
Work Practices and Challenges in Pull-Based

Development: The Contributor’s Perspective

Georgios Gousios

Radboud University Nijmegen

Nijmegen, the Netherlands

g.gousios@cs.ru.nl

Alberto Bacchelli

Delft University of Technology

Delft, the Netherlands

a.bacchelli@tudelft.nl

ABSTRACT
The pull-based development model, which is gaining widespread
popularity with open source systems, offers a novel way to con-
tribute to projects. In this paper, we analyze how contributors expe-
rience this model investigating the motivations that drive contrib-
utors, their work practices behind the scenes, and the challenges
they face. We set up an exploratory qualitative study involving a
large-scale survey of more than 650 contributors and analyze it in
the light of previous research on contributors’ practices and the in-
tegrator’s role in the pull-based model. Our key findings indicate
that motivations are similar to those in other models, but the bet-
ter traceability for contributions make it more appealing to create a
code portfolio. In addition, contributors have a controversial rela-
tion with awareness, and contribution challenges are mostly social
in nature and are exacerbated by the high-volume, sparse, and asyn-
chronous nature of the pull-based model. Communication within
pull-requests is limited to low level concerns. On these insights we
provide recommendations to practitioners and discuss implications.

1. INTRODUCTION
Distributed software development projects employ collaboration

models and patterns to streamline the process of integrating incom-
ing contributions [39]. Classic forms of code contributions to col-
laborative projects include change sets sent to development mail-
ing lists [5] or issue tracking systems [4] and direct access to the
version control system [19]. The underlying processes of contri-
bution evaluation have been thoroughly analyzed under different
angles [56, 44, 43]. Open collaborative software projects, such
as many open-source software (OSS) ones, increase their value by
leveraging external contributors with diverse expertise [49]; partic-
ularly, the successful progress of OSS depends on building a sound
community of core developers and external contributors [19].

The pull-based development process is a recent form of distributed
software development [27]. In this model, contributors do not have
access to the main repository, instead, they fork it, make their changes
independently, then create a pull request (PR) with their proposed
changes to be merged in the main repository. The project’s core
team (from hereon: integrators) is then responsible for evaluating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the quality of contributions, for proposing corrections, for engaging
in discussion with the contributors, and eventually for integrating
them to the main development line or rejecting them. PRs are of-
fered by widely used social coding sites, such as GitHub [22], Bit-
bucket [7], and Gitorious [23]. The popularity of this model is con-
stantly growing with at least 800 thousand collaborative projects
(or half of all collaborative projects) adopting it on GitHub alone.

Previous research on the pull-based model analyzed lifetime char-
acteristics of PRs [27], macroscopic factors that lead to contribution
acceptance [27, 50], how contributions are evaluated through dis-
cussions [51], and working habits and challenges faced by the inte-
grators [28]. Little is known, however, of motivations, work habits,
and challenges of contributors to projects adopting the pull-based
model. Understanding them can provide insights for both practi-
tioners and researchers. Projects can improve weak aspects of their
process and take action against the barriers that contributors face;
researchers can focus on contributors’ challenges to inform the de-
sign of tools and processes to support contributors’ work.

To obtain this understanding, we conduct an exploratory qual-
itative investigation on what motivates top contributors to submit
PRs, how they prepare them, and what challenges they face in this
contribution model. Since GitHub hosts diverse projects developed
by many different programmers, it gives the opportunity to learn
from many diverse cases. We do so using surveys, whose questions
are based on results from previous literature and our previous ex-
perience on this field. We conduct a two-round (pilot and main)
survey with 23 and 760 respondents respectively and we enrich the
resulting dataset with trace data extracted from GHTorrent [26].

Through our investigation, we report on a number of findings
including: Motivations for contributing with the pull-based model
are in line with that of other models; but the former has the ad-
vantage of offering effective traceability between contributions and
authors, thus making it a more appealing choice for building code
portfolios. Contributors have strong interest in maintaining aware-
ness on what happens in the project to get inspiration and avoid
duplicated work, but do not actively try to propagate newest de-
velopments prior to submitting PRs. Hardest and most frequent
challenges encountered by contributors are social in nature; these
are mostly related to low responsiveness of integrators, difficulties
in communicating change rationale, and a not empathetic attitude.
In high volume projects, the pull-based model seems to exacerbate
some of these issues, due to its inherent high-volume of requests,
information spread in multiple parallel branches, and asynchronous
interaction. Moreover, the communication within PRs, although ef-
fective for discussing low-level issues shows its limit for other types
of contributors’ communication needs. Finally, barriers for new
contributors, imposed by the model, are mostly due to the learning
curve for adopting the necessary tools.

2. BACKGROUND AND RELATED WORK
OSS projects form online collaborative communities [15] where

developers seeking to participate submit contributions, usually in
the form of source code patches. A widely accepted view of orga-
nizing OSS communities with respect to contributions is the onion
model [56]: A core team (perhaps including a leader) receives con-
tributions and determines their fate based on technical merit or
trust.

Contributor motivation is a well explored research topic [35, 56,
34, 46, 2]. In one of the earliest studies, Ye and Kishida [56]
proposed learning as a core reason for contributing. Lakhani and
Wolf [34] proposed extra motives, such as satisfaction and sense
of community duty. Shah [46] proposes that having fun and tak-
ing challenges are key motivating factors. Fang and Neufeld [17]
find that continuous learning and identity building is what drives
sustained, rather than ephemeral, contribution activity in OSS com-
munities. Moreover, developers select projects to contribute over
others for reasons that have to do with licensing [45] and technical
quality [36]. In a meta-analysis of OSS literature on contributor mo-
tivation, Androutsellis-Theotokis et al. [2, Chapter 9] consolidated
existing work and identified 5 high-level aspects of motivation: in-
trinsic (relating to hedonistic motives), extrinsic (satisfaction ob-
tained through various forms of external compensation), political
(ideological beliefs about the value of OSS), social (relating to the
added social value the contributions generate), and technical (need
to engage with new technologies). Contribution to OSS projects
is not only directed by motivations intrinsic to developers; several
projects are actively trying to entice developers to contribute as it
is to their direct interest (especially for commercially-led projects)
to maintain an active and expanding community.

Despite the best project intentions, newcomers to OSS communi-
ties occasionally face challenges. Steinmacher et al. [49] analyzed
the related work and identified 58 barriers, which are, interestingly,
mostly related to how the projects work in terms of social aspects,
such as community engagement and need for orientation.

After contributions have been submitted they must also be eval-
uated. In an early study, Mockus et al. [39] described the commit-
first contribution evaluation pattern: code must be in the repository
before it is reviewed. Rigby and Storey examined the peer review
process in OSS mailing lists and found that developers filter emails
to reduce evaluation load, prioritize using progressive detail within
emails containing patches, and delegate by appending names to the
patch email recipients [44]. Baysal et al. [4] examined contribution
evaluation over the bug tracking database; they find that contribu-
tions from casual contributors received preferential treatment and
they attribute this difference to the size of the contributions (i.e.,
new contributors submit smaller contributions).

A number of social factors also affect how developers interact
with the project community to have their contributions evaluated.
Duchneaut found that developers looking to get their contributions
accepted must become known to the core team [16]; then, core team
members would use the developer’s previous actions as one of the
signals for judging contributions. Similarly, Krogh et al. [53] found
that projects permit developers to contribute through established
implicit “joining scripts”, which are examined to permit access to
the main repository based on developers’ past actions.

