
A Platform for Software Engineering Research

Georgios Gousios, Diomidis Spinellis
Department of Management Science and Technlology

Athens University of Economics and Business
Athens, Greece

gousiosg,dds@aueb.gr

Abstract

Research in the fields of software quality, maintainabil-
ity and evolution requires the analysis of large quantities
of data, which often originate from open source software
projects. Collecting and preprocessing data, calculating
metrics, and synthesizing composite results from a large
corpus of project artifacts is a tedious and error prone
task lacking direct scientific value. The Alitheia Core tool
is an extensible platform for software quality analysis that
is designed specifically to facilitate software engineering
research on large and diverse data sources, by integrating
data collection and preprocessing phases with an array of
analysis services, and presenting the researcher with an easy
to use extension mechanism. Alitheia Core aims to be the
basis of an ecosystem of shared tools and research data that
will enable researchers to focus on their research questions
at hand, rather than spend time on re-implementing analysis
tools.

In this paper, we present the Alitheia Core platform in
detail and demonstrate its usefulness in mining software
repositories by guiding the reader through the steps required
to execute a simple experiment.

1. Introduction

A well-known conjecture in software engineering is that
a product’s quality is related to various product and process
metrics. Open source software (OSS) allows any researcher
to examine a system’s actual code and perform white box
testing and analysis [1]. In addition, in most open source
projects, researchers can access their version control system,
mailing lists, and bug management databases and thereby
obtain information about the process behind the product.
However, deep analysis of those software artifacts is neither
simple nor cheap in terms of computing resources. Many
successful OSS projects have a lifespan in excess of a decade
and therefore have amassed several GBs worth of valuable
product and process data.

In this paper, we present Alitheia Core, an extensible
platform designed specifically for performing large-scale
software engineering and repository mining studies. Alitheia
Core is the first platform to offer an extensible, integrated

representation of software engineering data and the first to
automate and parallelize the execution of custom exper-
iments. Using Alitheia Core, researchers can design and
execute quantitative and exploratory studies on empirical
data without having to deal with low-level tasks such as
pre-formatting data or updating their datasets when new data
from projects become available.

The contributions of this work are the following.
• A discussion of the importance of shared experimental

infrastructures for the MSR community.
• A presentation of an architecture for efficiently calcu-

lating and combining product and process metrics from
large data sources.

• The introduction of an integrated software analysis plat-
form that can form the basis of an emerging ecosystem
of product and process analysis tools along with a
demonstration of its effectiveness.

2. Conducting research with software reposito-
ries

The main problem that researchers face when working
with software repositories is that it is difficult to setup
experiments in a way that can be extended or replicated.
Despite the fact that data is free and in theory easy to obtain,
there are several hurdles that researchers must overcome in
order to experiment with large numbers of projects.

To start with, the OSS development tools landscape is
very diverse; currently, in use are at least five major revision
control systems (including CVS, Subversion, GIT, Mercurial
and Bazaar), four bug tracking systems (Bugzilla, Source-
Forge tracker, Jira, GNATS) and literally hundreds of con-
figurations of mailing list services and Wiki documentation
systems. Also, depending on the nature of the evaluated
asset, experiments can work with source code file contents,
source code repository metadata, bug reports, or arbitrary
combinations thereof. Collecting and processing hundreds
of gigabytes of data from such a diverse set of data sources
requires careful consideration of the storage formats and the
mirroring process. Moreover, the choice of the particular
data storage format should not hinder the researcher’s ability
to work with other raw data formats as well, as it is common

for projects that are interesting to study to use custom tools
to manage their development.

On the other hand there is the issue of efficiency; in large
experiments a researcher must be able to apply on large
data volumes algorithms that are often CPU-intensive. An
average size for a small to medium project is in the order of
5000 revisions; a few large projects, like FreeBSD, have more
than one hundred thousand revisions. Each revision of the
project can have thousands of live files (the Linux kernel has
about 25000), the majority of which are source code files.
A rough calculation for an average 20KB file size shows
that the system would read a gigabyte of data just to load
the processed file contents into memory. Even this simple
operation is prohibitively expensive to do online as it would
introduce large latencies and would hurt the performance of
the project hosting servers. Moreover, if a metric requires
an average 10s of processing time per revision, processing
the average project would take 14 hours on a single CPU
computer. After some experimentation with such back of
the envelope calculations, it becomes apparent that a naive
approach of getting the data from the project’s repository on
request and processing does not scale; a more sophisticated
solution that would combine project local data mirroring and
parallel processing and possibly clustering is required.

Furthermore, there is clear a lack of standardization in
experiment setups. In other fields of computer science,
researchers use predefined data sets (e.g. the ACM KDD
cup datasets for data mining research [2]) or software
platforms (e.g. JikesRVM in the field of virtual machines
[3]) for developing and executing experiments, which leads
to experiments that are easy to replicate and also to research
results that are comparable and that can be extended by
further research. The repository mining community has not
yet settled on any standards, neither for rigorous evaluation
of hypotheses using common experimental data nor for
shared tools for experimentation. In our view, this leads to
fragmentation of research focus and, more significantly, to
duplication of effort spent on tool development.

