
JAVA PROGRAMMING STYLE QUICK REFERENCE GUIDE

1. Indentation
◦ The unit of indentation is 4 spaces. Tabs expand to 8

spaces.
◦ Always keep line lengths < 80 chars.
◦ Breaking lines:

▫ After a comma or before an operator
▫ Try making lines close to 80 chars before breaking
▫ The new line must be aligned at the beginning of the

previous line expression.
▫ If the above lead to messy code, just indent to 8 spaces.

//DON'T USE THIS INDENTATION
if ((condition1 && condition2)
 || (condition3 && condition4)
 ||!(condition5 && condition6)) { //BAD WRAPS
 doSomethingAboutIt(); //MAKE THIS LINE EASY TO MISS
}

//USE THIS INDENTATION INSTEAD
if ((condition1 && condition2)
 || (condition3 && condition4)
 ||!(condition5 && condition6)) {
 doSomethingAboutIt();
}

longName1 = longName2 * (longName3 + longName4 - longName5)
 + 4 * longname6; // PREFER

longName1 = longName2 * (longName3 + longName4
 - longName5) + 4 * longname6;//AVOID

//CONVENTIONAL INDENTATION
someMethod(int anArg, Object anotherArg, String yetAnotherArg,
 Object andStillAnother) {
 ...
}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS
private static synchronized horkingLongMethodName(int anArg,
 Object anotherArg, String yetAnotherArg,
 Object andStillAnother) {
 ...
}

2. Comments
◦ Implementation comments

▫ Block comments: (/* ... */) Provide descriptions of
files, methods, data structures and algorithms. Inside a
function or method should be indented to the same level
as the code they describe. A block comment should be
preceded by a blank line to set it apart from the rest of
the code.

▫ Single line comments: Short comments that appear
on a single line indented to the level of the code that
follows. A single-line comment should be preceded by a
blank line.

▫ Trailing comments: Short comments that appear on
the same line as the code they describe. If more than
one short comment appears in a chunk of code, they
should all be indented to the same tab setting.

▫ End-of-line comments: (//...) Shouldn't be used on
consecutive multiple lines for text comments; however,
it can be used in consecutive multiple lines for
commenting out sections of code.

◦ Documentation comments (/** ... */): Describe Java
classes, interfaces, constructors, methods, and fields. This
comment should appear just before the described element
declaration.

3. Declarations
◦ One declaration per line, align multiple declared variables

right using spaces.
◦ Put declarations at the outermost code block possible,

except from declarations in the condition part of for
blocks.

◦ Class and interface declaration rules:
▫ No space between a method name and the parenthesis

"(" starting its parameter list.
▫ Open brace "{" appears at the end of the same line as

the declaration statement.
▫ Closing brace "}" starts a line by itself indented to match

its corresponding opening statement, except when it is a
null statement the "}" should appear immediately after
the "{".

▫ Methods are separated by a blank line.

4. Whitespace
◦ Blank lines

▫ 1 blank line: Between methods, between the local
variables in a method and its first statement, before
code blocks or single line comments and between logical
sections in a method.

▫ 2 blank lines: Between class and interface definitions
and between sections of a source file.

◦ Blank spaces should be used:
▫ Between keywords and following parenthesises e.g.

while (true) {...}
▫ After commas in argument lists e.g. aMethod(arg1, arg2)
▫ Between binary operators and their arguments e.g. a +=

c + d; except from the '.' operator.
▫ Between expressions in a for statement.
▫ After the type in a cast expression, e.g. a = (Vector) b;

5. Statements
◦ IF – ELSE statements

if (condition) { //BRACE STARTS AT FIRST LINE
 statements;
}

if (condition) {
 statements;
} else { //ELSE IS AT THE SAME LINE
 statements; //AS THE CLOSING IF BRACE
}

◦ SWITCH statements
switch (condition) {
case ABC:
 statements;
 /* falls through */ //A COMMENT MUST BE PRESENT WHEN NO
 //BREAK STATEMENT EXISTS
case DEF:
 statements;
 break;

default:
 statements;
 break;
}

/*
 * Here is a block comment
 */
public static void main...

if (condition) {

 /* Handle it */

}

if (a == 2) {
 return TRUE; /* special case */
} else {
 return isPrime(a); /* works only for odd a */
}

◦ WHILE and DO-WHILE statements
while (condition) { //BRACE STARTS AT FIRST LINE
 statements;
}

while (condition);

do {
 statements;
} while (condition);

◦ FOR statements
for (initialization; condition; update) {
 statements;
}

for (initialization; condition; update);

◦ TRY – CATCH statements
try {
 statements;
} catch (ExceptionClass e) {
 statements;
} finally {
 statements;
}

◦ RETURN statements
return; //ONLY USE PARENTHESIS WHEN NEEDED TO
 //CLARIFY THE RETURNED VALUE
return myDisk.size();

return (size ? size : defaultSize)

6. Naming Conventions
◦ Packages: Prefix should be a Fully Qualified Domain Suffix

and must always written in lowercase ASCII letters (e.g. .
com, .gr). Suffix can be anything conforming to external
naming conventions.

◦ Classes & Interfaces: Names can be a series of
(preferably) whole-world nouns with first letter of each
word capitalised. Acronyms should be avoided, unless
widely used (e.g. HTML).

◦ Methods: Methods should be verbs, in mixed case with
the first letter lowercase, with the first letter of each
internal word capitalized.

◦ Variables: Except for variables, all instance, class, and
class constants are in mixed case with a lowercase first
letter. Internal words start with capital letters. Variable
names should not start with underscore _ or dollar sign $
characters, even though both are allowed. One-character
variable names should be avoided except for temporary
"throwaway" variables.

◦ Constants: The names of variables declared class
constants should be all uppercase with words separated by
underscores ("_").

7. Programming Practices
◦ Making instance variables public should be avoided, except

when using the class as a data structure without behavior.
◦ Avoid using an object to access a class (static) variable or

method. Use a class name instead.
◦ Numerical constants (literals) should not be coded directly,

except for -1, 0, and 1, which can appear in a for loop as
counter values.

◦ Parentheses should be used in expressions involving mixed
operators to avoid operator precedence problems.

◦ If an expression containing a binary operator appears
before the ? in the ternary ?: operator, it should be
parenthesized (e.g. (x >= 0) ? x : -x;)

◦ Use XXX in a comment to flag something that is bogus but
works. Use FIXME to flag something that is bogus and
broken.

◦ Variable assignments:
▫ Avoid assigning several variables to the same value in a

single statement.
▫ Do not use the assignment operator in a place where it

can be easily confused with the equality operator (e.g.
if (c++ = d++) { ... } //AVOID)

▫ Do not use embedded assignments in an attempt to
improve run-time performance.

e.g. d = (a = b + c) + r; // AVOID!

8. References
1. Sun Microsystems. Code conventions for the Java Programming Language. Revision 20/4/1999.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

2. Geotechnical Software Services. Java programming style guidelines. Ver 4.1, Oct 2004.
http://geosoft.no/development/javastyle.html

3. Allan Vermeulen, Scott W. Ambler, Greg Bumgardner and Eldon Metz. The elements of Java style. Cambridge University
Press. January 2000. http://www.amazon.com/exec/obidos/tg/detail/-/0521777682/102-9436732-1009700

©2004, Giorgos Gousios, Athens
University of Economics & Business