Due to increasing popularity, GitHub in general and pull-based
development in particular have recently become a target for re-
searchers of online collaboration and software development prac-
tices. Gousios et al. [27] provided the first quantitative investiga-
tion of the characteristics of contributions through PRs: They find
that contributions are relatively small (20 lines) and processed very
fast (submissions are accepted in less than a day). Moreover, both

Gousios et al. [27] and Tsay et al. [50] investigated the factors that
underline the acceptance of contributions in pull-based develop-
ment: Both find similar processes, but different dominating factors
(hotness of project area and social distance, respectively).

Contribution evaluation is as important in pull-based develop-
ment as it is in traditional OSS practices. Pham et al. [41] reported
initial qualitative evidence on how integrators assess contributions,
by focusing on the evaluation of testing practices rather than the
pull-based development mode. In a survey of 750 integrators of
busy projects, Gousios et al. [28] find that integrators struggle to
maintain the quality of their projects and have difficulties with pri-
oritizing contributions to be merged and identifying the factors by
which they judge the contributions’ quality. Tsay et al. [51] fo-
cus on how discussions affect contribution evaluation in the pull-
based development model; they find that stakeholders external to
the project may influence the evaluation discussions, while power
plays are in effect. Social signals also play an important role: Mar-
low et al. [37] found that core members form an impression of the
quality of incoming contributions by using social signals, such as
the developer’s coding activity and the developer’s social actions
(e.g., following other developers).

The pull-based development has been found to help projects to
engage better with community and consequently attract more con-
tributions. In a study of 40 integrators, Dabbish et al. [11] finds
that transparency drives collaboration, as social inferences (around
commitment, work quality, etc.) allows developers to more effec-
tively deal with incoming contributions. Similarly, integrators of
three large OSS projects hosted on GitHub, interviewed by McDon-
ald and Goggins, reported that the introduction of the pull-based
development model has allowed them to become more democratic
and transparent and to attract a greater participation, resulting in
doubling the number of contributors [38].

Overall, all studies involving the pull-based development model
have focused on projects and integrators. In this paper, we com-
plement this view by analyzing the other part of the equation in the
pull-based model, namely contributors.

3. RESEARCH METHOD
In this section we present our research questions and describe

our research method.

3.1 Research questions
Our examination of the literature revealed that while several re-

searchers examined how developers collaborate in the context of
OSS or, more recently, GitHub, no work has examined yet how
contributors perceive the pull-based development model. With this
model rapidly rising in popularity, it is important to expand our un-
derstanding of how it works in practice and what challenges con-
tributors face when using it. Consequently, our overall research
goal is to gain an in-depth understanding of the working practices
and challenges of contributors in the pull-based development model.

All studies on contributor motivation took place before the pull-
based development model was introduced and view contribution as
an act of heavy commitment to a project community. However,
the pull-based development model facilitates a more casual rela-
tionship with projects: The simplicity of sending a PR and partic-
ipating in the subsequent discussion has given raise to phenomena
such as drive-by commits [41, 37], where developers submit small
fixes without expecting any (or at least, limited) compensation or
recognition. This calls for a re-investigation of what motivates de-
velopers to contribute using the pull-based model. Consequently,
we define our first research question as follows:

RQ1: What motivates the contributors of projects that use the
pull-based development model?

After exploring contributors’ motivations, we proceed to examine
how developers prepare their contributions. Current work, both
generally on OSS and on the particular case of the pull-based de-
velopment, only examines what happens after a contribution has
been submitted to a project. In earlier work [27], we found that,
despite the increased transparency that social coding sites afford,
many contributions are still rejected as duplicate, conflicting or su-
perseded. Do contributors leverage transparency in the same ways
that integrators do [11]? Do they communicate prior to submitting
a PR or communication is only post-submission? Moreover, con-
tribution quality is a major concern for integrators [28]: Is there
a match between what integrators and contributors use and what
factors they examine to assess the quality of contributions? This
motivates our second research question:

RQ2: How do contributors prepare (for) a contribution?

To ease analysis we refine our question in the following two:

RQ2.1: What happens before and after coding a PR?

RQ2.2: How do contributors assess code quality of a PR?

Finally, we explore the challenges that contributors encounter in
the pull-based model. We also consider the barriers hindering new
contributors to join. Together with the analysis of the process, this
exploration is important to guide future work on this model:

RQ3: What are the challenges of contributing through the pull-
based development model?

3.2 Study Design
Our study follows a mixed-method approach [10], mostly col-

lecting qualitative but also quantitative data. We collected data in
two rounds: In the first, we run a pilot survey on a limited number
of selected contributors; this allowed us to verify the clarity of our
questions and identified emerging themes to further explore (i.e.,
motivations for contributing and barriers for newcomers). In the
second round, we sent the survey—augmented with questions ad-
dressing the themes emerged in the first round—to a large pool of
contributors, identified by quantitative results for each project.

Since our aim is to learn from a large number of projects, we
used surveys, a data collection approach that scales well [18].
Survey Design. Both the pilot and the final survey are split into
three logical sections: demographic information, multiple choice
or Likert-scale questions, and open-ended questions. The open-
ended questions are intermixed with multiple choice ones; usually,
the contributor had to answer an open-ended question and then
a related one with fixed answers. To further elicit the contribu-
tor’s opinions, in all questions that had predefined answers but no
related open-ended question, we included an optional ‘other’ re-
sponse. Finally, throughout the survey, we intentionally used even
Likert scales to force participants to make a choice. Excluding
demographic questions, the survey included overall 4 open-ended
questions, 4 Likert scale questions with an optional open-ended re-
sponse and 11 multiple choice questions (5 with an optional field).
The respondents could fill in the survey in about 10 minutes.1

1Survey questions available at: http://bit.ly/

contributors-survey

Attracting participants. Previous work [27, 32] showed that most
GitHub repositories are inactive, single-user projects. To ensure
that our sample consists of repositories that make effective and
large scale use of PRs, we selected all repositories in the GHTorrent
dataset [26] that have received at least one PR per week through the
year 2013 (3,400 repositories). For each repository, we extracted
the top 3 PR contributors, by the number of PRs that they have con-
tributed and we sent them an email, if their address was registered
with GitHub.

For the pilot phase, we emailed 445 of those contributors ran-
domly and received 32 answers (7% answer rate). For the data col-
lection phase, we emailed 4,172 contributors from the remaining
projects and received 760 answers (18% answer rate). The sur-
vey was published online and its web address was sent by personal
email to all participants. To encourage participation, we created
a customized project report for each of the emailed contributors.
The report includes plots on the project’s performance in handling
PRs (e.g., mean close time) on a monthly basis. The reports for
all projects have been published online [25] and widely circulated
among developers. We did not restrict access to the survey to in-
vited users only; several survey respondents forwarded the survey
to colleagues or advertised it on social media (Twitter) without our
consent. After comparing the response set with the original set of
projects, we found that 25% of the responses came through third
party advertising. The survey ran from April 14 to May 1, 2014.
Respondents. The majority of our respondents self-identified as
project contributors (76%), 65% working for industry. Most (68%)
have more than 7 years of software development experience and
considerable experience (> 3 years) in geographically distributed
software development (59%).

3.3 Analysis
We applied manual coding on the 4 open-ended questions as fol-

lows: initially, the two authors individually coded a different set of
50 (out of 760) answers for each question. At least one and up to
three codes were applied to each answer. The extracted codes were
then grouped together and processed to remove duplicates and, in
cases, to generalize or specialize them. The new codes were then
applied on all answers. When new codes emerged, they were inte-
grated in the code set. On average, 20% more codes were discov-
ered because we decided to code the full dataset.

