
A Mixed Methods Approach to Mining Code
Review Data:

Examples and a replication study of
multi-commit reviews

Peter C Rigby2, Alberto Bacchelli1, Georgios Gousios1, Murtuza Mukadam2

1Delft University of Technology, The Netherlands
2Concordia University, Montreal, Canada

March 17, 2014

Abstract

Software code review has been considered an important quality assur-
ance mechanism for the last 35 years. The techniques for conducting code
reviews have evolved along with the software industry and have become
progressively incremental and lightweight. We have studied code review
in number of contemporary settings, including Apache, Linux, KDE, Mi-
crosoft, Android, and GitHub. Code review is an inherently social activity,
so we have used both quantitative and qualitative methods to understand the
underlying parameters (or measures) of the process, as well as the rich inter-
actions and motivations for doing code review. In this chapter, we describe
how we have used a mixed methods approach to triangulate our findings on
software code review. We also describe how we use quantitative data to help
us sample the most interesting cases from our data to be analyzed qualita-
tively. To illustrate code review research, we provide new results contrast
single and multi-commit reviews. We find that while multi-commit reviews
take longer and have more churn than single commit reviews, the same num-
ber of people are involved both types of review. To enrich and triangulate
our findings, we qualitatively analyze the characteristics of multi-commit
reviews and find that there are two types: reviews of branches and revisions
to single commits. We also examine the reasons why commits are rejected.

1



1 Introduction
Fagan’s study of software inspections (i.e., formal code review) in 1976 was one
of the first attempts to provide an empirical basis for a software engineering pro-
cess [13]. He showed that inspection, in which an independent evaluator examines
software artifacts for problems, effectively found defects early in the development
cycle and reduced costs. He concluded that the increased upfront investment in
inspection led to fewer costly customer reported defects.

The techniques for conducting reviews have evolved along with the software
industry and have progressively moved from Fagan’s rigid and formal inspection
process to an incremental and more lightweight review process. We have studied
code review in number of contemporary settings: Apache, Linux, KDE [41, 42,
38, 40], Microsoft [4, 39], Android [28], and GitHub [19]. Since code review is an
inherently complex social activity, we have used both quantitative and qualitative
methods to understand the underlying parameters (or measures) of the process
(e.g., [39]) as well as the rich interactions and motivations for doing code review
(e.g., [4]). The goal of this chapter is to introduce the reader to code review data
and to demonstrate how a mixed quantitive and qualitative approach can be used
to triangulate empirical software engineering findings.

The chapter is structure as follows. In Section 2, we compare qualitative and
quantitive methods and describe how and when they can be combined. In Sec-
tion 3, we describe the available code review data sources and provide a meta-
model of the fields one can extract. In Section 4, we conduct an illustrative quan-
titative investigation to study how multiple related commits (e.g., commits on a
branch) are reviewed. This study replicates many of the measures that have been
used in the past, such as number of reviewers and time to perform a review. In
Section 5, we describe how to collect and sample nonnumerical data, e.g., with in-
terviews and from review emails, and analyze it for themes. Data is analyzed using
a research method based on grounded theory [18]. In Section 6, we triangulate our
findings on multi-commit reviews by quantitively examining review discussions
on multiple commits. We also suggest how one might continue this study by using
card sorting or interviews. Section 7 concludes this by summarizing our findings
and the techniques we use.

2



2 Motivation for a mixed methods approach
While it is useful to develop new processes, practices, and tools, researchers sug-
gest that these should not be “invented” by a single theorizing individual, but
should be derived from empirical findings that can lead to empirically supported
theories and testable hypotheses. Grounded, empirical findings are necessary to
advance software development as an engineering discipline. With empirical work,
one tries not to tell developers how they should be working, but instead tries to
understand, for example, how the most effective developers work describing the
essential attributes of their work practices. This knowledge can inform practition-
ers and researchers and influence the design of tools.

There are two complementary methods for conducting empirical work [11]:
quantitive and qualitative. Quantitative analysis involves measuring the case. For
example, we can measure how many people make a comment during a review
meeting. Since there is little or no interpretation involved in extracting these mea-
surements, quantitive findings are objective. One of the risks when extracting
measures is construct validity: Do these measures assess a real phenomenon or is
there a systematic bias that reduces the meaningfulness of the measurements?

In contrast, qualitive findings allow the researcher to extract complex rich pat-
terns of interactions. For example, knowing the number of people at a review
meeting does not give information about how they interacted. Using a qualitative
approach, one must code data to find the qualitative themes, such as how review-
ers ask questions. While qualitative approaches like grounded theory ensure that
each theme is tied back to a particular piece of data, potential for researcher bias
is present.

Triangulation involves combining one or more research methods and data
sources. The goal is to limit the weaknesses and biases present in each research
method by using complementary methods and datasets. For example, one can
measure attributes of archival review discussion and then interview developers
involved in the reviews to ensure that the first measures make sense.

Replication involves conducting the same study using the same methodology
on new cases. Yin [54] identifies two types of case study replications: literal
replications and contrasting replications. The purpose of a literal replication is to
ensure that similar projects produce similar results. For example, do two simiilar
project, such as Apache and Subversion, yeild similar findings? Contrasting repli-
cations should produce contrasting results, but for reasons predicted by one’s un-
derstanding of the differences between projects. For example, one might compare
how reviewers select contributions for review on the Linux project vs Microsoft

3



Office. We would expect to see differences between these two projects based on
their drastically different organization structure.

In subsequent sections, we will use quantitive methods to measure aspects of
six case study replications, we triangulate our findings by using qualitive coding
of archival review discussion to understand how group commits for review.

3 Review Process and Data
To give the reader a sense of the different types of code review, we summarize
how review is done traditionally, on OSS projects, at Microsoft, on Google-lead
projects, and on GitHub. With this understanding we provide a table of the differ-
ent attributes of code review that we can measure in each environment.

3.1 Software Inspection
Software inspections are the most formal type of review. They are conducted af-
ter a software artifact meets predefined exit criteria (e.g., a particular requirement
is implemented). The process, originally defined by Fagan [13], involves some
variations of the following steps: planning, overview, preparation, inspection, re-
working, and follow-up. In the first three steps, the author creates an inspection
package (i.e., determines what is to be inspected), roles are assigned (e.g., moder-
ator), meetings are scheduled, and the inspectors examine the inspection package.
The inspection is conducted, and defects are recorded but not fixed. In the fi-
nal steps, the author fixes the defects and the mediator ensures that the fixes are
appropriate. Although there are many variations on formal inspections, “their
similarities outweigh their differences” [53].

3.2 Open Source Software Code Review
Asynchronous, electronic code review is a natural way for OSS developers, who
rarely meet in person, to ensure that the community agrees on what constitutes
a good code contribution. Most large, successful OSS projects see code review
as one of their most important quality assurance practices [40, 30, 2]. On OSS
projects, a review begins with a developer creating a patch. A patch is a de-
velopment artifact, usually code, that the developer feels will add value to the
project. Although the level of formality of the review processes varies among

4



OSS projects, the general steps are consistent across most projects: (1) The au-
thor submits a contribution by emailing it to the developer mailing list or posting
to the bug or review tracking system, (2) one or more people review the contribu-
tion, (3) it is modified until it reaches the standards of the community, and (4) it is
committed to the code base. Many contributions are ignored or rejected and never
make it into the code base [7].