As a consequence of the above, many research studies
on OSS (including our own, which motivated this work [4],
[5]) are one-off shots. There is a large number of studies that
investigate a research hypothesis by conducting experiments
on small number of projects and a very limited number of
exploratory studies that examine properties across projects,
while, to the best of our knowledge, there is no independent
replication of corresponding empirical research.

These problems have been identified early on and solu-
tions have been proposed [6], albeit to no effect. Recently,
there has been a wave of calls for the analysis of large bodies
of OSS, the sharing of research results and standardization
of research infrastructures [7]. To this end, other researchers
propose common repositories for sharing research data [8]
or even using e-Science infrastructures (the Grid) for large
scale collaborative studies as in the case of physics or

SQO-OSS Connector Library

Web Interface IDE Plug-in

Results & Metadata Database SubVersion Bugzilla XMLMailDir

OSGi

Web services

DB
Service

Logging Job
Scheduler

Metric
Activator

Tier 1:
Data Mirroring,

Storage & Retrieval

Tier 2:
System Core

Tier 3:
Results

Presentation

Thin Data
Storage

Fat Data
Storage

Metric
Plug-inMetric

Plug-inMetric
Plug-in

Messaging Security Cluster
Service

Plug-in
Admin

Metadata
Updater

Parser
Service

Web
Admin

Raw Data Mirror

Figure 1. The Alitheia Core architecture

medicine [9]. We believe that a shared repository of tools or
research results is a good step forward but in the long term
would not be sufficient for the MSR community, given the
wealth of available data sources and the fact that a lot of
tools are already freely available. In our view, there is a clear
need for standardized, open experimentation infrastructures.

Ideally, such an infrastructure should offer:

• Structured representation of repository data
• Extensibility hooks to allow a researcher to easily write

custom experimental tools
• Support for experiment automation

Moreover, the infrastructure should support the sharing of
research data through open formats over easily accessible
service interfaces and the en masse processing of data.

3. The Alitheia Core platform

Based on the principles presented above, we designed
and implemented the Alitheia1 Core system, an extensible
platform targeted to large-scale software quality, evolution
and repository mining studies. An overview of the platform’s
architecture can be seen in Figure 1. To separate the concerns
of mirroring and storing the raw data and processing and
presenting the results, the system is designed around a
three-tier architecture, with separate data acquisition, data
processing and presentation layers.

The work presented in this section was first outlined
in [10] and various bits of it are described in greater depth
in [11]. In this paper, we introduce several system aspects
not presented in earlier work, namely the metadata schema,
the update process and the system’s extension points while
also putting more emphasis on how this data can be used
by plug-ins.

1. αλήθεια means “truth” in Greek; the name was given to signify the
tool’s ability to expose facts about software development.

3.1. The core

The core’s role is to provide the services required by
metric plug-ins to operate. The core is based on a system
bus; various services are attached to the bus and are accessed
via a service interface. The OSGi [12] component model
was selected to host the system’s core layer; consequently
the system and its plug-ins are implemented in Java. The
choice of the specific implementation technology was made
partially because of the wealth of ready-made components
being available within the Java application ecosystem and
also because OSGi offers a standards based, light weight
plug-in platform that would enable the easy sharing of metric
plug-ins.

The data access layer consists of two basic components:
the database service and the fat/thin data access stack. The
database service is central to the system as it serves the triple
role of abstracting the underlying data formats by storing the
corresponding metadata, storing metric results, and provid-
ing the types used throughout the system to model project
resources. It uses an object-relational mapping to eliminate
the barrier between runtime types and stored data [13], and
has integrated transaction management facilities. Access to
raw data is regulated by a plug-in based stack of accessors
whose lower layers directly touch the mirrored data (Thin
Data Store—TDS), while the higher parts provide caching
and combined raw data and processed metadata access (Fat
Data Store—FDS).

The Alitheia Core has been designed from the ground
up for performance and scalability. All metric plug-in ex-
ecutions and a significant number of performance critical
functions in the core (e.g. metadata updates) are modeled as
jobs. In most cases, the execution path is lock-free, which
enables high scalability and, given the appropriate hardware,
very high throughput rates. The processing core is currently
being run on 8 and 16 core machines, exhibiting almost
linear scalability and full processor utilization. Alitheia
Core also includes clustering capabilities through the cluster
service. The development of the cluster service was based
on the observation that after the initial metadata synchro-
nization, the workloads the system processes are usually
embarrassingly parallel. The cluster service restricts access
to projects during metadata updates and allows metrics to
be run on several nodes in parallel.

The core implements several auxiliary services such as the
plug-in manager, the logger for system wide configurable
logging, the user account and security manager for regulat-
ing access to the system database and finally the messaging
service for email based communication with external users.
The core also includes a web-based administrative console,
selected parts of which are also available through a script-
based interface. Finally, under development is a source
code parser service that enables metric plug-ins to use a
programming language-neutral, XML-based abstract syntax

tree representation, specifically designed to hold enough
metadata for source code metrics. Currently, the service can
fully parse programs written in Java.