In the survey, we asked the contributors to optionally report a sin-
gle repository to which they contribute many PRs and their GitHub
user name. 95% (722) and 81% (610), respectively, of the respon-
dents did so. Many of the responses (126) did not directly match to
a GitHub repository for reasons that ranged from spelling mistakes
to using wild card names (e.g., jenkinsci/*) to denote contributions
to multiple repositories. We corrected the repository names as fol-
lows: we first used GitHub’s search functionality to locate reposi-
tories whose name is similar to the provided one and chose the one
that had received PRs from the user. In case of wild card repository
names, we searched the GHTorrent database for all repositories the
contributor has submitted PRs to and selected the one where the
contributor has submitted the most PRs to. We excluded from fur-
ther analysis answers for which we could not obtain a valid repos-
itory name (5 answers) and those that did not include a repository
name (38 answers).

After we resolved the repository names, we augmented the sur-
vey dataset with information from the GHTorrent database [26].
Specifically, for each project, we calculated the mean number of
PRs per month and the mean number of contributors for the pe-
riod July 2013 to July 2014. For contributors, we also calculated

http://bit.ly/contributors-survey
http://bit.ly/contributors-survey

0 20 40 60 80

Other

To enrich my Github profile/CV

It is my day time job

To sharpen my programming skills

I devote my free time to a good cause

It is intellectually stimulating

I am personally interested in the
technology being developed

I use it as part of my own projects

percentage of answers

Why do you contribute to this specific project?

Figure 1: Motivations driving contributors.

whether they belong in the top 10 contributor list for the specific
repository in the same period.

Finally, to ensure that we our answer set included users that con-
tribute primarily or exclusively through PRs to the indicated repos-
itory, we used one of the fixed answer questions (Q9: How do you
contribute code to the project?) as a further demarcation point.
Consequently, we filtered out 77 respondents who did not indicate
contributions exclusively through PRs or through branch-to-branch
PRs. The final answer set, which we analyze below, contained 645
answers.

4. RESULTS
This section presents the results of our exploratory investiga-

tion. When quoting survey respondents, we refer to the individ-
ual contributor using a [RX] notation, where X is the answer’s
ID. We present codes resulting from coding open-ended answers
underlined.

RQ1: What motivates contributors?
Our first research question seeks to surface what motivations drive
contributions to projects that use the pull-based model. We map
it to a closed-question in our survey and we offer 7 non-mutually-
exclusive closed answers (based on our analysis of the related lit-
erature) and an open text field to specify ‘other’ reasons. Figure 1
summarizes the results.

Only 10% of the respondents used the ‘other’ field, thus indicat-
ing that most motivations for contributing in the pull-based model
are in line with those found for different contributions model. By
manually coding the open answers, we found that respondents mostly
better explained the closed choices. These open answers helped
us enriching our understanding of the phenomena. In the follow-
ing we describe the main themes emerged from the answers to this
question (i.e., usage, natural interest and personal growth, and vol-
unteering and paid job) including quotes from the answers to the
‘other’ field.

Usage.
The main motivation for contributing to a project is its usage.

More than 60% of the respondent chose this answer and 29% of
those who added ‘other’ motivations reiterated on this concept.
This usage can be a dependency from another project the contrib-
utor is developing (e.g., “Due to using [application] for my job”
[R288] and “I have contributed code to integrate GitHub to our
commercial software” [R606]), but it can also correspond to con-

suming the project as an end-user (e.g., “[application] is very nice
program, that I use daily” [R571], “It’s a Firefox addon and I per-
sonally use it” [R634]).

When the reason for contributing is usage, it is often connected
to contributions in form of bug fixing: “fixing bugs that personally
affect me” [R35], “it had some errors that prohibited [our com-
pany] progress” [R64] and “I use the project as part of my work,
so if I find and fix a bug” [R189].

Natural interest and personal development.
Another relevant set of motivations for contributing to a repos-

itory regards natural interest and personal development. Almost
60% of respondents are interested in the technology being devel-
oped in the projects they contribute to; in the words of one respon-
dent: “[technology] in general is for the most part very interesting
to develop” [R608]. In particular, 35% of the respondents confirms
that contributing to a project help them sharpen their programming
skills, e.g., “My full time job is a non-coding manager. Occasion-
ally contributing bits of code to my teams’ OSS projects keeps me
in touch and shakes off the rust” [R466], “I use it to learn from
by reading others’ code” [R620]. Approximately 40% contribute
because they find it intellectual stimulating (e.g., “When [project]
became open source I was interested in the source code and de-
cided to add some improvements” [R247]). Approximately 35%
of the respondents related contributions to personal career devel-
opment: 23% of the respondents selected the closed answer about
enriching their profile/CV (e.g., “Making contributions to [project]
makes it easier for me to get new clients” [R121]); some contribute
to projects as part of their involvement in education and research
(e.g., “This is my research project” [R596], “I also use it to teach”
[R244], and “[it is] part of my master’s thesis” [R578]); and some
answers indicate that contributions to GitHub indeed benefit career
growth (“My contribution to [projects] allowed me to obtain a job
within my favorite subjects” [R437], “I believe in giving back to a
community responsible for me having a great career” [R424]).

Volunteering and paid job.
Contributions are also motivated by either economical interest or

the choice of taking part for free in a task for a good cause. About
30% of the respondents make contributions because it is their daily
job or part of it (e.g., “While it isn’t my full day job, I do allocate
a small part of my work to contribute to [project] (as we use it at
work as well)” [R317], “Part time student job” [R594]), a slightly
higher percentage (ca. 33%) are motivated to volunteer free time
to a good cause (e.g., “Like to help others” [R708], “The open
source spirit, if you see a bug or area of improvement, contribute to
the main source code so other can enjoy the collaborated rewards”
[R186], and “I enjoy coding for it and the community” [R221]).
Seven respondents specify in the free text that they contribute to
a project because they are the funder, owner, or main maintainer,
though they do not specify whether it is volunteer or paid work.

RQ2.1: What happens before/after coding?
With this research question we seek to understand which practices
contributors put in place after they decide to create a PR and before
they submit it, particularly before and after the actual coding. We
get this understanding with different survey questions.

Before coding.
To learn what happens before coding, we provide the respon-

dents with a set of 7 questions (based on our analysis of litera-
ture and our experience) with 4-level Likert-scale; Figure 2 reports
on the results. Only 24 (3%) respondents added information us-

24%

45%

49%

52%

59%

68%

84%

76%

55%

51%

48%

41%

32%

16%

Communicate my
changes to the

project core
team

Lookup project
pull request

guidelines

Lookup for
open issues

related to my
changes

Check whether
similar pull

requests were
processed

recently

Check other
project

branches, or
forks, for

related
features

Check project
discussions,

emails forums
IRC, for

related topics

Get assigned
some work by

my project
leader

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

Before starting to work on a pull request, I

Figure 2: Practices before coding a contribution.

ing the ‘other’ field, mostly providing clarifications. Results show
that, in general, contributors tend to conduct all the mentioned ac-
tivities; as one developer put it: “These are all reasonable things
to do” [R490]. Nevertheless, the activities receive different em-
phasis: In particular, contributors report practices mostly related to
increasing their awareness [14]: They check whether similar pre-
vious work had already been done, by consulting (in this order) the
issue tracking system, previous PRs, project communication chan-
nels, and external branches/forks. In the ‘other’ field, respondents
explain that the sources are checked both to get inspiration from
similar work and to ensure that the work is not going to be dupli-
cated effort (e.g., “I always create a Bug in Bugzilla to track the
work if there is no existing bug” [R51]). Top experienced contrib-
utors explained that they do not need to update awareness, because
“I almost always know what’s going on [in the issue tracker], on
the mailing lists, in the PR queue, so I have an idea how relevant
my PRs are long before I start working on them.” [R439]

Results in Figure 2 highlight a noteworthy disconnection. Al-
though contributors deem important and spend time checking for
work related to the PR they want to code, once they start coding
most of them report to communicate never or occasionally the in-
tended changes with the core team. In other words, information
consumption is not supported by information generation: They find
important to be aware of what is going on in the project, but they
do not personally invest time to increase the overall awareness.