3.3 Code Review at Microsoft
Microsoft developed an internal tool, CodeFlow, to aid in the review process. In
CodeFlow a review occurs when a developer has completed a change, but prior
to checkin into the version control system. A developer will create a review by
indicating which changed files should be included, providing a description of the
change (similar to a commit message), and specifying who should be included in
the review. Those included receive email notifications and then open the review
tool that displays the changes to the files and allows the reviewers to annotate
the changes with their own comments and questions. The author can respond to
the comments within the review and can also submit a new set of changes that
addresses issues that the reviewers have brought up. Once a reviewer is satisfied
with the changes, he can “sign off” on the review in CodeFlow. For more details
on review at Microsoft, we refer the reader to an earlier empirical study [4] in
which we investigated the purposes for code review (e.g., finding defects, sharing
knowledge) along with the actual outcomes (e.g., creating awareness and gaining
code understanding) at Microsoft.

3.4 Google-based Gerrit Code Review
When the Android project was released as OSS, the Google Engineers working
on Android wanted to continue using the internal Mondrian code review tool used
at Google [44]. Gerrit is an OSS, Git specific implementation of the code review
practices used internally at Google, created by Google Engineers [14]. Gerrit
centralizes Git acting as a barrier between a developer’s private repository and the
shared centralized repository. Developers make local changes in their private Git
repositories and then submit these changes for review. Reviewers make comments
via the Gerrit web interface. For a change to be merged into the centralized source
tree, it must be approved and verified by another developer. The review process
has the following stages:

5



1. Verified - Before a review beings, someone must verify that the change
merges with the current master branch and does not break the build. In
many cases, this step is done automatically.

2. Approved - While anyone can comment on the change, someone with ap-
propriate privileges and expertise must approve the change.

3. Submitted/Merged - Once the change has been approved it is merged into
Google’s master branch so that other developers can get the latest version
of the system.

3.5 GitHub pull requests
Pull requests is the mechanism that GitHub offers for doing code reviews on in-
coming source code changes. A GitHub pull request contains a branch (local or in
another repository) from which a core team member should pull commits. GitHub
automatically discovers the commits to be merged and presents them in the pull
request. By default, pull requests are submitted to the base (“upstream” in Git
parlance) repository for review. There are two types of review comments:

1. Discussion - Comments on the overall contents of the pull request. Inter-
ested parties engage in technical discussion regarding the suitability of the
pull request as a whole.

2. Code Review - Comments on specific sections of the code. The reviewer
makes notes on the commit diff, usually of technical nature to pinpoint po-
tential improvements.

Any GitHub user can participate in both types of review. As a result of the
inspection, pull requests can be updated with new commits or the pull request can
be rejected—either as redundant, uninteresting or duplicate. The exact reason a
pull request is rejected is not recorded, but could be inferred from the pull request
discussion. In case an update is required as a result of a code review, the contribu-
tor creates new commits in the forked repository and, after the changes are pushed
to the branch to be merged, GitHub will automatically update the commits in the
pull request. The code review can then be repeated on the refreshed commits.

When the inspection process finishes and the pull requests are deemed satis-
factory, the pull request can be merged. A pull request can only be merged by core

6



team members. The versatility of Git enables pull requests to be merged in various
ways, with varying levels of preservation of the original source code properties.

It is important to note that code reviews in pull requests are in many cases
implicit and therefore not observable. For example, many pull requests receive no
code comments and no discussion, while they are still merged. It is usually safe
to expect that the developer that did the merge did review the pull request before
merging it, unless it is project policy to accept any pull request without reviewing.

3.6 Data Measures and Attributes
A code review is effective if the proposed changes are eventually accepted, and it
is efficient if the time this takes is as short as possible. To study patch acceptance
and rejection and the speed of the code review process, a framework for extracting
meta-information about code reviews is required. Code reviewing processes are
common in both open source [39, 19] and commercial software development en-
vironments [4]. Researchers have identified and studied code review in contexes
such as patch submission and acceptance [29, 7, 52, 6] and bug triaging [1, 15].
Our meta-model for code review analysis draws from existing work and is effec-
tively a superset of features used accross various studies (see Table 1). Generally,
those features can be split in three broad categories:

Proposed change features - These characteristics attempt to quantify the impact
of the proposed change on the affected code base. When examining external
code contributions, the size of the patch is affecting both acceptance and
acceptance time [52]. There are various metrics to determine the size of
a patch that have been used by researchers: code churn [29, 37], changed
files [29] and number of commits. In the particular case of Github pull
requests, developers reported that the presence of tests in a pull request
increases their confidence to merge it [33]. The number of participants has
been shown to influence the time to process of code reviewing [39].

Project features - These features quantify the receptiveness of a project to an in-
coming code change. If the project’s process is open to external contri-
butions, then we expect to see an increased ratio of external contributors
over team members. The project’s size may be a detrimental factor to the
speed of processing a proposed change, as its impact may be more difficult
to assess. Also, incoming changes tend to cluster over time (the “yester-
day’s weather” change pattern [16]), so it is natural to assume that proposed

7



changes affecting a part of the system that is under active development will
be more likely to merge. Testing plays a role in speed of processing; ac-
cording to [33], projects struggling with a constant flux of contributors use
testing, manual or preferably automated, as a safety net to handle contribu-
tions from unknown developers.

Developer - Developer-based features attempt to quantify the influence that the
person who created the proposed change has on the decision to merge it and
the time to process it. In particular, the developer who created the patch has
been shown to influence the patch acceptance decision [20]. To abstract the
results across projects with different developers, researchers devised fea-
tures that quantify the developer’s track record [12], namely the number of
previous proposed changes and their acceptance rate; the former has been
identified as a strong indicator of proposed change quality [33]. Finally,
Bird et al. [8], presented evidence that social reputation has an impact on
whether a patch will be merged; concequently, features that quantify the
developer’s social reputation (e.g., follower’s in GitHub’s case) can be used
to track this.

4 Quantitative Replication Study: Code review on
branches

Many studies have quantified the attributes of code review that we discussed in
Table 1 (e.g., [41, 46, 6]). All review studies to date have ignored the number of
commits (i.e., changes or patches) that are under discussion during review. Multi-
commit reviews usually involve a feature that is broken into multiple changes
(i.e., a branch) or a review that requires additional corrective changes submitted
to the original patch (i.e., revisions). In this section, we perform a replication
study using some of the attributes described in the previous section to understand
how multiple related commits affect the code review process. In Section 6, we
triangulate our results by qualitatively examining how and why multiple commits
are reviewed. We answer the following research questions:

RQ1 - How many commits are part of each review?

RQ2 - How many files and lines of code are changed per review?

8



Feature Description
Code Review Features
num commits Number of commits in the proposed change
src churn Number of lines changed (added + deleted) by the proposed

change.
test churn Number of test lines changed in the proposed change.
files changed Number of files touched by the proposed change.
num comments Discussion and code review comments.
num participants Number of participants in the code review discussion
Project Features
sloc Executable lines of code when the proposed change was cre-

ated.
team size Number of active core team members during the last 3

months prior to the proposed change creation.
perc ext contribs The ratio of commits from external members over core team

members in the last n months.
commits files touched Number of total commits on files touched by the proposed

change n months before the proposed change creation time.
test lines per kloc A proxy for the project’s test coverage.
Developer
prev changes Number of changes submitted by a specific developer, prior

to the examined proposed change.
requester succ rate % of the developer’s changes that have been integrated up to

the creation of the examined proposed change.
reputation Quantification of the developer’s reputation in the project’s

community, e.g. followers on Github

Table 1: Metamodel for code review analysis.

9



Projects Period Years
Linux Kernel 2005–2008 3.5
Android 2008–2013 4.0
Chrome 2011–2013 2.1
Rails 2008–2011 3.2
Katello 2008–2011 3.2
Wildfly 2008–2011 3.2

Table 2: The time period we examined in years and the number of reviews

RQ3 - How long does it take to perform a review?

RQ4 - How many reviews make comments during a review?