3.2. Processing data and storing metadata

The Alitheia Core system uses a database to store meta-
data about the processed projects. The role of the metadata
is not to create replicas of the raw data in the database but
rather to provide a set of entities against which plug-ins work
with, while also enabling efficient storage and fast retrieval
of the project state at any point of the project’s lifetime. The
original contents of the resources are kept in the raw data
stores and can be reached by providing the links stored along
with the metadata in the TDS service. The database schema
is shown in Figure 2. The schema is composed of four sub-
schemata, one for each project data source and one that deals
with metric configuration and measurements storage. Plug-
ins can define new entities and thus extend the basic schema
arbitrarily. Upon project registration, a preprocessing phase
extracts the metadata from the raw data and stores them
in the database. There are three metadata updaters in the
Alitheia Core system.

The source code metadata updater is the most complex
of the three; in its current form, it can process the full set
of the Subversion version control system operations. The
complexity stems from the fact that Subversion supports
multiple operations on a single resource to be recorded in a
single transaction (for example, copy-then-delete or delete-
then-replace) while also enabling low-overhead copying of
resources in the repository. The copying feature is also used
to create tags and branches, which means that the updater
must be able to differentiate between copying operations
according to their purpose. The source code updater stores
file metadata differentially; instead of recreating the full file
tree in the ProjectFile table for each revision, it just
stores the changes between revisions. Therefore an entry
in the ProjectFile table corresponds to a state in the
file’s lifetime. The mailing list metadata updater works in
two steps; the first step consists of simply parsing the email
headers and inserting entries in the corresponding tables.
During the second step, the updater resolves the parent-child
relationships between the recorded emails and organizes
them in threads, setting the appropriate thread depth and
parent fields in each email entry. The bug metadata updater
is straightforward; for each new bug description, it creates
entries in the Bug table with state information about the
processed bug while also keeping the full text for each bug
comment. The text will be used to create a full text search
engine component in the future.

The final step of the updating process deals with the
resolution of developer identities. In the course of a project,
developers use several emails to post to mailing lists or
to subscribe to bug tracking systems, but usually can be

 Tag

 projectVersion
 name

 ProjectVersion

 project
 revisionId
 timestamp
 committer
 commitMsg
 properties
 sequence

1

1

 StoredProjectMeasurement

 storedProject

 StoredProjectConfig

 confOpt
 project
 value

 StoredProject

 name

n

1

n

1

n

1

 MailingList

 listId
 storedProject
 messages
 threads

n

1

 EvaluationMark

 metric
 storedProject
 whenRun
 version

n

1

 Developer

 name
 username
 aliases
 storedProject

n

1

 ClusterNodeProject

 node
 project
 locked

n

1

 Bug

 project
 updateRun
 bugID
 status
 creationTS
 deltaTS
 reporter
 resolution
 priority
 severity
 shortDesc

n

1

 ProjectVersionMeasurement

 projectVersion

n

1

 ProjectFile

 name
 projectVersion
 state
 isDirectory
 dir
 validFrom
 validUntil
 copyFrom

n

1

 ProjectFileState

 status
 files

n

1

 ProjectFileMeasurement

 projectFile

n

1

 PluginConfiguration

 name
 value
 type
 msg
 plugin

 Plugin

 name
 installdate
 version
 description
 active
 hashcode

n

1

 Metric

 plugin
 metricType
 mnemonic
 description

n

1

 MetricType

 type
 metrics

n

1

 MetricMeasurement

 metric
 result

 MailMessageMeasurement

 mail

 MailingListThreadMeasurement

 thread

n

1

n

1

 MailMessage

 sender
 list
 messageId
 subject
 sendDate
 fileName
 thread
 depth
 parent

n

1

 MailingListThread

 list
 isFlameWar
 lastUpdated
 messages

n

1

n

1

n

1

n

1

 Directory

 path
 files

n

1

 DeveloperAlias

 email
 developer

n

1

n

1

n

1

 BugReportMessage

 bug
 reporter
 timestamp
 text

n

1

n

1

 ConfigurationOption

 key
 description
 projects

n

1

 ClusterNode

 name

n

1

n

1

 Branch

 branchVersion
 mergeVersion
 name

1

1

Figure 2. Basic entities in the Alitheia Core database and their relationships

uniquely identified by the name that is attached to an email
post or the user name for the project’s SCM system. During
the updating phase, the Developer table is filled in with all
data each updater knows or can infer from the raw data,
namely user names, {real name, email} tuples and
emails for source code management systems, mailing mes-
sages and bug reports respectively. The developer resolver
uses a set of simple heuristics, the majority of which are
described by Robles et al. in [14], to associate developer real
names to user names and emails. It improves over earlier
work by employing a set of approximate string matching
techniques, namely metaphone codes, Levenshtein distances
[15] and regular expressions, to improve the matching accu-
racy and automation. It also takes advantage from the fact
that the database can contain several instances of the same
developer associated with other projects.

At the end of the update process, the Alitheia Core system
is fully equiped with the appropriate metadata to respond to
metadata queries much faster than comparable approaches
that involve access to the raw data stores.The relative volume
of the stored metadata is comparable to that of raw data.
Table 1 presents a comparison of the items stored our project
mirror with the items stored in the database after processing.
The metadata enable complex metrics that need to read the
contents of project artifacts to benefit from the database’s

ability to filter out unwanted items before they reach for
the data retrieval subsystem; for example a metric interested
in a subset of the project files (e.g. all source code files)
can request just those and the system will automatically
filter out irrelevant entries, thereby saving the time to fully
checkout and then clean up a full project revision. The time
savings are significant: on our system, a query to retrieve
all source code files for version 135332 of the FreeBSD
project executes in two seconds. A comparable approach
would entail checking out all files from the repository and
then selecting the required ones: on our system this takes
14 minutes for version 135332 of FreeBSD. Furthermore,
the metadata entities are also used by metrics to store and
calculate results in an incremental fashion; for example,
when the source code updater encounters a new revision,
it will notify all metrics that calculate their results on whole
project checkouts, and, after the result is calculated, it can
be stored against the same database object.