After coding.
Figure 3 summarizes the activities contributors report to conduct

just before submitting a PR, when the code is fully developed. The
‘other’ field was filled by only a few participants (1%), mostly to
clarify their previous choices.

When the coding is finished and contributors are ready to sub-
mit a pull request, most developers declare to not recheck whether
similar work has been accomplished in the meanwhile; in contrast
to what they report to do before starting to code. The activities that
developers describe as the most frequent before submitting a PR
are formatting the code according to the project’s guidelines and

19%

24%

54%

63%

74%

81%

76%

46%

37%

26%

Format it
according to

project
guidelines

Run the tests
against it

Check whether
similar pull

requests were
processed

recently

Check other
project

branches, or
forks, for
features

related to my
pull request

Check project
discussions

for topics
related to it

100 50 0 50 100
Percentage

Response Never Occasionally Often Always

When I am ready to submit a pull request, I

Figure 3: Practices after coding a contribution.

running tests against the completed code. Some respondents com-
plain about improper support to these activities by the project (e.g.,
“I WOULD run tests and format according to guidelines but there
are no tests or guidelines on this project” [R5], “no tests available
in this repo, but normally I would run tests” [R1]).

We specifically inquiry about the communication means contrib-
utors use, when they decide to communicate on the change. The
summarized results are presented in Figure 4. Many respondents
explain that they start opening an issue in the tracker or a new PR,
or both. Less frequently they use emails or more synchronous com-
munication channels (e.g., IRC or instant messaging). The respon-
dents adding information in the ‘other’ field (6%), mainly spec-
ify the communication channel they use: Many mention forums
(e.g., “online forums for the project” [R499]), others IRC-like so-
lutions (e.g., Gitter [R76,77,399]) or project managements tools
(e.g., “Project Management tool such as VersionOne” [R61]), a
few report to use email based communication (e.g., “Mailing list to
get the opinion of the community and core team” [R286]).

RQ2.2: How is contributions’ quality assessed?
Examining the quality of contributions is very important for con-
tributors: Contribution quality is the number one factor integra-
tors examine to decide whether a contribution will be accepted or
not [28]. To assess how contributors examine their contribution
quality, we asked them a compulsory open ended question. While
the question was specific on how contributors evaluate the quality,
the analysis of the results also revealed what contributors examine
in their PRs. Figure 5 summarizes the results of coding the answers.

What.
One of the top priorities for contributors when examining PR

quality is compliance, which had many manifestations in our re-
sponse set. The most common one was compliance to project PR
or coding guidelines (e.g., “By following the contribution guide-
lines for a PR of that repository.” [R164]); contributors also try
to comply to de facto guidelines manifested in the original repos-
itory, mainly relating to code formatting (e.g., [R105,584]) and

0 20 40 60 80

I do not communicate my intended
changes

Other

Twitter

Skype/Hangouts/Other form of
synchronous communication

Face to face

IRC

Email

Pull request: I open a minimal PR
describing problem and potential fix

Issue tracking: I open an issue
describing problem and potential fix

percentage of answers

How do you communicate the intended changes?

Figure 4: How contributors communicate with integrators.

design (e.g., [R252]); another compliance form is adherence to
standard practices: Contributors try to increase their chances of
acceptance by following language code styles (e.g., “by Ruby style
guide; OOP/OOD books” [R502]) and design principles (e.g., “Fol-
lowing clean code principle and checking code style” [R143]).

On a related note, contributors examine two technical quality as-
pects: code quality and commit quality. Code quality is usually as-
sessed subjectively, by examining factors such as readability, clar-
ity, and whether it is minimal (“the code [...] contains only the min-
imal amount of code change necessary to implement the feature”
[R15]). Several contributors reported that they strive to make high
quality commits: For some developers this means that commits are
“atomic, and [can be] merge[d] at time of sending” [R74], while
others assume a more aesthetic view: “Are the commit messages
clear and do the commits in the PR tell a story?” [R74].

In pull-based development, PRs are usually submitted to projects
without prior planning. To increase the chances of acceptance, con-
tributors eagerly examine the PR’s suitability, by analyzing whether
the PR fully addresses the issue it is trying to solve. The term ‘is-
sue’ is used in the broader sense of an existing problem the devel-
opers are addressing, e.g., [R27,538], even though in some cases
it is associated with existing bug tracker issues [R306].

Contributors strive for their PRs to be self contained (e.g., “It
should be focused of the feature to implement (or bug to fix). Noth-
ing unrelated to the topic should be in there.” [R52]) and also try to
ensure that the documentation of both their code and the PR eases
the comprehension of the PR and meets assumed project standards
(thereby enhancing compliance).

How.
By far the most common mechanism that contributors use to as-

sess the quality of their contributions is testing. More than 60%
of the responses mentioned a form of automated testing (running
on the developer’s workstation or continuous integration servers)
in the employed mechanisms. 10% of the contributors using auto-
mated testing report to also perform manual testing of their changes,
by running the contributed code in their projects (e.g., “Testing it
works correctly, on production if needed.” [R95]), in specialized
sandbox environments or by their peers (i.e., collocated colleagues
[R125] or other project developers [R198]). Manual testing is
almost always complemented by some other testing mechanism:

validation scripts
testing − peer

branching strategy
testing − sandbox

advice
standard practices

address issue
makes sense

commit quality
coverage

code review − peer
code quality

discussion
no assessment

code review − after
self appreciation

building
documentation
self contained

continuous integration
static analysis

project compliance
testing − manual

code review − self
testing

0 20 40

Percentage of responses

Figure 5: How contributors determine their contribution quality.

Only 3% of the respondents indicate that they exclusively test their
code manually. This highlights the practicality of automated test-
ing for evaluating contributions and complements the integrator’s
opinion of testing as a contribution evaluation mechanism [28].

On the tool front, contributors use static analysis tools for au-
tomatically evaluating their contributions (7%). A wide range of
static analysis tools have been reported, but what most contributors
use falls under three categories: linting tools that detect inconsis-
tencies in coding style and target specific programming languages
(e.g., PMD in Java), style checkers that highlight formatting incon-
sistencies with respect to a pre-specified style (e.g., CHECKSTYLE)
and formal method based tools to detect logical inconsistencies
(e.g., CPPCHECK). As an extra step, contributors build the soft-
ware to ensure that the compiler will catch simple errors. Building
usually also invokes the project’s test suite.

A complementary examination mechanism contributors use is
code review, usually (20%) performed by the contributors them-
selves, before they submit a PR. During code review, the contrib-
utors examine properties in the source code and documentation as
discussed above. When conditions allow it, contributors will ask
their peers to do a code review before they submit a pull request;
the peers can be colleagues (e.g., [R57,172]) or other members of
the project community [R382]. Some contributors (4%) rely on
code reviews by the project owners or the community after they
submit the pull request (“Others, which have commit access to the
repository check the changes if there are any braking changes.”
[R399]). A related response (4% of the respondents) is that they
do not explicitly assess the quality of their PR, because they either
believe this is the project owner’s responsibility (e.g., [R217,392])
or they bet on immediate acceptance (e.g., [R245]).

