
Streaming Software Analytics

Georgios Gousios
Radboud University Nijmegen

Nijmegen, the Netherlands
g.gousios@cs.ru.nl

Dominik Safaric
Radboud University Nijmegen

Nijmegen, the Netherlands
d.safaric@cs.ru.nl

Joost Visser
Radboud University Nijmegen

Nijmegen, the Netherlands
j.visser@cs.ru.nl

ABSTRACT
In this paper we present a novel software analytics infras-
tructure supporting for a combination of three requirements
to serve software practitioners in utilising data-driven deci-
sion making: (1) Real-time insight: streaming software an-
alytics unify static historical and current event-stream data
enabling for immediate, nearly real-time insight into soft-
ware quality, processes and users; (2) Query model: stream-
ing software analytics substantiate for the lack of an inte-
grated event-stream data extraction method by utilising a
sophisticated, yet easy to use query Domain Specific Lan-
guage; (3) Data summarisation: streaming software ana-
lytics allow for high level event-stream data summarisation
in respect to distinct stakeholder groups. We expect that
streaming software analytics will encourage software prac-
titioners to move beyond information toward actionable in-
sight, and enable for the use of analytics as a feedback and
decision-support instrument, thus allowing them for an in-
crease in quality of software systems, processes and delivery.

CCS Concepts
•Applied computing→Digital libraries and archives;
•Information systems→Data mining; •Human-centered
computing → Open source software;

Keywords
Software analytics, streaming, data mining

1. INTRODUCTION AND MOTIVATION
Software engineering is an exceedingly data abundant ac-

tivity. Nearly all artifacts of a software development project,
both static, such as source code, software repositories and
issues and dynamic, such as run-time logs and user activ-
ity streams, contain information valuable for understanding
and optimising both the software products and the processes
that created them. Unfortunately, modern organisations of-
ten do not utilise this wealth of information as a feedback

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BIGDSE’16, May 16 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4152-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896825.2896832

and decision support instrument. Rather, teams adopt new
software development practices and employ the latest and
greatest technology, without questioning the results of their
decisions. Consequently, this leads to decisions that are of-
ten unnecessarily suboptimal or downright wrong [10].

Software analytics aim at utilising data-driven approaches
to enable software practitioners to perform data exploration
and analysis in order to obtain insightful and actionable in-
formation for completing various tasks around software sys-
tems, software users, and software development process [13].
Recently, the field of software analytics has been witnessing
a renaissance: driven from practical needs (e.g. competition,
fast iteration) large software development organizations and
researchers alike, investigate how to extract, process and
present analytics to developers and teams.

Despite the recent surge, what we believe is a key as-
pect of software analytics is neglected in current research:
immediacy. Software analytics efforts rarely consume real-
time data, but rather static historical data stored within
pre-populated databases and thus the obtained analysis are
usually post-hoc instead of. Model building based on static
has proven to be a valuable tool for various tasks, but the
generated models feature strong locality properties that for-
bids them to work across projects. Continuous and localized
learning can make models adapt better to local properties.
Furthermore, the move towards more flexible release and de-
ployment techniques (usually referred to as devops) makes
processing runtime information and combining it with his-
torical data very important for fast iteration.

With this work, we anticipate a surge of demand for both
archival and real-time software analytics that cut across pro-
duction/runtime layers in order to optimise delivery, perfor-
mance and software quality. For this reason, we propose the
unification of archival and current software-related informa-
tion using data streams as the fundamental data access and
computation abstraction. Streaming software analytics al-
low for high-level aggregation and summarisation of near
real-time information.

