heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html, Ac-
cessed June 6, 2017.

[78] ——, “Test-induced design damage,” http://david.heinemeierhansson.
com/2014/test-induced-design-damage.html, Accessed June 6, 2017.

[79] D. Heinemeier Hansson, K. Beck, and M. Fowler, “Is TDD dead?”
https://youtu.be/z9quxZsLcfo, Accessed April 13, 2016.

[80] “Android Studio Documentation: Test Your App,” https://developer.
android.com/studio/test/index.html, Accessed June 12, 2017.

[81] T. Connolly and D. Dean, “Decomposed versus holistic estimates
of effort required for software writing tasks,” Management Science,
vol. 43, no. 7, pp. 1029–1045, 1997.

[82] I. Ciupa, “Test studio: An environment for automatic test generation
based on design by contracttm,” 2004.

[83] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann,
“Software developers’ perceptions of productivity,” in Proceedings
of the International Symposium on Foundations of Software
Engineering (FSE). ACM, 2014, pp. 19–29. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635892

[84] L. Hatton, “How accurately do engineers predict software maintenance
tasks?” Computer, no. 2, pp. 64–69, 2007.

[85] M. M. Roy, N. J. Christenfeld, and C. R. McKenzie, “Underestimating
the duration of future events: memory incorrectly used or memory
bias?” Psychological bulletin, vol. 131, no. 5, p. 738, 2005.

[86] M. M. Roy, S. T. Mitten, and N. J. Christenfeld, “Correcting memory
improves accuracy of predicted task duration.” Journal of Experimental
Psychology: Applied, vol. 14, no. 3, p. 266, 2008.

[87] M. Jørgensen and D. Sjøberg, “Generalization and theory-building in
software engineering research,” Empirical Assessment in Software Eng.
Proc, pp. 29–36, 2004.

[88] D. I. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical
methods in software engineering research,” in Future of Software
Engineering, 2007. FOSE’07. IEEE, 2007, pp. 358–378.

[89] J. G. Adair, “The Hawthorne effect: A reconsideration of the method-
ological artifact.” Journal of applied psychology, vol. 69, no. 2, pp.
334–345, 1984.

[90] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 19–29.

[91] E. I. Collins, A. L. Cox, J. Bird, and D. Harrison, “Social networking
use and rescuetime: the issue of engagement,” in Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication. ACM, 2014, pp. 687–690.

[92] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
S. Zhen, and W. E. Doane, “Beyond the personal software process:
Metrics collection and analysis for the differently disciplined,” in Pro-
ceedings of the 25th international Conference on Software Engineering.
IEEE Computer Society, 2003, pp. 641–646.

[93] L. Hattori and M. Lanza, “Syde: a tool for collaborative software devel-
opment,” in Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 235–238.

[94] R. Robbes and M. Lanza, “Spyware: a change-aware development
toolset,” in Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 2008, pp. 847–850.

[95] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A com-
parative study of manual and automated refactorings,” in Proceedings of
the 27th European Conference on Object-Oriented Programming, 2013,
pp. 552–576.

[96] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing de-
veloper interactions,” in Proceedings of the Working Conference on
Software Visualization (VISSOFT). IEEE, 2014, pp. 147–156.

[97] H. Kou, P. M. Johnson, and H. Erdogmus, “Operational definition and
automated inference of test-driven development with zorro,” Automated
Software Engineering, vol. 17, no. 1, pp. 57–85, 2010.

[98] P. M. Johnson, “Searching under the streetlight for useful software
analytics,” IEEE software, no. 4, pp. 57–63, 2013.

[99] O. Mishali, Y. Dubinsky, and S. Katz, “The TDD-Guide training
and guidance tool for test-driven development,” in Agile Processes in
Software Engineering and Extreme Programming. Springer, 2008, pp.
63–72.

[100] Y. Wang and H. Erdogmus, “The role of process measurement in test-
driven development,” in 4th Conference on Extreme Programming and
Agile Methods, 2004.

[101] P. Kochhar, T. Bissyande, D. Lo, and L. Jiang, “An empirical study of
adoption of software testing in open source projects,” in Proceedings
of the International Conference on Quality Software (QSIC). IEEE,
2013, pp. 103–112.

[102] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of the International
Conference on Software Engineering (ICSE). ACM, 2006, pp. 492–
501.

[103] R. Pham, S. Kiesling, O. Liskin, L. Singer, and K. Schneider, “Enablers,
inhibitors, and perceptions of testing in novice software teams,” in
Proceedings of the International Symposium on Foundations of Software
Engineering (FSE). ACM, 2014, pp. 30–40.