Finally, 3.5% of the contributors report that they examine the
quality of PRs using their own experience (e.g., “I try to look at
what I’m presenting as if someone else had written it and ask myself
if I’d hate dealing with the merge or, having the code in my project
with respect to functionality, clarity, and conciseness/elegance (in
that order)” [R238]).

awareness

big picture

code quality

code review

communication

conflicts

divergent opinions

egotism

explain rationale

extra work

fear of rejection

git

github

impact analysis

infrastructure setup

personal skills

politics

predicting acceptance

project compliance

pull-based model

responsiveness

self contained

testing

time

understanding
code base

no

yes

code

social

tools and
model

top 10%
contributor?

theme challenge

Figure 6: Challenges when contributing with the pull-based devel-
opment model.

RQ3: What are the challenges of contributing?
To find the pain-points emerging when contributing using the pull-
based model, we explicitly introduce a mandatory open question in
the survey, in which we ask respondents to state the biggest chal-
lenge they experience when contributing PRs. By coding the an-
swers, we found that challenges revolved around three main themes:
Challenges about writing the code for the contribution, challenges
on the tools and model to be used for submitting the contribution,
and challenges pertaining to social aspects.

These themes are linked to the finer-grained challenges expressed
in the answers. For example, a challenge that emerged is project

compliance, which in some cases regard the code theme (e.g., “us-
ing the project code style” [R66]) and in others the social theme
(e.g., “Not knowing all the rules/process” [R62]). The results are
summarized in Figure 6: From left to right, we first classify the
answers on the contributor’s rank (i.e., whether it is in top 10% PR
contributor or not), then we show the three main themes and how
the answers flow into the specific challenges. The thickness of a
line represents the number of responses in the specific category.

Despite we expected the top contributors to be less affected by
tools and model and code related challenges, given their greater ex-
perience, to our surprise both types of contributors have very sim-
ilar distribution of challenges among the three main themes. By
far, the theme that is reported by the majority of the respondents
to be the most challenging when contributing in a pull-based de-
velopment model is the social one, followed by code and tools and

model, respectively. We analyze the results in this order.

Social aspects.
The social theme is connected to most of the reported challenges

in different ways. The most prominent one is responsiveness: More
than 15% of the survey participants find that getting a timely feed-
back, if any, for their pull requests is hard and they mostly men-
tion people-related causes (e.g., “The owner of the repo doesn’t
ever respond to the PR, and leaves it hanging open forever” [R15],

“[there are] projects with lots of open PRs and few actually being
accepted” [R98]). This situation seems to generate frustration in
the contributors, up to a point that some mention they might lose
interest in the project: “Malaise and abandonment. Few things
are more frustrating than opening a PR and having it go nowhere”
[R698], “When contributing to less active projects, it can be really
frustrating to have a PR sit untouched for months, since by the time
the author gets back to it, I may have given up on it and no longer
care” [R665]. Respondents specify that they would rather receive
a clear reject than having no response for their PRs (“it’s annoying
to go to the effort of making one and have it ignored... Rejected
is better.” [R85]). Getting feedback on the quality of their work
is deemed important for better predicting acceptance of future PRs.
Particularly, the uncertainty on whether a PR will be accepted is an-
other challenge that can pose difficulties and stress on contributors
(e.g., “When my own code depends on a PR, and I don’t know if the
PR will get accepted that causes uncertainty and stress.” [R618]).

Poor, delayed, but also general communication is reported as an-
other issue. Some contributors specify they find it challenging to
explain rationale of the their changes and this can affect whether
their PRs are thoroughly investigated (“Sometimes it’s hard to ex-
plain the need for some changes. Some teams will immediately
reject them without analyzing them properly.” [R491])

A few contributors (e.g., [R190,563]) report fear of rejection,
since they find it personally embarrassing when their work is judged
insufficient by people they have no relationship with. This fear
can be exacerbated by the various challenges in interacting with
core team members that many respondents report (e.g., “Fear of
looking stupid. Fear of rude response.” [R190], “Discouraging
project owners” [R228]). In particular, respondents describe social
challenges related to politics or how the project is governed (e.g.,
“Project owners who really don’t want contributions.” [R122],
“Politics, or project owners not wanting a fix or change, or not
actively maintaining it.” [R526]), egotism and general arrogance
(e.g., “People tend to merge only PRs for issues THEY see as bug.”
[R360], “Unconstructive/hostile maintainer attitude” [R536]), and
handling divergent opinions (e.g., “getting all [...] to agree with a
feature you propose in a PR.” [R251]).

Furthermore, contributors reported as challenging to find enough
time to work on the project as they wish (e.g., “Time to work on
complicated issues despite working full time” [R461]) and to pro-
pose contributions that fit in the project’s big picture and make it
grow instead of addressing their needs only (e.g., “Making sure it’s
in the interest of the project and not just mine.” [R183]).

Code aspects.
The code theme also permeates a number of challenges. The

most frequently reported one is understanding the code base, in-
cluding layout and architecture, of the project (e.g., “Read others
code and get understanding of the project design” [R564]). This
problem seems to be often magnified by the project size and lack
of documentation (e.g., “[there is] no guideline or documentation”
[R223], “Missing knowledge about inner workings of a project [...]
sometimes caused by missing documentation” [R561]).

Contributors also find it difficult to assess their changes’ impact
on the rest of the code base (impact analysis). Sometimes this is
related to their limited understanding of the project (e.g., “Ensur-
ing that my PR doesn’t have unintended side effects due to not be-
ing intimately familiar with the entire code base.” [R202]) and
also to the social theme, since awareness is not maintained by all
contributors (e.g., “Because of the great complexity of our code,
contributions by others that are not directly related to my work
can nonetheless affect it, and our contributions are not necessarily

synced or communicated.” [R229]). To tackle this challenge and
avoid regression, contributors explain they would rely on testing,
but a proper test suite is not always available and running and de-
veloping tests is also a challenge (e.g., “If there isn’t a good testing
infrastructure in place, then I’m not sure how to contribute tests
related to a PRs” [R656]).

Writing PRs with proper code quality is mentioned as the only
issue by 13 developers. More (7%) report that being compliant
with the project style and guidelines is challenging. The project

compliance on code regards style both at a low typographical level
and at higher design level; this challenge also highlights the dif-
ficulties in knowing the format for PRs, commit messages, etc.
([R277]). Some respondents explain that this challenge is due to
tribal knowledge, i.e., information only known within the project
team and not explicit to the outside of it (e.g., [R500,659]).

Tools and model.
Respondents report challenges regarding the tools and model less

frequently. Among those, the use of git and handling conflicts be-
tween branches are the most prominent ones, especially for seem-
ingly less experienced developers (e.g., “Usage of git is not intu-
itive. Especially for me as [one] who does not contribute regularly,
it is every time a challenge to [use it]” [R158], “when projects
try to enforce workflow through branches, that is often confusing.”
[R120]). Some respondents mention having problems with the lo-
cal infrastructure setup to be used for development and testing. The
few answers explicitly about the pull-based development model,
mostly regard its learning curve (e.g., [R572]). More respondents
mention github as a challenge, especially when it comes to have
discussions within PRs, thus connecting it to the social theme (e.g.,
“The comments on a PR can get unwieldy quickly. Without thread-
ing it can be hard to follow a conversation” [R102], “effectively
communicating with other users over github” [R329]).