2. STREAMING SOFTWARE ANALYTICS
Despite the existence of tools and methods for extract-

ing data from software development processes, products and
ecosystems, three key aspects are missing: integration, com-
position and real-time operation. To compensate for these
deficiencies, we aim at providing the tools and methods to
collect, query, aggregate, and summarise software analytics
data as stream, enabling software practitioners for the use
of analytics as a core feedback loop. In the context of soft-

2016 2nd International Workshop on BIG Data Software Engineering

 8

2016 2nd International Workshop on BIG Data Software Engineering

 8

ware engineering, we expect that streaming software analyt-
ics will enable software practitioners to move beyond infor-
mation toward actionable insight, hence allowing them for
an increase of software process and system technical quality.

Figure 1: The architectural decomposition of the streaming
software analytics platform.

To support for these requirements, we define an architec-
ture of the streaming software analytics through the follow-
ing three high level architectural components: the data silo,
the streaming and querying engine, and the aggregation and
summarisation framework. Figure 1 illustrates the architec-
tural decomposition of the system, while subsequent sections
of the paper provide a brief overview of each one.

2.1 Data siloing
Modern software development projects are more than just

the source code that comprises them:

• Software projects utilize a variety of tools for managing
versions, issues, builds, releases and deployments.

• More advanced projects also employ static analysis
tools to analyze their structure and enforce quality
standards.

• After deployment, operation teams track performance
and quality metrics, along with operational logs.

• External services exist to inform teams about various
topics relating to external system dependencies rang-
ing from security disclosures to community health for
language ecosystems.

• Development teams collect process information to help
them analyze their performance during development
sprints and prioritize their work.

• Marketing and community management teams adver-
tise software products on social media channels and
respond to incidents that may harm the products (or
the organizations) credibility.

Currently, this wealth of data and metadata about software
development is maintained in isolation and dedicated human
analysts are required to arbitrarily extract, load, filter and
combine the information in order to make sense of it.

What is needed is an infrastructure that aggregates all
available information in a centralized location. All possi-
ble data, originating in software analysis, software operation
and software development processes, needs to be stored in
an extensible meta-storage schema that does not abstract
over the aggregated data. To enable traceability and data
navigation, it is important to cross-link data entries; we be-
lieve that one-way parent-child relationships, where appli-
cable, can be sufficient for this purpose. Siloing does not
(only) mean warehousing; to enable our vision of streaming
software analytics, data must be accessed in the same way,
irrespective of whether they are archived or current; con-
sequently, our data representation abstractions should be

streams rather than relations. This novel approach of trans-
forming archived data into a stream data representation ab-
straction enables the simultaneous analysis of the past and
the present.

To facilitate data aggregations in a streaming fashion, it
is important to compensate for the shortage of mechanisms
that allow pushing data to the data silo. To compensate for
this, the data silo converts pull-based data sources to push-
based ones using purpose specific data sensors that trigger
when specific events in the originating data source occur.
For instance, a data sensor monitors the project’s applica-
tion store entry and updates the corresponding silo collection
with new commits, runtime logs or ratings.

2.2 Stream processing engine
At the core of the streaming software analytics platform

is the stream processing engine. The fundamental data rep-
resentation the stream processing engine works with is a
stream, which designates an unbounded length data struc-
ture that can push updates to subscribers using the Observer
pattern. Operations on streams of data are executed when
new data become available, and can result in: (1) new data
streams by executing transformation operations such as join,
(2) single results by evaluating the content of a stream us-
ing pre-defined aggregation functions. Importantly, streams
can also represent static (e.g. database) data, thus effec-
tively unify processing of both static and dynamic data.

The streaming engine accepts data from incoming data
sources, stores them in the data silo and then invokes a se-
ries of transformations, depending on the type of the data.
On the user facing side, it exposes an API that allows users
to invoke the query engine. The transformations are user or
system defined functions that extract facts from the incom-
ing data by arbitrarily combining one or more streams with
archived data using a custom query language (described be-
low).

While the stream processing engine is the core part of
the proposed architecture, the task of creating and testing
a stream processing engine from scratch is non trivial. For-
tunately, technologies such as Spark Streaming [12], Trill [4]
and Reactive Extensions [9] can readily play a central role
in our proposed solution. While streaming can be efficient
memory-wise, the sheer volume of the data to be processed
calls for efficient processing. As computations on stream-
ing systems are usually expressed as idempotent transforma-
tions over individual data items, distributing the processing
on a cluster of machines can help with performance.