We answer these questions in the context of Android and Chromium OS,
which use Gerrit for review; the Linux Kernel, which performs email based re-
view; and Rails, Katello, and Wildfly projects, which use GitHub pull requests for
review. These projects were selected because they are all successful, medium to
large in size, and represent different software domains.

Table 2 shows the dataset and the time period we examined in years. We use
the data extracted from these projects and perform comparisons that help us draw
conclusions.

For more details on each project and the review process they use, see the dis-
cussion in Section 3. We present our results as boxplots, which show the distribu-
tion quartiles, or, when the range is large enough, a distribution density plot [21].
In both plots, the median is represented by a bold line.

4.1 RQ 1 - Commits per review
How many commits are part of each review?

Table 3 shows the size of the data set and proportion of reviews that involve
more than one commit. Chrome has the largest percentage of multi-commit re-
views at 63%, and Rails has the least at 29%. Single commit reviews dominate
on most projects. By considering multi-commit reviews only, we find that Linux,
Wildfly, Katello all have a median of three commits, while Android, Chrome,
Rails have median of two commits.

10



Projects All Single Commit Multi-commit
Linux Kernel 20.2K 70% 30%
Android 16.4K 66% 34%
Chrome 38.7K 37% 63%
Rails 7.3K 71% 29%
Katello 2.6K 62% 38%
Wildfly 5K 60% 40%

Table 3: Number of reviews in our dataset and number of commits per review

Linux Android Chrome Rails WildFly Katello

2
5

10
20

50
10

0

N
um

be
r 

of
 c

om
m

its
 in

 a
 m

ul
ti−

co
m

m
it 

re
vi

ew
 (

lo
g)

Figure 1: Number of Patches

11



1
10

0
10

00
0

Linux Android Chrome Rails WildFly Katello

Li
ne

s 
ch

ur
ne

d 
pe

r 
re

vi
ew

 (
lo

g)

Figure 2: Number of lines churned – left: single commits, right: multi-commit
reviews

4.2 RQ2 - Size of commit
How many files and lines of code are changed per review?

In Figure 2, we see WildFly makes the larges commits with single commits
having a median of 40 lines changes, while Katello makes the smallest changes
(median 8 lines). WildFly also makes the largest multi-commit changes, with a
median of 420 lines changed, and rails makes the smallest with a median of 43.

Multiple commits reviews are 10, 5, 5, 5, 11, and 14 times larger than single
commits for Linux, Android, Chrome, Rails, Wildfly, and Katello, respectively.
In comparison with Figure 1, we see that multi-commit reviews have one to two
more more commits than single commit reviews. Normalizing for the number of
commits, we see that individual commits in multi-commit reviews contain more
churns than single commits. We conjecture that multi-commit changes implement
features or involve complex changes.

4.3 RQ3 - Review Interval
How long does it take to perform a review?

The review interval is the calendar time since the commit was posted until

12



Linux Android Chrome Rails WildFly Katello

R
ev

ie
w

 in
te

rv
al

 in
 d

ay
s 

(lo
g)

1 
hr

1
7

36
5

Figure 3: Review Interval – left: single commits, right: multi-commit reviews

the end of discussion of the change. Review interval is an important measure of
review effectiveness [24, 34]. The speed of feedback provided to the author of a
contribution is dependent on the length of the review interval. Review interval has
also been found to be related to the overall timeliness of a project [50].

Current practice is to review small changes, frequent and quickly. Reviews
on OSS, at Microsoft, and on Google-lead projects last for around 24 hours [39].
This interval is very short compared with the months or weeks it took to conduct
formal inspections [13, 34].

In Figure 3, we see that the GitHub projects perform reviews at least as quickly
as Linux and Android. Single commit reviews happen in a median of 2.3 hours
(Chrome) and 22 hours (Linux). Multi-commit reviews are finished in a median
of 22 hours (Chrome) and 3.3 days (Linux).

Multi-commit review take 4, 10, 10, 9, 2, and 7 times longer than single com-
mits for Linux, Android, Chrome, Rails, Wildfly, and Katello, respectively.

4.4 RQ4 - Reviewer Participation
How many reviewers make comments during a review?

According to Sauer et al. two reviewers tend to find an optimal number of

13



Android Chrome Rails Katello Wildfly Linux

Projects

R
ev

ie
w

er
s 

pe
r 

re
vi

ew
 (

lo
g)

0
1

2
4

10
20

Figure 4: Number of reviewers in multi-commit reviews

defects [43]. Despite different processes for reviewer selection (e.g., self-selection
vs assignment to review), the number of reviewers involved in review is two in the
median case across a large diverse set of projects [39]. With the exception of Rails
that has a median of three reviewers on multi-commits, reviews are conducted
using two reviewers regardless of the number of commits.

The number of comments made during a review does change depending on the
number of commits. Android, Chrome, and Wildfly increase from 3 comments to
4 comments, while Rails and Katello go from 1 comment to 3 comments. Linux
sees a much larger increase from 2 comments to 6 comments.

4.5 Conclusion
In this section we contrasted multi-commit and single commit reviews: on num-
ber of commits, churn, interval, and participation. We found that multi-commit
reviews increase the number of commits by one to two in the median case. The
churn increases more dramatically, between 5 and 14 times the number of changed

14



lines in the median case. The amount of time to perform a review varies quite sub-
stantially from 2.3 hours to 3.3 days in the median case. Multi-commit reviews
take 2 to 10 times as long as single commit reviews. The number of reviewers is
largely unaffected by review, we see two reviewers per review, with the exception
of Rails. The number of comments per review increases on multi-commit reviews.

No clear patterns emerged when comparing the multi and single commit re-
view styles across projects and across review infrastructures (e.g., Gerrit vs GitHub).
Our quantitative data is limited to measures of review and does not allow us to un-
derstand the underlying behaviours and practices used on each project. Our main
concern is that multi-commit reviews will serve two quite different purposes. The
first purpose would be to review branches that contain multiple related commits.
The second purpose will be to review a single commit after it has been revised to
incorporate reviewer feedback. In Section 5, we randomly sample multi-commit
reviews to determine the purpose of each review to add meaning to our quantita-
tive findings and to uncover the underlying practices used on each project.

5 Qualitative Approaches
Studies of formal software inspection [13, 25, 24] and code review [10, 41, 36,
30, 46, 39, 6] have largely been quantitative with the goal of showing that a new
process or practice is effective, finds defects, is efficient, and is completed in a
timely manner.

Unlike traditional inspection that has a prescriptive process, modern code re-
view has gradually emerged from industrial and open-source settings. Since the
process is less well defined, it is important to conduct exploitative analyses that
acknowledge the context and interactions that occur during code review. These
studies are required to gain an in-depth understanding of code review, which is
a complex phenomenon that encompasses non-trivial social aspects. Such un-
derstanding can be gained only by answering many how and why questions, for
which numbers and statistics would only give a partial picture. For this reason,
the studies were conducted using qualitative methods.

Qualitative methods involve the “systematic gathering and interpretation of
nonnumerical data.” [23] In software engineering research the nonnumerical data
is collected by studying the people involved in a software project as they work,
typically by conducting field research [9]. Field research consists of “a group
of methods that can be used, individually or in combination, to understand dif-
ferent aspects of real world environments” [26]. Lethbridge et al. surveyed how

15



field research has been performed in software engineering and accordingly pro-
posed a taxonomy of data collection techniques by grouping them in three main
sets [26]: (1) direct, (2) indirect, and (3) independent. Direct data collection tech-
niques (e.g., focus groups, interviews, questionnaires, or think-aloud sessions)
require researchers to have direct involvement with the participant population; in-
direct techniques (e.g., instrumenting systems, or “fly on the wall”) require the
researcher to have only indirect access to the participants’ via direct access to
their work environment; independent techniques (e.g., analysis of tool use logs,
documentation analysis) require researchers to access only work artifacts, such as
issue reports or source code.