3.3. Metric plug-ins

The Alitheia core engine can be extended by plug-ins
that calculate metrics. Metric plug-ins are OSGi services
that implement a common interface and are discoverable
using the plug-in administrator service. In practice, all metric

Table 1. Raw vs processed data sizes

Data Evince Orbit2 FreeBSD
Raw Data (items)
Revisions 3588 2108 190854
Emails (Lists) 1430 (1) 4834 (4) —
Bugs 5555 246 —
Processed data (DB lines)
Developer 3862 843 514
DeveloperAlias 4209 1564 0
ProjectVersion 3336 1770 143533
ProjectFile 16875 10879 830792
MailMessage 1430 4833 —
MailingListThread 631 2467 —
Bug 5555 246 —
BugReportMessage 21326 1657 —

plug-ins inherit from an abstract implementation of the
plug-in interface and only have to provide implementa-
tions of 2 methods for each binding datatype (run() and
getResult()) and the install() method to register
the plug-in to the system. Moreover, to hide the intricacies
of setting up the OSGi class sharing mechanism, our system
provides a skeleton plug-in that is already preconfigured to
the requirements of the platform. The net result is that with
exactly 30 lines of code, a researcher can write a simple
source code line counting metric that fetches a file from the
repository, counts its lines, stores the result, and returns it
upon request.

Each plug-in is associated with a set of activation types.
An activation type indicates that a plug-in must be activated
in response to a change to the corresponding project asset;
this is the name of the database entity that models the
asset and therefore the metric is activated each time a
new entry is added to the database table. A metric plug-
in can define several metrics, which are identified by a
unique name (mnemonic). Each metric is associated with
a scope that specifies the set of resources this metric is
calculated against: for example files, namespaces, mailing
lists or directories. Metrics can also declare dependencies
on other metrics and the system will use this information
to adjust the plug-in execution order accordingly through
the metric activator service. The system administrator can
also specify a set of policies regulating the recalculation
frequency for each metric plug-in. Metric results are stored
in the system database either in predefined tables or in plug-
in specific tables. The retrieval of results is bound to the
resource state the metric was calculated upon.

A plug-in can use a wealth of services from the core to
obtain project related data using simple method calls. For
example, a plug-in can:

• request a checkout for a specific project revision or opt
for a faster in-memory representation of the file tree
and load the content of the required files on demand,

• request a list of all threads a specific email has been
sent to, and then navigate from the returned objects to

the parent threads or to the mailing lists,
• get all actions performed by a single developer across

all project data sources, and
• request for a measurement calculated by another plug-

in. The system will automatically invoke the other plug-
in if the requested measurement cannot be found in the
database.

We have already developed a number of metric plug-
ins; the most important are listed in Table 2. To judge the
magnitude and contribution of the developed infrastructure
note that the sum of the lines of code for all plug-ins is less
than 8% of the lines of code of the Alitheia Core.

3.4. Presentation of results

The Alitheia Core system also includes support for pre-
senting the calculated results and project metadata through
the web services component. This acts as a gateway between
the core and the various user interfaces, using a SOAP-based
communication protocol. At the moment, two user interfaces
are provided; a web interface that enables browsing of the
processing results on the web, and an Eclipse plug-in that
allows developers to see the results of their work through
their work environment.

A new REST-based data access component is currently
under design. The new framework is targeted to opening up
the preprocessed data residing on the Alitheia Core master
servers to the research community using easy to handle data
formats (XML and JSON), and will enable various Alitheia
Core instances to exchange metadata and plug-in results
through a new set of Alitheia Core to Alitheia Core updaters.
It will also form the basis of a new web-based interface that
will support custom report generation through a web-based
query builder.

3.5. Extension Points

Alitheia Core was designed to be highly extensible.
The system hides all service implementations behind well-
defined interfaces and instantiates at runtime through a set
of instantiation protocols, based on configuration parameters
or data access URLs, hidden in factory classes. Following is
a non-exhaustive list of extension points that are present in
the system:

• The data accessor stack can be extended to provide
access to project assets not currently in the Alitheia
Core system, for example to IRC backlogs and wiki
systems or to alternative raw data storage formats (e.g.
SCM accessors for GIT or Mercurial repositories).

• The metadata updater stack can be extended to incor-
porate changes to the data accessors by importing new
kinds of data in the database.

• Plug-ins and core services can extend the database
schema with custom tables. The system is more fragile

Table 2. List of currently implemented metrics.

Data
Plug-in Source Description Activator Metrics LoC
Size Product Calculates various project size measurements, such as

number of files and lines for various types of source
files.

ProjectFile
ProjectVersion

11 642

Module Product Aggregates size metrics per source code directory. ProjectFile
ProjectVersion

3 417

Code structure Product Parses source code to a language neutral intermediate
representation and evaluates structure metrics, such as
the Chidamber and Kemerer metric suite [16], on the
intermediate representation.