2.3 Query DSL
To extract insightful and actionable information from soft-

ware analytics, individuals need a broad and growing set of
tools. They manage the structure of the data storage, ex-
tract it into analysis tools, write ad hoc scripts for data
transformation [5]. Because of this, extracting information
from software analytics is a tedious and often time consum-
ing task. To compensate for these deficiencies, the industry
and research community proposed numerous query engines
[9,12] that allow for the extraction of information from data
streams. These tools however comprise two significant de-
ficiencies: (i) difficulty of use [5], and (ii) the inability of
querying over historical data making them domain agnostic.

To enable ease of use, we aim at extending the capabil-
ities of an existing querying engine by designing a query

99

Domain Specific Language (DSL). The query DSL will not
however directly manipulate streams of data, but rather is
an abstraction over the existing querying mechanisms of a
querying engine. For the transformation of data streams,
the language defines three types of queries. Pull queries,
enable for querying over streams of historical data. Push
queries, allow for transformations over streams of current
data. Lastly, push-pull queries enable for transformations
over streams of both historical and current data. Figure 2
illustrates an example of a push query as processed by the
querying engine.

Observable . from (s t a ck t r a c e s) . f latMap{ s t =>
commits . f i nd (commit =>

commit . d i f f s . f i nd (d i f f =>
d i f f . f i l e == st . f i l e && d i f f . l i n e == st . l i n e

) . nonEmpty
) match {

case Some(s) =>
Observable . j u s t ((s t . f i l e , s . sha , s . deve loper

))
case None =>

Observable . e r r o r (. . .)
}

}

Figure 2: Query combining live stack traces and commit
data to identify the developer that created the commit that
is causing a stack trace. Returns a combined stream of devel-
oper/stack trace information that can be further processed.

To enable for querying over historical data using the query
DSL, we intent to construct an extensible querying mech-
anism that lifts domain objects to the query data pool,
and allows both historical data and streaming event data
to be queried seamlessly. But, constructing this mechanism
constitutes a certain challenge. Data storage systems and
querying engines prioritise current data over historical in-
stances. Because of this, the mechanism should assign pri-
ority to a certain data source depending on the context of
the query, using semantic analysis and state of the art ma-
chine learning algorithms.

2.4 Metrics aggregation and summarization
The streaming software analytics platform, when applied

on real projects, will generate vast amounts of real-time
data; to produce actionable software analytics out of fast
moving data streams, the system needs to support the ag-
gregation of streaming data. The aggregation and sum-
marization component encapsulates and executes methods
for high-level data aggregation and produces summaries of
event-stream data. Figure 3 illustrates an example of a sum-
mary output produced by the aggregation and component.

Vers ion 1 . 2 . 1 (commit e243434229c) o f app Foo i s
r e c e i v i n g negat ive feedback (sent iment r a t i o :2 .7%) on
app s t o r e . Users complaining about f r equent c ra she s .

Top except i ons in app crash log : Nul lPo interExcept ion
(88%) , i n c r ea s ed 95%, in ve r s i on 1 . 2 . 1 .

S t a t i c ana l y s i s on commit e243434229c i nd i c a t e s a
func t i on measuring Cyclomatic Complexity above t 15 .

Commit e243434229c i s 85% bigge r than average .
Code review passed with not feedback .

Figure 3: Information summarisation example for a mobile
application.

For the event stream data to be summarised, we employ
the concept of cascading aggregations. First, a set of metrics

in conjunction with metric violation thresholds are specified
by the user. Next, the user specifies a set of aggregation
functions by consolidating pre-defined, and user-defined ag-
gregation functions using the query DSL. In summary, the
aggregation functions extract relevant pieces of information
from streams of historical and current data. Finally, insight
is produced by associating metric violation thresholds to
the results of the evaluated aggregation functions. The cas-
cading aggregation concept can be readily applied on static
data; its application on streaming data poses additional re-
search challenges.