Reducing barriers for new contributors.
We complete the answer to our research question by inquiring

about what respondents think projects should do to reduce barriers
for new contributors. This is mapped in the survey to an open ques-
tion, which we manually coded. The top 5 barriers that emerged
account for more than 50% of the answers. The first barrier (spec-
ified by more than 20% of the contributors) regards having good
guidelines on getting started with the development and testing envi-
ronment, on code style/formatting conventions, on the contribution
process, and on communicating with project owners. The second,
third, and fourth barriers follow with a very similar frequency (ca.
15%). In the second barrier, respondents explain that project mem-
bers should have more empathy towards new contributors, pro-
viding encouragement, mentoring, fairness, and having an overall
positive attitude (e.g., “Engage in positive, responsive discussion
[...] Giving a positive first experience goes a long way.” [R202],
“Maintain a “positive” culture; be friendly, polite etc” [R73]). The
third barrier reiterates on the concept of responsiveness: Respon-
dents state that improving it would remove a serious barrier for new
contributors, especially as they need more feedback on their work
(e.g., “respond to issues/PRs/list posts in a timely fashion. Even
just acknowledging the issue and suggesting an attack plan is im-
mensely helpful.” [R504]). The fourth barrier is about the need for
a clear project roadmap and a comprehensive task list with open is-
sues, which should include recommendations for newcomers (e.g.,
“They should mark the open issues with the level of difficulty, like
these issues are easy and beginners can resolve them” [R27]). Fi-
nally, having better code documentation is also reported (ca. 12%
of responses) as important to attract new contributors.

5. DISCUSSION
We now compare our findings with existing work and discuss

recommendations for practitioners and implications for researchers.
Building up a technical CV. Lerner and Tirole were among the
first to formalize that contributing to OSS projects is also driven
by a career concern incentive, which is stronger the more visible
the performance to the relevant audience [35]. The pull-based de-
velopment model makes contributions and their authors easier to
recognize than in most other models. GitHub exploits this feature
to create public user profiles by including contributions to projects
as a sort of portfolio; as Dabbish et al. put it: “[it makes] the work
visible” [12] On this, various developers discuss whether [1, 54] or
not [9] GitHub profiles are and should be the new de facto CV for
developers. We have strong signals (more than 20% of the respon-
dents report to contribute for career reasons) on the importance of
contributions through the pull-based development model on one’s
career, mostly positive. At the same time, contributors report fear
of rejection as one of the challenges of contributing PRs, thus rais-
ing the interesting concern on whether too much transparency also
hinders contributors’ full potential.
Communication. We found that when contributors want to com-
municate about a change in the context of pull-based development,
the preferred mean is no longer the mailing list, which has been
considered the hub of project communication in OSS systems for
long time [42]. Instead, contributors and integrators prefer commu-
nication means that are more structured and closer to the code arti-
facts (i.e., a minimal PR and the issue tracker). Also the IRC-like
solutions projects use, such as Gitter, have more advanced features
to allow participants to easily link project artifacts (e.g., PRs and
issues) from within the discussion using tags. This is in line with
the findings by Guzzi et al. [29], who observed a shift in OSS de-
velopers’ communication habits from traditional channels, such as
the mailing list, toward more structured channels such as the issue
trackers.

On the pull-based model and communication within PRs, con-
tributors’ communication needs seem to be only partially met when
they use the communication capabilities within the PR’s interface
(as offered by GitHub, similar to other platforms). Contributors
report satisfaction as this form of communication enables a clear,
structured, and direct communication on the code changes. How-
ever, communication within PRs is lacking when developers need
to discuss high level concerns (“In-band communication within the
PR is insufficient for discussing major design changes that might
be needed in a new feature” [R112]), when the number of mes-
sage within a single PR grows, and when the pull-based develop-
ment model is strictly enforced, to a point that participants have to
channel all communication through PRs only (“I find it difficult to
discuss in advance the changes, since the project is extremely pull-
request oriented.” [R637]). Finally, multiple discussions spread
through PRs are problematic for awareness.
Contributors and integrators: shared challenges. By compar-
ing our findings with previous work on the integrator’s perspec-
tive [28], some challenges emerge as shared, i.e., the two sides of
the same coin, thus underlining their overall relevance. Integrators
have problems handling and prioritizing the sheer amount of PRs
that active projects can attract; contributors complain for the re-
sulting general lack of responsiveness. This is probably due to the
pull-based development model that simplifies experimenting and
proposing contributions to projects, without reducing the review-
ing burden on integrators. Furthermore, contributions’ rationale is
reported as difficult both by contributors to explain and by inte-
grators to understand, thus raising further concerns on whether the
communication tooling within PRs is appropriate for the task. Fi-

nally, integrators and contributors struggle with communicating if
a PR is rejected to keep motivation high and show appreciation.
Quality. Contribution quality is a major concern for contributors.
It is simultaneously both one of the most frequently reported chal-
lenge items and something that developers examine in depth before
submitting. Interestingly, quality is also a top priority for integra-
tors [28]. A cross examination of the factors that contributors and
integrators examine in PRs reveals that there is again high over-
lap (compliance/conformance and code quality being top factors).
Moreover, automated testing is used in both cases as a commonly
accepted way to ensure contribution quality. We hypothesize that
this shared understanding of quality and the ways of achieving it is
the result of widely accepted technical norms. A positive outcome
is that this helps the majority of contributions to be accepted (85%),
while rejections are usually not due to technical reasons [27].
Asynchrony. One of the distinguishing characteristics of the pull-
based model is asynchrony among the production of a contribution,
its evaluation, and its integration. Asynchrony is a cross-cutting
concern for both contributors and integrators and its effects are usu-
ally detrimental. Asynchrony hinders observability of the current
status of the project as a whole and burdens integrators and con-
tributors with extra communication obligations. Indicative is the
fact that both contributors and integrators [28] deem responsive-
ness as a very important challenge, suggesting that more direct-
ness is desirable. Interestingly, several high profile companies (e.g.,
Facebook [24] and Google [33]) moved away from the pull-based
model while others use strictly bounded code review processes and
branching strategies (e.g., Microsoft [6, 3]) to increase develop-
ment speed for their internal repositories (but still use pull-based
development for OSS projects).

From a distributed systems theoretic standpoint, mitigating the
results of asynchrony is impossible [47]. Integrators and contribu-
tors should therefore agree on minimal communication protocols
that increase each other’s awareness and randez-vous points for
mandatory information exchange. In certain cases (e.g., collocated
development), projects should be prepared to abandon the pull-
based model in favor of more direct feedback loops.
Awareness. While most contributors report that they examine the
issue tracker for existing similar issues or PRs, previous work re-
port that PRs are often rejected because they are duplicate or su-
perseded [27]. This indicates a critical step between contemplating
about a contribution and actually creating it. Moreover, most con-
tributors are not interested to update their knowledge of the project
status after coding, before they submit their PR. This suggests that
building and maintaining awareness is of limited interested to con-
tributors even though it is crucial for mitigating the negative effects
of asynchrony.

5.1 Recommendations for practitioners
In this section, we present a set of guidelines that integrators

and contributors can apply to be more effective when working with
the pull-based model. Preliminary guidelines were presented in
Gousios et al [27]; here, we improve upon them by integrating the
findings of the current study with those of Gousios et al. [28].
Integrators. Research has shown that it is to the direct benefit of
an OSS project to maintain a healthy community. The pull-based
model effectively flattens the community structure outside the core
team circle and even blurs the line between a core team member
and a community member and is therefore very well suited for this
purpose. Consequently, integrators should work towards streamlin-
ing the contribution process. Initially, the project should include
comprehensive contribution guidelines; those should at least pro-
vide details about the expected code style, commit format, PR pro-

cess, and available communication options. Well-laid out contri-
bution guidelines help contributors format contributions using the
expected style and can act as a reference in code review discussion.
Moreover, projects should invest in good tests: not only contribu-
tors gain confidence about their contributions by testing them lo-
cally but also contribution evaluation is faster [27]. Automation is
also important: It should at least cover the development environ-
ment setup and the quality evaluation of contributions. Ideally, in
the first case, the contributor should be able to setup a fully working
development environment by running a simple command; tools ex-
ist (e.g., Vagrant, Docker and Puppet) that allow the programmatic
definition of full systems. Integrators should also invest time to
setup fully automatic quality evaluation of incoming contributions.
In the case of GitHub, external services exist that enable continu-
ous integration (e.g., Travis and Cloudbees) and code quality (e.g.,
Codeclimate) monitoring on a per contribution basis.