ProjectVersion 15 958

Contribution Process Analyzes repository, mailing list and bug database devel-
oper activity and extracts a measurement of the developer
contribution to the development process [17].

MailingListThread
ProjectVersion
Bug

1 670

Multigrep Product Applies a regular expression to source code files and
reports the matches as a measurement. The applied
regular expression is configurable at run-time.

ProjectFile Configurable 346

Testability Product Identifies and counts testing cases for common unit
testing frameworks.

ProjectFile 1 561

Quality Both A custom quality model implementation that aggregates
the results of various structure, size and process metrics
into an ordinal scale evaluation [18].

ProjectVersion 1 2408

to changes to the core schema, but such changes are
possible if they are carefully hidden behind method
calls inside data access objects. In fact, throughout
the course of the project, we did change the source
code metadata schema twice without making significant
changes to plug-ins or other system parts.

• New administrative actions can be defined in the ad-
ministration service, to cater for custom installation or
clustering scenarios. Administrative actions automati-
cally benefit from the administrative service facilities
such as input validation for common data types and
provision of the service through programmatic or URL
interfaces.

3.6. Project data

The Alitheia Core itself is not concerned with mirroring
data from projects; it expects data to be mirrored externally.
This choice was made at the beginning of the project to
compensate for the large number of different data sources
which the system should work with. Several of those already
offer means of synchronizing data across sites, for example
Subversion offers the svnsync tool for mirroring reposi-
tories while distributed SCM systems already copy the full
repository history on checkout. Mailing lists can be mirrored
by configuring the mail delivery subsystem on the mirroring
host to store incoming messages to a specified directory and
then subscribing to each mailing list. Mailing lists archive
mirroring requires custom scripts per project site, although
various mailing list archiving web sites (e.g. MARC) offer
a unified view over thousands of mailing lists for common
projects. Finally, bug tracking tools usually offer means to

bug<id>.xml

Mirroring Root
/

Project 3Project 1 Project 2

bugssvn mails

List 2List 1

curtmp new

Standard
SVN format

Figure 3. Data mirror layout

retrieve individual bug histories through web-based or RPC-
based interfaces.

To construct a standardized research dataset to use with
Alitheia Core, we setup a project mirroring infrastructure,
an outline of which can be seen in Figure 3. We are actively
mirroring 712 projects and so far we have gathered 4674236
Subversion revisions, 895815 emails in 1381 mailing lists
and 341546 bug reports, summing up to 213GB of data. We
are actively maintaining and expanding the project mirror,
mainly by introducing custom scripts to mirror mailing list
data and bug databases from various projects.

4. Case study: Shut Up and Code! 2

To demonstrate the flexibility of Alitheia Core as a
research platform, we present the setup of a small exper-
iment and the plug-in implementation of the data extraction
algorithm we employ for the measurements we perform.
For the sake of brevity, we skip validation for the various
assumptions we make and we do not perform any analysis
of the experiment results.

4.1. Research hypothesis

A well known and well studied (both from a social [19]
and technical [20] perspective) phenomenon in electronic
communications is heated discussions, usually refereed to as
“flame wars”. Flame wars happen on mailing lists but can
also happen on IRC channels or other forms of instant elec-
tronic communications. During a flame war the electronic
communication etiquette collapses: the topic of discussion
stirs away from software development, the rate of message
exchanges increases sharply, and the exchanged messages
rather than debating the technical aspects of the argument
often target directly other participants. Heated discussions do
not necessarily signify a flame war; a technical or managerial
issue might also elevate the discussion’s rate of exchanges.
When the point being pondered is insignificant the discus-
sion is often referred to as a “bikeshed argument” [21], after
Parkinson’s Law of Triviality [22]. Heated discussions are
known to affect the community’s social structure; what we
try to investigate is whether they also affect the project’s
evolution in the short term by altering the rate at which
source code line changes while the discussion is active.

The first step would be to define heated discussions, by
examining their characteristics. From observing the evolu-
tion of mailing lists, we can assume that intense discussions
will take place in the context of a single thread. Also, threads
with intense discussions are usually several levels deep and
contain more messages than the average thread. Therefore, if
we obtain a list of threads sorted by the number of messages
and one sorted by the maximum depth, we could assume that
the threads that belong in the top quartile of both lists could
be classified as intense discussions. Along similar lines, the
effect of an intense discussion on a project’s short term
evolution can be evaluated by comparing the rate of changed
source code lines in a period of e.g. one month before the
start of the discussion to the rate of line changes immediately
after the discussion start and of a period of one week.

4.2. Plug-in implementation

To create a plug-in for Alitheia Core, a researcher must
first identify the potential experiment variables and their

2. This is the message of the day on the FreeBSD project’s main login
server.

relationships with the entities that Alitheia Core maintains
in its database, probably following the GQM method [23].
Alitheia Core calculates metrics incrementally; for each
identified resource change, all metrics that are bound to
the resource type are calculated for the changed instances
of the resource. The plug-in we describe will need to
calculate the depth and the number of emails of a thread,
so naturally it will be bound to the MailingListThread
entity. Each time a MailingListThread is updated (e.g.
when new emails arrive) the plug-in will be called; to avoid
recalculation of threads that have already been evaluated, we
will need to cache the result in the database. This is done
by defining a new metric.