Initially, the type of required insightful and actionable in-
formation depends upon: (i) software development project
domain, (ii) development role of an individual [2]. For illus-
trative purposes consider a server application development
project that may require information related to e.g. load
monitoring, while a team developing a mobile application
may find more interest into e.g. user visible crashes. Hence,
a qualitative research for eliciting these diverse requirements
should be performed. Secondly, the aggregation system is in-
tended to be designed as a collection of composable stream-
based functions. However, what are the building blocks of
such as system? How can we effectively aggregate composed
streams of data?

3. A RESEARCH AGENDA
With the proposed research, we aim at utilising the wealth

of information produced by distinct software development
artifacts in order to enable software practitioners to use soft-
ware analytics as a feedback and decision support instru-
ment. Realising streaming software analytics, therefore re-
quires an understanding of distinct stakeholder information
needs, and decisions they influence. But more importantly,
we strive to understand how those needs map to software
analyses. We believe that community co-ordinated efforts
can help realizing the streaming software analytics vision in
at least the following ways:
Requirements for analytics Researchers need to identify

the stackeholders’ information needs by means of qual-
itative research. Early works by Buse and Zimmer-
man [3] and Begel and Zimmerman [2] are on this di-
rection, but need to be revisited in the light of real-time
analytics and instant feedback.

Infrastructure work Developing analytics pipelines is a
complex and error prone task. It is however an area
of intense competition (both academic and industrial)
and there is ample room for improvement. Software
engineering researchers should work together with re-
searchers in other fields (e.g. databases, programming
languages) to tailor existing analytics systems to soft-
ware engineering requirements.

Feedback-driven software engineering Software engineer-
ing development methods (e.g. Scrum) are currently
based on much folklore and little evidence. As re-
searchers, we should aim to enable feedback loops within
the software engineering practice. Developers should
be able to easily execute experiments (e.g. A/B tests),
collect and correlate the results of applying specific
design and development decisions and their outcomes.
This way, teams and organizations can organically evolve
their tooling and optimize their processes based on
data-driven decisions rather than black-box method-
ologies.

1010

4. RELATED WORK
Data streaming refers to the process of dealing with data

points in unbounded length data structures. If we know the
size of collection before an algorithm is applied to it, there
are several optimizations that can be performed (e.g. re-
ordering). In addition, many mathematical/statistical con-
cepts (e.g. mean) assume bounded-length datasets. As a
result, algorithms that are consider standard in every day
programming (e.g. quicksort or quantiles) do not apply to
stream processing [6].

Recent advances in computer processing power coupled
with increasing needs for fast data processing, led to a re-
naissance of the field of stream processing. Data stores,
both research [8] and commercial ones (e.g. MongoDB and
PipelineDB), already offer the ability to expose updates in
the stored data as streams and organize data processing
in Single Instruction Multiple Data operations. Dedicated
streaming engines, such as STREAM [1], Apache Spark Stream-
ing [12], Trill [4] and Storm1 facilitate the application of
high level data transformations (usually based on list pro-
cessing primitives stemming from functional programming)
in a distributed network of machines. Programming models,
such as functional reactive programming [11] and reactive
extensions [9] make streams a first class citizen in appli-
cation code, hiding the complications of asynchronous and
concurrent execution behind data storage (e.g. collections)
and computation (e.g. higher-order functions) primitives fa-
miliar to programmers.

So far the research community has investigated a num-
ber of software analytics infrastructures. Han et al. pro-
posed StackMine [7], an infrastructure aimed at streaming
events containing call stack signatures for the identification
of impactful performance bugs. Fisher et al. [5] investigated
onto an infrastructure for providing an integrated and col-
laborative environment for both real-time and archived data
exploration analysis.