In this section, we analyze two explorative studies on code reviews. We dive
into the details of the qualitative research methods used in two of those studies,
to understand them in more detail and to show how qualitative research could be
employed to shine a light on aspects of modern code review practices.

The first study manually examines archives of review data to understand how
OSS developers interact and manage to effectively conduct reviews on large mail-
ing lists [42], and the second study investigates the motivations driving devel-
opers and managers to do and require code review among product teams at Mi-
crosoft [4]. The two considered studies use both direct and independent data col-
lection techniques. The gathered data is then manually analyzed according to
different qualitative methodologies.

5.1 Sampling approaches
Qualitative research requires such labor-intensive data analysis that not all the
available data can be processed and it is necessary to extract samples. This regards
not only indirect data (e.g., documents), but also direct data and its collection
(e.g., people to interview), so that the data can be subsequently analyzed.

In quantitative research, where computing power can be put to good use, one
of the most common approaches for sampling is random sampling: Picking a high
number of cases, randomly, to perform analyses on. Such an approach requires a
relatively high number of cases so that they will be statistically significant. For ex-
ample, if we are interested in estimating a proportion (e.g., number of developers
who do code reviews) in a population with 1,000,000, we have to randomly sam-
ple 16,317 cases to achieve a confidence level of 99% with an error of 1% [48].
Unless very computationally expensive, such a number is simple to reach with
quantitative analyses.

Given the depth of manual analysis in qualitative research, random sampling is

16



not the optimal choice. In the following we explain how sampling was conducted
on the two considered qualitative studies, first in doing direct data collection, then
in doing independent data collection.

5.1.1 Sampling direct data

As previously mentioned one of the main goal of qualitative research is to see a
phenomenon from the perspective of another person, normally involved with it.
For this reason, one of the most common ways to collect qualitative data is to use
direct data collection by means of observations and interviews: Through observa-
tions and interviews we can gather accurate and finely nuanced information, thus
exposing participants’ perspectives.

However, interviews favors depth over quantity: Interviewing and the conse-
quent nonnumerical data analysis are time-consuming tasks, and not all the can-
didates are willing to participate in investigations and answer interview questions.
In the two considered qualitative studies, authors used different approaches to
sample interview participants.

Rigby and Storey [42] selected interviewees among the developers of the
Apache and Subversion projects. They ranked developers based on the number
of email based reviews they had performed, and they sent an interview request to
each of the top five reviewers on each project. The researchers’ purpose was to
interview the most prolific reviewers, in order to learn from their extensive ex-
perience and daily practice, thus understanding the way in which experts dealt
with submitted patches in OSS systems. Overall, the respondents that they inter-
viewed were nine core developers, either with committer rights or maintainers of
a module.

Bacchelli and Bird [4] selected interviewees among different Microsoft prod-
uct teams (e.g., Excel). They sampled developers based on the number of reviews
they had done since the introduction of CodeFlow (see Section 3.3): They con-
tacted 100 randomly selected candidates who signed-off between 50 and 250 code
reviews. In this case, they do not select the top reviewers, but a sample of those
with an average mid-to-high activity. In fact, their purpose was to understand the
average motivation for developers to do code reviews, and by selecting only the
most prolific reviewers they could have biased the results. The respondents that
they interviewed comprised 17 people: five developers, four senior developers, six
testers, one senior tester, and one software architect. Their time in the company
ranged from 18 months to almost 10 years, with a median of five years.

17



5.1.2 Sampling indirect data

Although, as shown in the rest of this chapter, indirect code review data can
be used entirely when employing quantitative methods, this is not the case for
qualitative analyses. In fact, if willing to manually analyze qualitatively review
comments recorded in emails or in archives generated by code review tools, re-
searchers have to sample this data to make it manageable.

In the considered studies, Rigby and Storey [42] analyzed email reviews for
six OSS software projects, and Bacchelli and Bird [4] analyzed code review com-
ments recorded by CodeFlow during code reviews done in different Microsoft
product groups. In both cases, since no human participants were involved, the re-
searchers could analyze hundreds of documents, thus they used random sampling,
with some precaution

5.1.3 Data saturation

Although large part of the qualitative analysis is conducted after the data gather-
ing, qualitative researchers also analyze their data throughout their data collection.
For this reason, in qualitative research it is possible rely on data saturation to ver-
ify whether the size of a sample could be large enough for the chosen research
purpose. Data saturation happens both in direct data and indirect data collection
and occurs when the researcher is no longer seeing, hearing, or reading new infor-
mation from the samples.

In both the considered studies the samples from which the researchers could
draw participants were initially larger, but when they clearly reached the satura-
tion effect, they stopped introducing new data points and started the subsequent
analysis.

5.2 Data collection
In the following, we describe how the researchers of the two studies collected data
by interviewing and observing the study participants selected with the sampling
phase. In both studies, the aim of this data collection phase was to gain an un-
derstanding of code reviewing practices by adopting the perspective of the study
participants (this is often the main target of qualitative research [23]). Moreover,
we also briefly explain how they collected indirect data about code reviews.

18



5.2.1 Observations and Interviews at Microsoft

In the study conducted at Microsoft, each meeting with participants comprised
two parts: An observation, followed by a semi-structured interview [47].

In the emails sent to candidate participants to the study, Bacchelli and Bird
invited developers to notify them back when they received the next review task,
so that the researchers could go to the participant’s office (this happened within 30
minutes from the notification) to observe how developers conducted the review.
To minimize invasiveness and the Hawthorne effect [32], only one researcher went
to the meeting and observed the review. To encourage the participants to narrate
their work (thus collecting more nonnumerical data), the researcher asked the par-
ticipants to consider him as a newcomer to the team. In this way, most developers
thought aloud without need of prompting.

With consent, assuring the participants of anonymity, the audio of the meeting
was recorded. Recording is a practice on which not all the qualitative researcher
methodologists agree. In this study, researchers preferred to have recorded audio
for two reasons: (1) Since not both the researchers were participating to the meet-
ings it was important that the not participating one could also analyze the data,
this was possible through audio recording; and (2) the researcher at the meeting
could fully focus on the observation and interaction with participants during the
interview. Since the researchers, as observers, have backgrounds in software de-
velopment and practices at Microsoft, they could understand most of the work and
where and how information was obtained without inquiry.

After the observations, the second part of the meeting took place, i.e., the
semi-structured interview. This form of interviews makes use of an interview
guide that contains general groupings of topics and questions rather than a pre-
determined exact set and order of questions. Semi-structured interviews are often
used in an exploratory context to “find out what is happening [and] to seek new
insights” [51].

Researchers devised the first version of the guideline by analyzing a previous
internal Microsoft study on code review practices, and by referring to academic
literature. Then, the guideline was iteratively refined after each interview, in par-
ticular when developers started providing answers very similar to the earlier ones,
thus reaching saturation.

After the first 5-6 meetings, the observations reached the saturation point. For
this reason, the researchers adjusted the meetings to have shorter observations,
which they only used as a starting point for interacting with participants and as a
hook to talk about topics in the interview guideline.

19



At the end of each interview, the audio was analyzed by the researchers, and
then transcribed and broken up into smaller coherent units for subsequent analysis.

5.2.2 Indirect data collection: Review comments and emails

As we have seen in previous sections, code review tools archive a lot of valuable
information for data analysis; similarly, mailing lists archive discussions about
patches and their acceptance. Although part of the data is numerical, a great deal
of information is nonnumerical data: For example, code review comments. This
information is a good candidate for qualitative analysis, since it contains traces
of opinions, interactions, and general behavior of developers involved in the code
review process.