The calculation of the rate of line changes for the period
before the start of the heated discussion and immediately
after it is trickier, as Alitheia Core does not currently have
any means to store the results of a measurement against a
set of entity states. There are two workarounds to this issue:

• store the result against all entity states in the required
period, or

• synthesize the result on request, by incrementally com-
bining individual state measurements.

It is usually cheaper, more precise and future-proof to
follow the second route. Alitheia Core plug-ins are designed
for re-use; if a basic plug-in exports individual measure-
ments of small parts of each assessed resource state, then a
high-level plug-in can combine measurements from various
other plug-ins to a greater effect. In our case, we designed
the described plug-in to calculate the number of lines that
have changed in each new project version (and therefore be
bound to the ProjectVersion entity) and then to use
those measurements to calculate the rate of changed lines
when a heated discussion is discovered. As expected, the
measurement of the lines of code for the changed files is
not performed inside our plug-in, but instead we re-use the
size plug-in to obtain them for each changed file, as shown
in the following code extract:

int getLOCResult(ProjectFile pf) {
AlitheiaPlugin plugin = AlitheiaCore

.getInstance()

.getPluginAdmin()

.getImplementingPlugin("Wc.loc");
List<Metric> metrics = new ArrayList<Metric>();
metrics.add(Metric.getMetricByMnemonic("Wc.loc"));
Result r = plugin.getResult(pf, metrics);
return r.getRow(0).getCol(0).getInteger();

}

Overall, the plug-in is bound to two entities (or activators)
and defines three metrics; the “verloc” metric for storing the
number of lines changed per revision, the “hotness” metric
for storing an indicator of how heated a discussion is for each
mailing list thread and the “hoteffect” metric for storing the
changes in the line commit rates for the threads that have
been identified as heated discussions. The plug-in developer
needs to provide implementations for exactly five methods,

two for each activation type (run() and getResult())
and the install() method to register the exported metrics
to the database.

After designing the plug-in outline, the implementation
itself is easy given the wealth of features offered by the
Alitheia Core API. Metric declarations take a single line of
code in the install() method:

super.addSupportedMetrics("Locs changed in version",
"VERLOC", MetricType.Type.PROJECT_WIDE);

Returning a result stored in the standard Alitheia Core
schema is equally straightforward. The following code is
the actuall implementation of the getResult() method
for the ProjectVersion activator.

public List<ResultEntry> getResult(ProjectVersion pv,
Metric m) {

return getResult(pv, m,
ResultEntry.MIME_TYPE_TYPE_INTEGER);

}

The following extract is from the run() method imple-
mentation for the ProjectVersion activator. It demon-
strates how object relational mapping used in Alitheia Core
simplifies access to project entities. The code calculates the
total number of lines changed in a specific project version
and then stores the result to the database.

for (ProjectFile pf : pv.getVersionFiles()) {
if (pf.isDeleted()) {

linesChanged += getLOCResult(pf.getPrevVer());
} else if (pf.isAdded()) {

linesChanged += getLOCResult(pf);
} else { // MODIFIED or REPLACED

linesChanged += Math.abs(
getLOCResult(pf)

- getLOCResult(pf.getPrevVer());
}

}
ProjectVersionMeasurement pvm =

new ProjectVersionMeasurement(m, pv,linesChanged);

dbs.addRecord(pvm);

The discussion heat plug-in implementation in total con-
sists of 270 lines of Java code.

4.3. Results

We run the plug-in on 48 projects from the Gnome
ecosystem. For each project, we imported the full source
code repository and mailing list archives (current in January
2009) in our Alitheia Core installation. In total, the system’s
metadata updaters processed 151383 revisions (summing up
to 976154 file changes) and 79 mailing lists with 106469
email messages organized around 41310 threads. The com-
bined size of all data was 2.5GB. The preprocessing phase
for the whole dataset took about 12 hours on a 8 core server,
which also hosts the system database. In comparison, a shell
script that checks out the first version of a local mirror of
the Evince project repository and then loops over the first

Table 3. Results from the discussion heat plugin.

Project Cases Avg. HotEffect
Evince 8 384
F-Spot 12 -114
Garnome 2 105
gedit 6 31
Gnome-Screensaver 3 29
Gnome-System-Tools 5 65
LSR 2 437
Meld 3 16
MlView 1 141
Muine 3 -368
Orbit2 14 44
Planner 7 39
Sabayon 4 -54
Sawfish 4 -182
Seahorse 3 3167
Tracker 19 2950
Vala 9 244

2000 revisions invoking the sloccount program on every
revision, takes about 60 minutes on the same hardware.

The discussion heat plug-in workload is mostly database
bound; to evaluate its scalability we run the plug-in on
a machine featuring a 16-thread 1GHz SPARC CPU and
8GB of memory. The machine is underpowered by modern
standards for sequential workloads but provides a very
good benchmark for application scalability. We configured
Alitheia Core to run 24 parallel jobs to compensate for the
extensive I/O caused by frequent accesses to the database.
During execution, the processor utilization was steadily more
than 80%. The database was run on our dedicated 8 core
database server on which the CPU load never exceeded
50%. The total execution time was 2 hours and 40 minutes.
Obviously, the presented performance numbers are plug-in
specific, and in fact other plug-ins use significantly more
CPU power.