Streaming analytics are already being used in a variety
of application scenaria, such as advertising, online fraud
detection, user behaviour monitoring, sensor network data
processing etc. To the best of our knowledge, there is no
application of streaming analytics in the field of software
engineering.

5. CONCLUSION
In this paper we introduced the concept of streaming soft-

ware analytics. Streaming software analytics aim at unifying
the representation of historical and current data as streams,
and enable high-level aggregation and summarisation of near
real-time information using a common query DSL. We ex-
pect that streaming software analytics will enable the use
of analytics as a feedback and decision support instrument,
thus increasing the quality of software systems and acceler-
ating their delivery.

6. ACKNOWLEDGMENTS
This paper is a part of a research project funded by The

Netherlands Organisation for Scientific Research (NWO)2,
project acronym CodeFeed.

1http://storm.apache.org
2http://www.nwo.nl/en/

7. REFERENCES
[1] Babcock, B., Babu, S., Datar, M., Motwani, R.,

and Widom, J. Models and issues in data stream
systems. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (New York, NY, USA, 2002),
PODS ’02, ACM, pp. 1–16.

[2] Begel, A., and Zimmermann, T. Analyze this! 145
questions for data scientists in software engineering.
Tech. Rep. MSR-TR-2013-111, October 2013.

[3] Buse, R. P. L., and Zimmermann, T. Information
needs for software development analytics. In
Proceedings of the 34th International Conference on
Software Engineering (Piscataway, NJ, USA, 2012),
ICSE ’12, IEEE Press, pp. 987–996.

[4] Chandramouli, B., Goldstein, J., Barnett, M.,
DeLine, R., Fisher, D., Platt, J. C.,
Terwilliger, J. F., and Wernsing, J. Trill: A
high-performance incremental query processor for
diverse analytics. VLDB Very Large Data Bases.

[5] Fisher, D., Chandramouli, B., DeLine, R.,
Goldstein, J., Aron, A., Barnett, M., Platt,
J. C., Terwilliger, J. F., and Wernsing, J.
Tempe: An interactive data science environment for
exploration of temporal and streaming data. Tech.
Rep. MSR-TR-2014-148, November 2014.

[6] Gaber, M. M., Zaslavsky, A., and
Krishnaswamy, S. Mining data streams: A review.
SIGMOD Rec. 34, 2 (June 2005), 18–26.

[7] Han, S., Dang, Y., Ge, S., Zhang, D., and Xie, T.
Performance debugging in the large via mining
millions of stack traces. In Proceedings of the 34th
International Conference on Software Engineering
(Piscataway, NJ, USA, 2012), ICSE ’12, IEEE Press,
pp. 145–155.

[8] Idreos, S., Groffen, F., Nes, N., Manegold, S.,
Mullender, K. S., and Kersten, M. L. Monetdb:
Two decades of research in column-oriented database
architectures. IEEE Data Engineering Bulletin 35, 1
(2012), 40–45.

[9] Meijer, E. Reactive extensions (rx): Curing your
asynchronous programming blues. In ACM SIGPLAN
Commercial Users of Functional Programming (New
York, NY, USA, 2010), CUFP ’10, ACM, pp. 1–1.

[10] Strigini, L. Limiting the dangers of intuitive decision
making. IEEE Softw. 13, 1 (1996), 101–103.

[11] Wan, Z., and Hudak, P. Functional reactive
programming from first principles. SIGPLAN Not. 35,
5 (May 2000), 242–252.

[12] Zaharia, M., Das, T., Li, H., Hunter, T.,
Shenker, S., and Stoica, I. Discretized streams:
Fault-tolerant streaming computation at scale. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 423–438.

[13] Zhang, D., Han, S., Dang, Y., Lou, J.-G., Zhang,
H., and Xie, T. Software analytics in practice. IEEE
Software, Special Issue on the Many Faces of Software
Analytics 30, 5 (2013), 30–37.

1111