Bacchelli and Bird randomly selected 570 code review comments from Code-
Flow data pertaining to more than 10 different product teams at Microsoft. They
considered only comments within threads with at least two comments, so that they
were sure there was interaction between developers. Considering that they were
interesting in measuring the average of types of comments, this amount, from a
quantitative perspective would have a confidence level of 95% and an error of 8%.

Rigby and Storey randomly sampled 200 email reviews for Apache, 80 for
Subversion, 70 for FreeBSD, 50 for the Linux kernel, and 40 email reviews and
20 Bugzilla reviews for KDE. They reported that saturation of the main themes
occurred relatively early on, thus making it unnecessary to code an equivalent
number of reviews for each project.

5.3 Qualitative analysis of Microsoft data
To qualitatively analyze the data gathered from observations, interviews, and recorded
code review comments, Bacchelli and Bird used two techniques: A card sort and
an affinity diagram.

5.3.1 Card Sorting

To group codes that emerged from interviews and observations into categories,
Bacchelli and Bird conducted a card sort. Card sorting is a sorting technique
that is widely used in information architecture to create mental models and derive
taxonomies from input data [5]. In their case it helped to organize the codes into
hierarchies to deduce a higher level of abstraction and identify common themes.
A card sort involves three phases: In the (1) preparation phase, participants of the

20



card sort are selected and the cards are created; in the (2) execution phase, cards
are sorted into meaningful groups with a descriptive title; and in the (3) analysis
phase, abstract hierarchies are formed to deduce general categories.

Bacchelli and Bird applied an open card sort: There were no predefined
groups. Instead, the groups emerged and evolved during the sorting process. In
contrast, a closed card sort has predefined groups and is typically applied when
themes are known in advance, which was not the case for our study.

Bacchelli created all of the cards, from the 1,047 coherent units generated
from the interview data. Throughout the further analysis other researchers (Bird
and external people) were involved in developing categories and assigning cards to
categories, so as to strengthen the validity of the result. Bacchelli played a special
role of ensuring that the context of each question was appropriately considered
in the categorization, and creating the initial categories. To ensure the integrity
of the categories, the cards were sorted by Bacchelli several times to identify
initial themes. To reduce bias from the first author sorting the cards to form initial
themes, all researchers reviewed and agreed on the final set of categories.

The same method was applied to group code review comments into categories:
Bacchelli and Bird printed one card for each comment (along with the entire dis-
cussion thread to give the context), and conducted a card sort, as performed for
the interviews, to identify common themes.

5.3.2 Affinity diagramming

Bacchelli and Bird used an affinity diagram to organize the categories that emerged
from the card sort. This tool allows large numbers of ideas to be sorted into groups
for review and analysis [45]. It was used to generate an overview of the topics that
emerged from the card sort, in order to connect the related concepts and derive the
main themes. For generating the affinity diagram, Bacchelli and Bird followed the
five canonical steps: They (1) recorded the categories on post-it-notes, (2) spread
them onto a wall, (3) sorted the categories based on discussions, until all are sorted
and all participants agreed, (4) named each group, and (5) captured and discussed
the themes.

5.4 Applying Grounded Theory to Archival Data to Under-
stand OSS Review

The preceding example demonstrated how to analyze data collected from inter-
views and observation using a card sort and an affinity diagram. Qualitative anal-

21



ysis can also be applied to the analysis of archival data, such as records of code
review (See Figure 5). To provide a second perspective on qualitative analysis,
we describe the methodology used by Rigby and Storey to code review discussion
on six OSS projects [42]. In the next section, we describe one of the themes that
emerged from this analysis: patchsets. Patchsets are groups of related patches that
implement a larger feature or fix and are reviewed together.

The analysis of the sample email reviews followed Glaser’s [18] approach
to grounded theory where manual analysis uncovers emergent abstract themes.
These themes are developed from descriptive codes used by the researchers to
note their observations. The general steps used in grounded theory are as follows:
note-taking, coding, memoing, sorting, and writing.1 Below we present each of
these steps in the context of the study of Rigby and Storey:

1. Note Taking - Note taking involves creating summaries of the data without
any interpretation of the events [18]. The comments in each review were
analyzed chronologically. Since patches could often take up many screens
with technical details, the researchers first summarized each review thread.
The summary uncovered high-level occurrences, such as how reviewers in-
teracted and responded.

2. Coding - Codes provide a way to group recurring events. The reviews were
coded by printing and reading the summaries and writing the codes in the
margin. The codes represented the techniques used to perform a review
and the types and styles of interactions among stakeholders. The example
shown in Figure 5 combines note taking and coding with emergent codes
being underlined.

3. Memos - Memoing is a critical aspect of grounded theory and differentiates
it from other qualitative approaches. The codes that were discovered on
individual reviews were grouped together and abstracted into short memos
that describe the emerging theme. Without this stage, researchers fail to
abstract codes and present ‘stories’ instead of a high-level description of the
important aspects of a phenomenon.

4. Sorting - Usually there are too many codes and memos to be reported in a
single paper. The researchers must identify the core memos and sort and
group them into a set of related themes. These core themes become the

1A simple practical explanation of grounded theory is http://www.aral.com.au/
resources/grounded.html accessed March 2014

22

http://www.aral.com.au/resources/grounded.html
http://www.aral.com.au/resources/grounded.html


Figure 5: Example fragment of review with three codes written in the margins: a
type of fix, a question that indicates a possible defect, and interleaved comments.

grounded ‘theory.’ One set of themes were the ways in which reviewers
asked authors questions.

5. Writing - Writing the paper is simply a matter of describing the evidence
collected for each theme. Each core theme is written up by tracing the
theme back to the abstract memos, codes, and finally the data points that
lead to the theme. One common mistake is to include too many low-level
details and quotations [18]. In the work by Rigby and Storey the themes are
represented throughout the paper as paragraph and section headings.

6 Triangulation

Triangulation “involves the use of multiple and different methods, investigators,
sources, and theories to obtain corroborating evidence” [31]. Since each method
and dataset has different strengths and weakness that offset each other when they
are combined, triangulation reduces the overall bias in a study. For example,
survey and interview data suffer from the biases that participants self-report on
events that have happened in the past. In contrast, archival data is a record of
real communication and so does not suffer from the self-reporting bias. However,
since archival data was collected without a research agenda, it can often be missing
information that a researcher needs to answer his or her questions. This missing
information can be supplement with interview questions.

In this section, we first describe how Bacchelli and Bird [4] triangulate their
findings using follow up surveys. We then triangulate our quantitive findings from

23



ValidationData AnalysisData Collection

CodeFlow 
Service

Code
Reviews

Commit 
Comments

Review 
Comment

Commit 
Comments

Review 
Thread

Commit 
Comments

Review 
Comment

Commit 
Comments

Interview
Transcript

Commit 
Comments

Commit 
CommentsTranscripts

Previous Study

Card Sorting on
570 Review Comments

Card Sorting on
1,047 Logical Units

Affinity Diagram

Interview
Guideline Managers' Survey

165 Respondents

Commit 
Comme

nts

Commit 
Comme

nts

Commit 
Comme

nts

Commit 
Comme

nts

Programmers' Survey
873 Respondents

Observations & 
Interviews

17 Participants

1

2
3

4

5

6

Figure 6: Triangulation-based methodology used by Bacchelli and Bird [4]

Section 4 on multi-commit reviews by first describing a qualitative study of branch
reviews on Linux. We then manual code multi-commit reviews as either branches
or revisions on the Gerrit and GitHub projects that we examined in in Section 4.
We conclude this section, with a qualitative and quantitative examination of why
GitHub reviews are rejected.