The results of the application of the plug-in on the afore-
mentioned dataset can be seen in Table 3. The table lists the
number of email threads that were identified as heated dis-
cussions and their average effect in terms of the rate of lines
of code changed in the project’s repository before and during
the intense discussion. From the 48 measured projects, only
17 appeared to have intense discussions using our relatively
strict definition presented above. The surprising finding of
this experiment is that for the projects we measured, intense
discussions appear to have an overall positive rather than
negative effect in most cases. This means that after or during
an intense discussion the rate of lines of code committed
to the repository increases. This result seems to contradict
expectations and requires further investigation.

We used this experiment to demonstrate Alitheia Core’s
efficiency in conducting software engineering research by
combining raw data and results from other tools. A relatively
complex experiment was reduced to a set of simple to
implement methods, thanks to the rich abstractions that
Alitheia Core exposes to the developer. The discussion heat

plug-in is now part of our Alitheia Core installation and
is being continuously run as new data arrive to our data-
mirroring system.

5. Related work

The continuous metric monitoring approach towards
achieving software quality is not new. The first systems
that automate metric collection emerged as revision control
systems and bug management databases were integrated in
the development processes. Early efforts concentrated on
small scale, centralized teams and product metrics (e.g. [24],
[25]), usually to support quality models or management
targets set using the Goal-Question-Metric approach [23].
Alitheia Core is able to process more data sources and while
it does feature a quality model implementation, it is not tied
to it, allowing the user to combine arbitrary software metrics
towards a custom definition of quality.

Two early systems that attempted the merging of het-
erogeneous data from software repositories are the Release
History Database [26] and Softchange [27]. Both where
based on a collection of special purpose scripts to populate
databases with data coming from from certain projects. As
such, they were not adopted by the research community.
Hipikat [28] collected data from both repositories, mailing
lists and bug databases but its scope and purpose was
different: to provide guidance to developers based on the
extraction of prior organizational knowledge. The overall ar-
chitecture of Hipikat bears a resemblance to that of Alitheia
Core as both systems were designed to handle generic
sets of large data volumes. Hipikat is a purpose specific
system; Alitheia Core offers more generic abstractions of
the underlying data sources and defers processing to external
clients (plug-ins).

The Hackystat [29] project was one of the first efforts to
consider both process and product metrics in its evaluation
process. Hackystat is based upon a push model for retrieving
data as it requires tools (sensors) to be installed at the
developer’s site. The sensors monitor the developer’s use
of tools and updates a centralized server. Alitheia Core
is similar to Hackystat in that it can process product and
process data; it improves over Hackystat as it does not
require any changes to the developer’s toolchest or the
project’s configuration while it can also process soft data
such as mailing lists.

A number of projects have considered the analysis of
OSS development data for research purposes. Flossmole [30]
was first to provide a database of preprocessed data from
the Sourceforge OSS development site. The FlossMetrics
project [31] runs various independent analysis tools on a
large set of software repositories and publishes the resulting
datasets. Both of these projects aim to provide datasets to
the community, while Alitheia Core focuses more on the
provision of research infrastructure platform.

6. Conclusions

Analyzing and evaluating software development process
and source code characteristics is an important step towards
achieving software product quality. The Alitheia Cores sys-
tem is a platform modeled around a pluggable, extensible
architecture that allows it to incorporate many types of data
sources and be accessible through various user interfaces.

Future planned work on the platform includes the ex-
pansion of the data accessors plug-ins to include support
for other source code management systems, a web service
that will allow external plug-in submissions to be run
against the preprocessed data currently hosted on our servers
and a REST-based API for accessing project metadata and
measurements in a simple way.

The full source code for the Alitheia Core and the plug-ins
can be found at http://www.sqo-oss.org.

Acknowledgements

This work was partially funded by the European Com-
munity’s Sixth Framework Programme under the contract
IST-2005-033331 “Software Quality Observatory for Open
Source Software (SQO-OSS)”. Project contributors include
the Aristotle University of Thessaloniki, Prosyst Software
GmbH, Sirius plc, Klarälvdalens Datakonsult AB and mem-
bers from the KDE project community. The authors would
like to thank Stavros Grigorakakis for his help in organizing
the mirrored project data and Efthymia Aivaloglou for her
contribution in optimizing HQL/SQL queries.

References

[1] D. Spinellis, Code Quality: The Open Source Perspective.
Boston, MA: Addison-Wesley, 2006.

[2] ACM-SIGKDD, “The knoweledge discovery and data
mining cup contest.” [Online]. Available: http://www.sigkdd.
org/kddcup/

[3] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind et al., “The
Jikes research virtual machine project: building an open-
source research community,” IBM Systems Journal, vol. 44,
no. 2, pp. 399–417, 2005.

[4] D. Spinelis, “Global software development in the FreeBSD
project,” in International Workshop on Global Software De-
velopment for the Practitioner, P. Kruchten, Y. Hsieh, E. Mac-
Gregor, D. Moitra, and W. Strigel, Eds. ACM Press, May
2006, pp. 73–79.