Performance monitoring can help integrators identify hotspots
and bottlenecks and improve upon those. Initially, the integra-
tors should compare their project’s performance against the norms:
Data shows [27] that on average 85% of PRs are merged and 2/3
of them are merged within a day, so if a project significantly de-
viates from those, integrators should investigate why. Also, as we
found that lingering PRs comprise the majority of open PRs [27]
and that they hinder awareness, it will be beneficial for integrators
to monitor slow processed contribution lifelines and promptly close
lingering ones. Finally, the pull-based model helps monitoring to
be extended to the project’s community: How big is it, what por-
tion of it is contributing back and how balanced between core team
members and contributors are the discussions on PRs?

Finally, as social challenges are more pronounced than technical
ones in all studies, it is important for integrators to address them.
Thus, integrators should be both proactive, by establishing (and
perhaps even documenting) a professional communication etiquette
and reactive by following discussions and intervene in cases where
discussion diverges from the etiquette. Moreover, when possible,
integrators should refrain from invoking political discussions and
avoid participating in power struggles [51].
Contributors. From an economic standpoint, it is beneficial for
contributors that their contributions are eventually accepted.

For one-off contributions, the contributors should employ strate-
gies that minimize friction and maximize awareness. Initially, it
helps if contributions are small and isolated. In previous work [55,
4, 27, 28], the size of the change is one of the most important fac-
tors related with acceptance: This happens because the impact of
the change is more easily evaluated, especially if the change does
not cross logical functionality or design boundaries. The contribu-
tors should also make their changes adhere to guidelines and learn
how to use the underlying tools (git), as this saves review time.
Awareness can be increased by contacting the development team
using real-time communication channels (e.g.,IRC) or by following
the minimal PR idiom [8] (depending on project preferences). Fi-
nally, contributors should be available after submission to discuss
the results of the code review promptly to minimize the negative
effects of asynchrony.

For more serious involvement in project communities, profile
building through a stream of excellent contributions and partici-
pation in other community activities (e.g., discussion of issues) are
essential; integrators both evaluate [37, 28] and prioritize [28] work
using a mixture of social signals and developer track records.

5.2 Implications for researchers
Our work uncovered aspects that deserve further study:

Work prioritization. We identified low responsiveness as one of
the most recurring challenges experienced by contributors; interest-
ingly, integrators reported problems in prioritizing PRs [28]. Au-
tomating the prioritization of PRs would at the same time help in-
tegrators better allocate their time and show contributors the status
of their PRs with respect to the overall queue. Automated prior-
itization could take advantage of explicit integrators’ preferences
(e.g., place bug fixes first), thus making contributors aware of such
choices in an automatically generated guideline. Initial work in this
direction has been carried out by van der Veen et al. [52]
Estimated time for merging. A widespread usability heuristic
states that “system should always keep users informed about what
is going on” [40]. This is often achieved, for example, through
progress bars in application UIs. Contributors’ frustration on not
knowing the status and fate of their PRs indicates that having a ca-
pability for estimating the time for merging a contribution would be
valuable. If the estimation engine could provide indication on the
most significant factors considered for the prediction, contributors
could take advantage of it to understand what could be improved
for speeding up acceptance (e.g., splitting a PR into self-contained
tasks) and would help keeping contributors decide earlier whether
to stick with a project or leave. Previous research estimated merg-
ing time for patches [31], closing time for issue reports [21, 57],
etc. In the context of PRs, our previous work [27] provides a first
step towards this direction. This is a ripe opportunity for the authors
of such research to have an additional impact on a wide population
of developers.
Untangling code changes. Integrators report that code understand-
ing and reviewing is simplified if code changes pertain to a sin-
gle, self-contained task [3, 28]; however, integrators have difficul-
ties obtaining such PRs and contributors report creating them to
be a challenge. Recently, researchers are proposing automated ap-
proaches to split changes into self-contained tasks [30, 13] in the
context of mining software repositories. This is an interesting op-
portunity to apply these methods and integrate them in the pull-
based model workflow.
Impact analysis on PRs. All contributors and integrators are in-
terested in knowing the impact of the proposed PRs, beyond the
changed code. The pull-based development model is a fine op-
portunity to provide results of impact analysis research to a broad
community and test its effects on the field. Tools’ results could be
integrated in the PR interface as an optional service.
Improved communication within PRs. Our work let emerge a
number of drawbacks in communication occurring within PRs, de-
spite its advantages of being close to the changed code. Particu-
larly, the communication support should be improved for discussing
high-level concerns, for scaling to longer discussions, and for main-
taining awareness. Multidisciplinary studies involving user inter-
face designers, communication experts, and software engineering
can be designed and carried out to determine how the communica-
tion experience within PRs can be improved.

6. LIMITATIONS
We designed our survey with the stated aim of gaining insights

on a novel mechanism of collaborating in distributed software de-
velopment. For closed selection questions, the response categories
originated in the literature and our prior experience with working
and researching [27, 28] with PRs and the pull-based model. The
ordering and wording of questions were carefully selected to avoid
leading the respondent and where validated through (1) consulta-
tion with colleagues expert in qualitative research, (2) a formal pilot
run, and (3) several mini-runs. Despite our best efforts, this study
may be subject to the following limitations:

Internal validity – Credibility. We used coding to classify the
contributors’ responses in open-ended questions. The coding pro-
cess is known to lead to increased processing and categorization
capacity at the loss of accuracy of the original response.

Moreover, question-order effect [48] (e.g., one question could
have provided context for the next one), the open ended questions,
as well as social desirability bias [20] (i.e., a respondent’s possible
tendency to to appear in a positive light, such as by showing they
are fair or rational) may have influenced the answers’ accuracy.
Generalizability – Transferability. Our selection of projects and,
consequently, contributors to survey, while representative of big
users of the pull-based model may not be indicative of the aver-
age project. Previous work [27] found that the median number of
PRs across repositories is 2; in our sample and considering the ini-
tial selection of projects, the smallest project had more than 400.
We expect that if the study is repeated using random sampling for
projects, the results will be slightly different. This may in partic-
ular affect the results on obstacles such as low responsiveness and
inefficient communication, as average projects do not use PRs in a
high capacity. To reduce other limitations to generalizability of our
work, we did not impose other restrictions on the sample projects,
such as programming language or use of technologies.

Moreover, GitHub is only one, albeit the biggest, of the code
hosting sites featuring the pull-based development model. While
this model remains the same across all these sites, the implemen-
tation of several GitHub features might influence the developer’s
opinions of the model. In both our question set and our interpre-
tation of the results, we avoided direct references to GitHub’s im-
plementation of the mechanism. However, bias in the contributors’
answers could not be completely eradicated, as can be witness by
the fact that many open ended answers included direct references
to GitHub or tools in its ecosystem (e.g., Travis CI).