6.1 Using surveys to triangulate qualitative findings

The investigation of Bacchelli and Bird about expectations, outcomes, and chal-
lenges of code review employed of a mixed quantitative-qualitative approach,
which collects data from different sources for triangulation. Figure 6 shows the
overall research method employed, and how the different sources are used to draw
conclusions and test theories: (1) analysis of previous study, (2) meetings with de-
velopers (observations and interviews), (3) card sort on meeting data, (4) card sort
on code review comments, (5) affinity diagramming, and (6) survey to managers
and programmers.

The path including points 1 to 5 is described through Section 5, because it
involves collection and analysis of nonnumerical data. Here we focus on the us-
age of surveys for additional triangulation. We can see from the picture that the
methodology already includes two different sources of data: Direct data collec-
tion based on observations and interviews, and indirect data collection based on
the analysis of comments in code review archives. Although these two sources are

24



complementary and can be used to learn distinct stories, to eventually uncover the
truth behind a question, they both suffer from a limited number of data points. To
overcome this issue, Bacchelli and Bird used surveys to validate—with a larger,
statistically significant sample—the concepts that emerged from the analysis of
the data gathered from other sources.

In practice, they created two surveys and spread them to reach to reach a sig-
nificant number of participants and to challenge the conclusions of their quali-
tative analysis. The full surveys are available as a technical report [3]. For the
design of the surveys, Bacchelli and Bird followed the guidelines of Kitchenham
and Pfleeger for personal opinion surveys [22]. Although they could have sent the
survey in principle to all the employee at Microsoft, they selected samples that
were statistically significant, but at the same time would not inconveniently hit an
unnecessarily large number of people. Both surveys were anonymous to increase
response rates [49].

They sent the first survey to a cross section of managers. They considered
managers for which at least half of their team performed code reviews regularly
(on average, one per week or more) and sampled along two dimensions. The
first dimension was whether or not the manager had participated in a code review
himself since the beginning of the year and the second dimension was whether the
manager managed a single team or multiple teams (a manager of managers). Thus,
they had one sample of first level managers who participated in review, another
sample of second level managers who participated in reviews, etc. The first survey
was a short survey comprising 6 questions (all optional), which they sent to 600
managers that had at least 10 direct or indirect reporting developers who used
CodeFlow. The central focus was the open question asking to enumerate the main
motivations for doing code reviews in their team. They received 165 answers
(28% response rate), analyzed before devising the second survey.

The second survey comprised 18 questions, mostly closed with multiple choice
answers, and was sent to 2,000 randomly chosen developers who signed off on
average at least one code review per week since the beginning of the year. They
used the time frame of January to June of 2012 to minimize the amount of orga-
nizational churn during the time period and identify employees’ activity in their
current role and team. The survey received 873 answers (44% response rate).
Both response rates were high, as other online surveys in software engineering
have reported response rates ranging from 14% to 20% [35].

Although the surveys also included open questions, they were mostly based
on closed ones, thus could be used as a basis for statistical analyses. Thanks to the

25



high number of respondents, Bacchelli and Bird could challenge their qualitative
findings with a larger set of data, thus increasing the validity of their results.

6.2 How multi-commit branches are reviewed on Linux

In Section 4, we quantitatively compared single and multi-commit reviews. We
found that there was no clear pattern of review based on the size of project and
the type of review tool (i.e., Gerrit, GitHub, or email-based review). To enhance
our findings and to understand the practices that underlie them, we qualitatively
examine how multiple commits are handled on Linux. We find that multi-commit
reviews contain patches related to a single feature or fix. In the next subsection,
we use closed coding to determine if the other projects group commits by features
or if multi-commit reviews are indicative of revisions to the original commit.

Instead of conducting reviews in Gerrit or as GitHub pull requests, the Linux
Kernel uses mailing lists. Each review is conducted as an email thread. The first
message in the thread will contain the patch and subsequent responses will be
reviews and discussions of review feedback. For more details see Rigby [42]. Ac-
cording to code review polices of OSS projects, individual patches are required to
be in their smallest, functionally independent, and complete form [41]. Interviews
of OSS developers also indicated a preference for small patches, with some stating
that they refuse to review large patches until they are split into there component
parts. For Iwai, a core developer on the Linux project, “if it [a large patch] can’t be
split, then something is wrong [e.g., there are structural issues with the change].”
However, by forcing developers to produce small patches, larger contributions
are broken up and reviewed in many different threads. This division separates
and reduces communication among experts, making it difficult to examine large
contributions as a single unit. Testers and reviews must manually combine these
threads together. Interviewees complained about how difficult it is to combine a
set of related patches to test a new feature.

Linux developers use ‘patchsets’ which allow developers to group related
changes together, while still keeping each patch separate. A patchset is a sin-
gle email thread that contains multiple numbered and related contributions. The
first email contains a high level description that ties the contributions together and
explains their interrelationships. Each subsequent message contains the next patch
that is necessary to complete the larger change. For example, message subjects in

26



a patchset might look like this:2

• Patch 0/3: Fixing and combining foobar with bar [no code modified]

• Patch 1/3: Fix of foobar

• Patch 2/3: Integrate existing bar with foobar

• Patch 3/3: Update documentation on bar

Patchsets are effectively a branch of small patch commits that implements a
larger change. The version control system git contains a feature to send a branch
as a number patchset to a mailing list for code review [17].

Notice how each sub-contribution is small, independent, and complete. Also,
the contributions are listed in the order they should be committed to the system
(e.g., the fix to foobar must be committed before combining it with bar). Re-
viewers can respond to the overall patch (i.e., 0/N) or they can respond to any
individual patch (i.e., n/N, n > 0). As reviewers respond, sub-threads tackle sub-
problems. However, it remains simple for testers and less experienced reviewers
to apply the patchset as a single unit for testing purposes. Patchsets represent a
perfect example of creating a fine, but functional and efficient division between
the whole and the parts of a larger problem.

6.3 Closed coding: branch or revision on GitHub and Gerrit

A multi-commit review may be a related set of commits (a branch or patchset) or a
revision to a commit. We conduct a preliminary analysis of 15 randomly sampled
multi-commit reviews from each project to understand what type of review is
occurring. Of the 15 reviews coded for each of the GitHub based projects, 73%,
86% and 60% of them were branches for Rails, WildFly, and Katello, respectively.
These projects conducted branch review manner similar to Linux, but without the
formality of describing the changes at a highlevel. Each change had a one line
commit description that clearly indicated its connection to the next commit in the
brach. For example, the commits in the follow pull request implement two small
parts of the same change:3

2An Linux patchset: http://lkml.org/lkml/2008/5/27/278 Accessed in January 2014
3Example of a pull request https://github.com/rails/rails/pull/513/commits ac-

cessed in March 2014.

27

http://lkml.org/lkml/2008/5/27/278
https://github.com/rails/rails/pull/513/commits


• Commit 1: ’Modified CollectionAssociation to refer to the new class name.’

• Commit 2: ’Modified NamedScopeTest to use CollectionAssociation.’

WildFly had the highest percentage of branch reviews, which may explain why
it had the largest number of lines changed and the longest review interval of all
the projects we examined (See Section 4).

On GitHub, we also noted that some of the multi-commit reviews were of
massive merges instead of individual feature changes.4 Future work that examined
‘massive’ merge reviews would be interesting.

For Android and Chrome, we were suprised to find that none of the randomly
reviews were of branches. Each multi-commit review involved revisions to a sin-
gle commit. While future work is necessary to determine whether this is a defacto
practice or enforced by policy, there is a preference at Google to commit onto
a single branch [27]. Furthermore, the notion of ‘patchset’ in the Gerrit review
system usually applies to an updated version of a patch rather than a branch, as it
does in Linux [14].