[5] D. Spinellis, “A tale of four kernels,” in ICSE ’08: Pro-
ceedings of the 30th International Conference on Software
Engineering, W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds.
New York: Association for Computing Machinery, May 2008,
pp. 381–390.

http://www.sqo-oss.org
http://www.sigkdd.org/kddcup/
http://www.sigkdd.org/kddcup/

[6] L. Gasser, G. Ripoche, and R. J. Sandusky, “Research in-
frastructure for empirical science of f/oss,” in Proceedings
of the First International Workshop on Mining Software
Repositories (MSR 2004), Edinburg, Scotland, UK, 2004, pp.
12–16.

[7] L. Gasser and W. Scacchi, Open Source Development, Com-
munities and Quality, ser. IFIP International Federation for
Information Processing. Springer Boston, Jul 2008, vol. 275,
ch. Towards a Global Research Infrastructure for Multidisci-
plinary Study of Free/Open Source Software Development,
pp. 143–158.

[8] J. Howison, A. Wiggins, and K. Crowston, Open Source De-
velopment, Communities and Quality, ser. IFIP International
Federation for Information Processing. Springer Boston, Jul
2008, vol. 275, ch. eResearch Workflows for Studying Free
and Open Source Software Development, pp. 405–411.

[9] A. Bosin, N. Dessı́, M. Fugini, D. Liberati, and B. Pes, Open
Source Development, Communities and Quality, ser. IFIP
International Federation for Information Processing. Springer
Boston, Jul 2008, vol. 275, ch. Open Source Environments for
Collaborative Experiments in e-Science, pp. 415–416.

[10] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas,
V. Vlachos, and D. Spinellis, “Software quality assessment of
open source software,” in Proceedings of the 11th Panhellenic
Conference on Informatics, May 2007.

[11] G. Gousios and D. Spinellis, “Alitheia core: An extensible
software quality monitoring platform,” in Proceedings of the
31rst International Conference of Software Engineering -
Research Demos Track, 2009, to appear.

[12] OSGi Service Platform, Core Specification. OSGi Alliance,
2007.

[13] E. J. O’Neil, “Object/relational mapping 2008: Hibernate and
the entity data model (edm),” in SIGMOD ’08: Proceedings
of the 2008 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 2008,
pp. 1351–1356.

[14] G. Robles and J. M. Gonzalez-Barahona, “Developer identi-
fication methods for integrated data from various sources,” in
MSR ’05: Proceedings of the 2005 international workshop on
Mining software repositories. New York, NY, USA: ACM,
2005, pp. 1–5.

[15] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software En-
gineering, vol. 20, no. 6, pp. 476–493, 1994.

[17] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring
developer contribution from software repository data,” in
MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories. New York, NY,
USA: ACM, 2008, pp. 129–132.

[18] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The
SQO-OSS quality model: Measurement based open source
software evaluation,” in Open Source Development, Commu-
nities and Quality — OSS 2008: 4th International Conference
on Open Source Systems, E. Damiani and G. Succi, Eds.
Boston: Springer, Sep. 2008, pp. 237–248.

[19] M. Dery, Ed., Flame Wars: The Discourse of Cyberculture.
Duke University Press, 1994.

[20] K. Coar, “The sun never sits on distributed development,”
Queue, vol. 1, no. 9, pp. 32–39, 2004.

[21] K. Fogel, Producing Open Source Software. Sebastopol:
O’Reilly Media, Inc, 2005, pp. 261–268.

[22] C. N. Parkinson, Parkinson’s Law: The Pursuit of Progress.
John Murray, 1958.

[23] V. Basili and D. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Transactions on Software
Engineering, vol. 10, no. 3, pp. 728–738, Nov 1984.

[24] V. Basili and H. Rombach, “The TAME project: towards
improvement-oriented software environments,” IEEE Trans-
actions on Software Engineering, vol. 14, no. 6, pp. 758–773,
June 1998.

[25] S. Komi-Sirviö, P. Parviainen, and J. Ronkainen, “Measure-
ment automation: Methodological background and practical
solutions-a multiple case study,” IEEE International Sympo-
sium on Software Metrics, p. 306, 2001.

[26] M. Fischer, M. Pinzger, and H. Gall, “Populating a re-
lease history database from version control and bug tracking
systems,” in ICSM ’03: Proceedings of the International
Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2003, p. 23.

[27] D. M. German, “Mining CVS repositories, the Softchange
experience,” in Proceedings of the First International Work-
shop on Mining Software Repositories, Edinburg, Scotland,
UK, 2004, pp. 17–21.

[28] D. Cubranic and G. Murphy, “Hipikat: recommending per-
tinent software development artifacts,” in Proceedings of the
25th International Conference on Software Engineering, May
2003, pp. 408–418.

[29] P. M. Johnson, M. G. P. H. Kou, Q. Zhang, A. Kagawa, and
T. Yamashita, “Improving software development management
through software project telemetry,” IEEE Software, Aug
2005.

[30] J. Howison, M. Conklin, and K. Crowston, “Flossmole: A
collaborative repository for floss research data and analyses,”
International Journal of Information Technology and Web
Engineering, vol. 1, no. 3, pp. 17–26, 2006.

[31] GSyC/LibreSoft, “The FlossMetrics project.” [Online].
Available: http://flossmetrics.org/

http://flossmetrics.org/