[104] P. D. Marinescu, P. Hosek, and C. Cadar, “Covrig: a framework for
the analysis of code, test, and coverage evolution in real software,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2014, pp. 93–104.

[105] R. Feldt, “Do system test cases grow old?” in Proceedings of the In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2014, pp. 343–352.

[106] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” IEEE Trans.
Software Eng., vol. 40, no. 11, pp. 1100–1125, 2014. [Online].
Available: http://dx.doi.org/10.1109/TSE.2014.2342227

https://doi.org/10.7287/peerj.preprints.1920v2
http://doi.acm.org/10.1145/2915970.2915996
http://web.archive.org/web/20161230085950/http://www.acm.org/binaries/content/assets/education/se2014.pdf
http://web.archive.org/web/20161230085950/http://www.acm.org/binaries/content/assets/education/se2014.pdf
http://web.archive.org/web/20170606172457/http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://web.archive.org/web/20170606172457/http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://web.archive.org/web/20170606080020/http://david.heinemeierhansson.com/2014/test-induced-design-damage.html
http://web.archive.org/web/20170606080020/http://david.heinemeierhansson.com/2014/test-induced-design-damage.html
https://youtu.be/z9quxZsLcfo
https://web.archive.org/web/20170612122012/https://developer.android.com/studio/test/index.html
https://web.archive.org/web/20170612122012/https://developer.android.com/studio/test/index.html
http://doi.acm.org/10.1145/2635868.2635892
http://dx.doi.org/10.1109/TSE.2014.2342227

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 23

[107] M. Greiler, A. van Deursen, and M. Storey, “Test confessions: a study of
testing practices for plug-in systems,” in Software Engineering (ICSE),
2012 34th International Conference on. IEEE, 2012, pp. 244–254.

Moritz Beller is a PhD student at the Delft Uni-
versity of Technology, The Netherlands. His pri-
mary research domain is evaluating and improv-
ing the feedback developers receive from dy-
namic and static analysis using empirical meth-
ods. Moritz is the main author of TravisTorrent,
which provides free and open Continuous Inte-
gration analytics. He holds an M.Sc. with dis-
tinction from the Technical University of Munich,
Germany. More on https://www.inventitech.com.

Georgios Gousios is an assistant professor at
the Delft University of Technology, The Nether-
lands. His research interests are in fields of dis-
tributed software development processes, soft-
ware analytics, software testing, research infras-
tructures and mining software repositories. He is
the main author of the GHTorrent data collection
and curation framework, the Alitheia Core repos-
itory mining platform and several open source
tools. Dr. Gousios holds a PhD from the Athens
University of Economics and Business and an

MSc from the University of Manchester, both with distinction.

Annibale Panichella is a Research Associate
in the Interdisciplinary Centre for Security, Reli-
ability and Trust (SnT) at the University of Lux-
embourg. His research interests include security
testing, evolutionary testing, search-based soft-
ware engineering, textual analysis, and empirical
software engineering. He serves and has served
as program committee member of various inter-
national conference (e.g., ICSE, GECCO, ICST
and ICPC) and as reviewer for various inter-
national journals (e.g., TSE, TOSEM, TEVC,

EMSE, STVR) in the fields of software engineering and evolutionary
computation.

Sebastian Proksch is a doctoral candidate at
TU Darmstadt in the group of Prof. Mira Mezini.
His research is focused on the structured de-
velopment of recommender systems in software
engineering and includes work on static anal-
yses, mining software repositories, and human
factors in software engineering. The work is
driven by the idea to combine different sources
of input data to improve the quality of recom-
mender systems and their evaluation.

Sven Amann is a doctoral candidate at TU
Darmstadt, Germany. His primary research do-
main is API-misuse detection using static anal-
yses and machine-learning techniques applied
to examples mined from large code repositores
and code search engines. Sven is founder and
project lead of the MUBench benchmark suite.
More on http://sven-amann.de.

https://web.archive.org/web/20170606231215/https://www.inventitech.com
https://web.archive.org/web/20170606231336/http://sven-amann.de

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 24

Andy Zaidman is an associate professor at
the Delft University of Technology, The Nether-
lands. He obtained his M.Sc. (2002) and Ph.D.
(2006) in Computer Science from the University
of Antwerp, Belgium. His main research interests
are software evolution, program comprehension,
mining software repositories and software test-
ing. He is an active member of the research
community and involved in the organization of
numerous conferences (WCRE’08, WCRE’09,
VISSOFT’14 and MSR’18). In 2013 Andy Zaid-

man was the laureate of a prestigious Vidi career grant from the Dutch
science foundation NWO.