6.4 Understanding why pull requests are rejected

As a final example of mixed qualitative-quantitative research involving triangula-
tion, we present new findings on why pull request reviews are reject on GitHub
projects. Previous work has found relatively low rates of patch acceptance on
large successful OSS projects. Bird et al. [7] found that the acceptance rate in
three OSS projects is between 25% and 50%. On the six projects examined by
Asundi and Jayant [2] they found that 28% to 46% of non-core developers had
their patches ignored. Estimates of Bugzilla patch rejection rates on Firefox and
Mozilla range from 61% [20] to 76% [30]. In contrast, while most proposed
changes on GitHub pull requests are accepted [19], it is interesting to explore why
some are not. Even though textual analysis tools (e.g., natural language process-
ing and topic modeling) are evolving, it is still difficult for them to accurately
capture and classify the rationale behind such complex actions as rejecting code
under review. For this reason, a researcher needs to resort to qualitative methods.

In the context of Github code reviews, we manually looked into 350 pull re-
quests and classified the reasons for rejection using manual coding done 3 inde-
pendent coders as follows. Initially, 100 pull requests were used by the first coder

4Example of massive pull request https://github.com/Katello/katello/pull/1024

28

https://github.com/Katello/katello/pull/1024


Reason Description %
obsolete The pr is no longer relevant, as the project has progressed. 4
conflict There feature is currently being implemented by other pr or in

another branch.
5

superseded A new pr solves the problem better. 18
duplicate The functionality had been in the project prior to the submis-

sion of the pr
2

superfluous pr doesn’t solve an existing problem or add a feature needed
by the project.

6

deferred Proposed change delayed for further investigation in the future. 8
process The pr does not follow the correct project conventions for send-

ing and handling pull requests.
9

tests Tests failed to run. 1
incorrect im-
plementation

The implementation of the feature is incorrect, missing or not
following project standards.

13

merged The pr was identified as merged by the human examiner 19
unknown The pr could not be classified due to lacking information 15

Table 4: Reasons for rejecting code under review.

to identify discrete reasons for closing pull requests (bootstrapping sample), while
a different set of 100 pull requests were used by all three coders to validate the
identified categories (cross-validation sample). After cross validation, the two
datasets were merged and a further 150 randomly selected pull requests were
added to the bootstrapping sample to construct the finally analyzed dataset for
a total of 350 pull requests. The cross-validation of the categories on a different
set of pull requests revealed that the identified categories are enough to classify
all reasons for closing a pull request. The results are presented in Table 4.

The results show that there is no clearly outstanding reason for rejecting code
under review. However, if we group together close reasons that have a timing di-
mension (obsolete, conflict, superseded), we see that 27% of unmerged pull re-
quests are closed due to concurrent modifications of the code in project branches.
Another 16% (superfluous, duplicate, deferred) is closed as a result of the con-
tributor not having identified the direction of the project correctly and is there-
fore submitting uninteresting changes. 10% of the contributions are rejected with
reasons that have to do with project process and quality requirements (process,
tests); this may be an indicator of processes not being communicated well enough
or a rigorous code reviewing process. Finally, another 13% of the contributions

29



are rejected because the code review revealed an error in the implementation.
Only 13% of the contributions are rejected due to technical issues, which is the

primary reason for code reviewing, while a total 53% are rejected for reasons hav-
ing to do with the distributed nature of modern code reviews or the way projects
handle communication of project goals and practices. Moreover, for 15% of the
pull requests, the human examiners could not identify the cause of not integrating
them. The latter is indicative of the fact that even in-depth, manual analysis can
yield less than optimal results.

7 Conclusion

We have used our previous works to illustrate how qualitative and quantitative
methods can be combined to understand code review [42, 4, 19, 40]. We have
summarized the types of code review and presented a meta-model of the differ-
ent measures that can be extracted. We have illustrated qualitative methods in
Section 5 by describing how Rigby and Storey used grounded theory to under-
stand how OSS developers interact and manage to effectively conduct reviews on
large mailing lists [42]. We then contrast this methodology with Bacchelli and
Bird’s [4] study that used card sorting and affinity diagramming to investigate the
motivations and requirements of interviewed manager and developers on the code
review tool and processes used at Microsoft [4].

To provide an illustration of a mixed methods study, we presented new findings
that contrast muti-commit reviews with single commits reviews. In Section 4 we
presented quantitative results. While no clear quantitative pattern emerges when
we compare across projects or types of review (i.e., Gerrit, GitHub, and email-
based review), we find that even though multi-commits take longer and involve
more code than single commit reviews, multi-commit reviews have the same num-
ber of reviewers per review. We triangulated our quantitative findings by manually
examining how multi-commit reviews are conducted (see Section 6.2 and Sec-
tion 6.3). For Linux, we found that multi-commit reviews involve ’patchsets’,
which are reviews of branches. For Android and Chrome, multi-commit reviews
are reviews of revisions to single commits. For the GitHub projects, Rails, Wild-
Fly and Kalleto, there is a mix of branch reviews and revisions to commits during
review. As a final contribution, we presented new qualitative and quantitative
results on why reviews on GitHub pull requests are rejected (Section 6.4).

30



References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In ICSE ’06:
Proceedings of the 28th international conference on Software engineering,
pages 361–370, New York, NY, USA, 2006. ACM.

[2] J. Asundi and R. Jayant. Patch review processes in open source software de-
velopment communities: A comparative case study. In HICSS: Proceedings
of the 40th Annual Hawaii International Conference on System Sciences,
page 10, 2007.

[3] A. Bacchelli and C. Bird. Appendix to expecta-
tions, outcomes, and challenges of modern code review.
http://research.microsoft.com/apps/pubs/?id=171426, Aug. 2012. Mi-
crosoft Research, Technical Report MSR-TR-2012-83 2012.

[4] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern
code review. In Proceedings of the International Conference on Software
Engineering. IEEE, 2013.

[5] I. Barker. What is information architecture? http://www.steptwo.com.au/,
May 2005.

[6] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey. The influence of
non-technical factors on code review. In Reverse Engineering (WCRE), 2013
20th Working Conference on, pages 122–131, Oct 2013.

[7] C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and ac-
ceptance in oss projects. In MSR: Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 4. IEEE Computer Soci-
ety, 2007.

[8] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open bor-
ders? Immigration in open source projects. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repositories, page 6,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] R. G. Burgess. In the Field: An Introduction to Field Research. Unwin
Hyman, 1st edition, 1984.

[10] J. Cohen. Best Kept Secrets of Peer Code Review. Smart Bear Inc., 2006.

31



[11] J. Creswell. Research design: Qualitative, quantitative, and mixed methods
approaches. Sage Publications, Inc., 2009.

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in Github:
transparency and collaboration in an open software repository. In Pro-
ceedings of the ACM 2012 conference on Computer Supported Cooperative
Work, CSCW ’12, pages 1277–1286, New York, NY, USA, 2012. ACM.

[13] M. Fagan. Design and Code Inspections to Reduce Errors in Program De-
velopment. IBM Systems Journal, 15(3):182–211, 1976.

[14] Gerrit. Web based code review and project management for git based
projects. http://code.google.com/p/gerrit/.

[15] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of bugs. In Pro-
ceedings of the 2nd International Workshop on Recommendation Systems for
Software Engineering, RSSE ’10, pages 52–56, New York, NY, USA, 2010.
ACM.

[16] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather: guiding early re-
verse engineering efforts by summarizing the evolution of changes. In Soft-
ware Maintenance, 2004. Proceedings. 20th IEEE International Conference
on, pages 40 – 49, sep 2004.

[17] git. git-format-patch(1) manual page. https://www.kernel.org/pub/
software/scm/git/docs/git-format-patch.html.

[18] B. Glaser. Doing grounded theory: Issues and discussions. Sociology Press
Mill Valley, CA, 1998.

[19] G. Gousios, M. Pinzger, and A. van Deursen. An exploration of the pull-
based software development model. In ICSE ’14: Proceedings of the 36th
International Conference on Software Engineering, jun 2014. To appear.

[20] G. Jeong, S. Kim, T. Zimmermann, and K. Yi. Improving code review
by predicting reviewers and acceptance of patches. (ROSAEC-2009-006),
2009.

[21] P. Kampstra. Beanplot: A boxplot alternative for visual comparison of dis-
tributions. Journal of Statistical Software, Code Snippets 1, 28:1–9, 2008.

32

http://code.google.com/p/gerrit/
https://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html
https://www.kernel.org/pub/software/scm/git/docs/git-format-patch.html


[22] B. Kitchenham and S. Pfleeger. Personal opinion surveys. Guide to Ad-
vanced Empirical Software Engineering, pages 63–92, 2008.

[23] A. J. Ko. Understanding software engineering through qualitative methods.
In A. Oram and G. Wilson, editors, Making Software, chapter 4, pages 55–
63. O’Reilly, 2010.

[24] S. Kollanus and J. Koskinen. Survey of software inspection research. Open
Software Engineering Journal, 3:15–34, 2009.

[25] O. Laitenberger and J. DeBaud. An encompassing life cycle centric survey
of software inspection. Journal of Systems and Software, 50(1):5–31, 2000.

[26] T. C. Lethbridge, S. E. Sim, and J. Singer. Studying software engineers:
Data collection techniques for software field studies. Empirical Software
Engineerng, 10:311–341, 2005.

[27] J. Micco. Tools for Continuous Integration at Google Scale. Google Tech
Talk, Google Inc., 2012.

[28] M. Mukadam, C. Bird, and P. C. Rigby. Gerrit software code review data
from android. In Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 45–48, Piscataway, NJ, USA, 2013.
IEEE Press.

[29] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proceedings of the 27th international conference
on Software engineering, ICSE ’05, pages 284–292, New York, NY, USA,
2005. ACM.

[30] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal. The role of
patch review in software evolution: an analysis of the mozilla firefox. In
International Workshop on Principles of Software Evolution, pages 9–18,
2009.

[31] A. Onwuegbuzie and N. Leech. Validity and qualitative research: An oxy-
moron? Quality and quantity, 41(2):233–249, 2007.

[32] H. M. Parsons. What happened at Hawthorne? new evidence suggests the
Hawthorne effect resulted from operant reinforcement contingencies. Sci-
ence, 183(4128):922–932, March 1974.

33



[33] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider. Creating
a shared understanding of testing culture on a social coding site. In Proceed-
ings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 112–121, Piscataway, NJ, USA, 2013. IEEE Press.

[34] A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources of
variation in software inspections. ACM Transactions Software Engineering
Methodology, 7(1):41–79, 1998.

[35] T. Punter, M. Ciolkowski, B. Freimut, and I. John. Conducting on-line sur-
veys in software engineering. In International Symposium on Empirical Soft-
ware Engineering. IEEE, 2003.

[36] J. Ratcliffe. Moving software quality upstream: The positive impact of
lightweight peer code review. In Pacific NW Software Quality Conference,
2009.

[37] J. Ratzinger, M. Pinzger, and H. Gall. EQ-mine: predicting short-term de-
fects for software evolution. In Proceedings of the 10th international confer-
ence on Fundamental approaches to software engineering, FASE’07, pages
12–26, Berlin, Heidelberg, 2007. Springer-Verlag.

[38] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German. Contem-
porary peer review in action: Lessons from open source development. IEEE
Software, 29(6):56–61, Nov. 2012.

[39] P. C. Rigby and C. Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 202–212, New York, NY,
USA, 2013. ACM.

[40] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer Review on
Open Source Software Projects: Parameters, Statistical Models, and Theory.
To appear in the ACM Transactions on Software Engineering and Method-
ology, page 34, August 2014.

[41] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer
review practices: A case study of the apache server. In ICSE ’08: Proceed-
ings of the 30th International Conference on Software engineering, pages
541–550, New York, NY, USA, 2008. ACM.

34



[42] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review
on open source software projects. In Proceeding of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 541–550, New York,
NY, USA, 2011. ACM.

[43] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The Effectiveness of Soft-
ware Development Technical Reviews: A Behaviorally Motivated Program
of Research. IEEE Transactions Software Engineering, 26(1):1–14, 2000.

[44] R. Schwartz. Interview with Shawn Pearce, Google Engineer, on FLOSS
Weekly. http://www.youtube.com/watch?v=C3MvAQMhC_M.

[45] J. E. Shade and S. J. Janis. Improving Performance Through Statistical
Thinking. Mcgraw-Hill, 2000.

[46] E. Shihab, Z. Jiang, and A. Hassan. On the use of internet relay chat (irc)
meetings by developers of the gnome gtk+ project. In MSR: In the Proceed-
ings of the 6th IEEE International Working Conference on Mining Software
Repositories, pages 107–110. IEEE Computer Society, 2009.

[47] B. Taylor and T. Lindlof. Qualitative communication research methods.
Sage Publications, Incorporated, 2010.

[48] M. Triola. Elementary Statistics. Addison-Wesley, 10th edition, 2006.

[49] P. Tyagi. The effects of appeals, anonymity, and feedback on mail survey
response patterns from salespeople. Journal of the Academy of Marketing
Science, 17(3):235–241, 1989.

[50] L. G. Votta. Does every inspection need a meeting? SIGSOFT Softw. Eng.
Notes, 18(5):107–114, 1993.

[51] R. Weiss. Learning from strangers: The art and method of qualitative inter-
view studies. Simon and Schuster, 1995.

[52] P. Weißgerber, D. Neu, and S. Diehl. Small patches get in! In MSR ’08: Pro-
ceedings of the 2008 international working conference on Mining software
repositories, pages 67–76, New York, NY, USA, 2008. ACM.

[53] K. E. Wiegers. Peer Reviews in Software: A Practical Guide. Addison-
Wesley Information Technology Series. Addison-Wesley, 2001.

35

http://www.youtube.com/watch?v=C3MvAQMhC_M


[54] R. K. Yin. Case Study Research: Design and Methods, volume 5 of Applied
Social Research Methods Series. Sage Publications Inc., 3 edition, 2003.

36


	Introduction
	Motivation for a mixed methods approach
	Review Process and Data
	Software Inspection
	Open Source Software Code Review
	Code Review at Microsoft
	Google-based Gerrit Code Review
	GitHub pull requests
	Data Measures and Attributes

	Quantitative Replication Study: Code review on branches
	RQ 1 - Commits per review
	RQ2 - Size of commit
	RQ3 - Review Interval
	RQ4 - Reviewer Participation
	Conclusion

	Qualitative Approaches
	Sampling approaches
	Sampling direct data
	Sampling indirect data
	Data saturation

	Data collection
	Observations and Interviews at Microsoft
	Indirect data collection: Review comments and emails

	Qualitative analysis of Microsoft data
	Card Sorting
	Affinity diagramming

	Applying Grounded Theory to Archival Data to Understand OSS Review

	Triangulation
	Using surveys to triangulate qualitative findings
	How multi-commit branches are reviewed on Linux
	Closed coding: branch or revision on GitHub and Gerrit
	Understanding why pull requests are rejected

	Conclusion