7. CONCLUSIONS
Our work studied the pull-based development model from the

contributors’ perspective. Our goal was to better understand the
motivations that drive contributors, the work practices contributors
put in place behind the scenes of creating a PR, and the challenges
they face with the overall pull-based model. We make the following
key contributions:

• A publicly available 2 iteratively-tested survey with ques-
tions for eliciting contributors’ practices in the pull-based
model and the anonymized answers of 760 respondents.

• The set of open-ended questions we manually coded and R
analysis scripts for overall data analysis.

• A thorough analysis of the survey answers resulting in an-
swers to our research questions on contributors’ motivations,
PR’s preparation, and open challenges in contributing with
the pull-based model.

• A discussion comparing our findings with previous literature
and guidelines for practitioners using the pull-based model
and data-derived directions for future research.

It is our hope that the insights we have discovered will lead to
merging external contributions more effectively in practice and to
devise improved tools, based on research, to support developers in
both creating and managing possibly high volumes of code contri-
butions.
2To be made public after acceptance. Contents similar to: http:
//github.com/gousiosg/pullreqs-integrators

http://github.com/gousiosg/pullreqs-integrators
http://github.com/gousiosg/pullreqs-integrators

8. REFERENCES
[1] Github is your new resume. https:

//news.ycombinator.com/item?id=2763182.
Accessed 2015/03/10.

[2] S. Androutsellis-Theotokis, D. Spinellis, M. Kechagia, and
G. Gousios. Open source software: A survey from 10,000
feet. Foundations and Trends in Technology, Information and
Operations Management, 4(3–4):187–347, 2011.

[3] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
2013 International Conference on Software Engineering,
ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013. IEEE
Press.

[4] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey. The
secret life of patches: A firefox case study. In Reverse
Engineering (WCRE), 2012 19th Working Conference on,
pages 447–455, Oct 2012.

[5] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In Proceedings of
the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 26–, Washington, DC, USA,
2007. IEEE Computer Society.

[6] C. Bird and T. Zimmermann. Assessing the value of
branches with what-if analysis. In Proceedings of the 20th
International Symposium on Foundations of Software
Engineering, November 2012.

[7] Bitbucket. http://bitbucket.org/. Accessed
2015/03/10.

[8] B. Bleikamp. How we use pull requests to build github.
https://github.com/blog/

1124-how-we-use-pull-requests-to-build-github.
Accessed 2015/03/10.

[9] J. Coglan. Why github is not your cv.
https://blog.jcoglan.com/2013/11/15/

why-github-is-not-your-cv/, November 2013.
Accessed 2015/03/10.

[10] J. W. Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage Publications, 3rd
edition, 2009.

[11] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding
in Github: transparency and collaboration in an open
software repository. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work,
CSCW ’12, pages 1277–1286, New York, NY, USA, 2012.
ACM.

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Leveraging
transparency. IEEE Software, 30(1):37–43, 2013.

[13] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and
S. Ducasse. Untangling fine-grained code changes. In
Proceedings of the 22nd International Conference on
Software Analysis, Evolution, and Reengineering, SANER
2015. IEEE Computer Society, 2015.

[14] P. Dourish and V. Bellotti. Awareness and coordination in
shared workspaces. In Proceedings of the ACM conference
on Computer-supported cooperative work, pages 107–114.
ACM, 1992.

[15] N. Ducheneaut. Socialization in an open source software
community: A socio-technical analysis. Computer Supported
Cooperative Work (CSCW), 14(4):323–368, 2005.

[16] N. Duchneaut. Socialization in an open source software
community: A socio-technical analysis. Computer Supported
Cooperative Work (CSCW), 14(4):323–368, 2005.

[17] Y. Fang and D. Neufeld. Understanding sustained
participation in open source software projects. 25(4):9–50,
Apr. 2009.

[18] U. Flick. An introduction to qualitative research. SAGE
Publications, 5th edition, 2014.

[19] K. Fogel. Producing Open Source Software. O’Reilly Media,
first edition, 2005.

[20] A. Furnham. Response bias, social desirability and
dissimulation. Personality and Individual Differences,
7(3):385 – 400, 1986.

[21] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of
bugs. In Proceedings of the 2nd International Workshop on
Recommendation Systems for Software Engineering, pages
52–56. ACM, 2010.

[22] GitHub. https://github.com/. Accessed 2015/03/10.
[23] Gitorious. http://gitorious.org/. Accessed

2015/03/10.
[24] D. Goode and S. Agarwal. https://code.facebook.

com/posts/218678814984400/

scaling-mercurial-at-facebook/. Accessed
2015/03/10.

[25] G. Gousios.
http://ghtorrent.org/pullreq-perf/.
Accessed 2015/03/10.

[26] G. Gousios. The GHTorrent dataset and tool suite. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[27] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 345–355, New
York, NY, USA, 2014. ACM.

[28] G. Gousios, A. Zaidman, M.-A. Storey, and A. v. Deursen.
Work practices and challenges in pull-based development:
The integrator’s perspective. In Proceedings of the 37th
International Conference on Software Engineering, ICSE
2015, 2015.

[29] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van
Deursen. Communication in open source software
development mailing lists. In Proceedings of MSR 2013
(10th IEEE Working Conference on Mining Software
Repositories), pages 277–286, 2013.

[30] K. Herzig and A. Zeller. The impact of tangled code
changes. In Proceedings of 10th Conference on Mining
Software Repositories, pages 121–130. IEEE, 2013.

[31] Y. Jiang, B. Adams, and D. M. German. Will my patch make
it? and how fast?: case study on the linux kernel. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, pages 101–110. IEEE Press, 2013.

[32] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian. The promises and perils of mining
github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 92–101, 2014.

[33] A. Kumar. http://www.infoq.com/
presentations/Development-at-Google.
Accessed 2015/03/10.

[34] K. Lakhani and R. Wolf. Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source
Software Projects. MIT Press, Cambridge, 2005.

https://news.ycombinator.com/item?id=2763182
https://news.ycombinator.com/item?id=2763182
http://bitbucket.org/
https://github.com/blog/1124-how-we-use-pull-requests-to-build-github
https://github.com/blog/1124-how-we-use-pull-requests-to-build-github
https://blog.jcoglan.com/2013/11/15/why-github-is-not-your-cv/
https://blog.jcoglan.com/2013/11/15/why-github-is-not-your-cv/
https://github.com/
http://gitorious.org/
https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
https://code.facebook.com/posts/218678814984400/scaling-mercurial-at-facebook/
http://ghtorrent.org/pullreq-perf/
http://www.infoq.com/presentations/Development-at-Google
http://www.infoq.com/presentations/Development-at-Google

[35] J. Lerner and J. Tirole. Some simple economics of open
source. The journal of industrial economics, 50(2):197–234,
2002.

[36] W. Maalej, H.-J. Happel, and A. Rashid. When users become
collaborators: Towards continuous and context-aware user
input. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 981–990,
New York, NY, USA, 2009. ACM.

[37] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: activity traces and
personal profiles in github. In Proceedings of the 2013
conference on Computer supported cooperative work,
CSCW ’13, pages 117–128, New York, NY, USA, 2013.
ACM.

[38] N. McDonald and S. Goggins. Performance and participation
in open source software on github. In Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, pages
139–144, New York, NY, USA, 2013. ACM.

[39] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–346,
2002.

[40] J. Nielsen. 10 usability heuristics for user interface design.
http://www.nngroup.com/articles/ten-usability-heuristics/,
January 1995.

[41] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of testing
culture on a social coding site. In Proceedings of the 2013
International Conference on Software Engineering, ICSE
’13, pages 112–121, Piscataway, NJ, USA, 2013. IEEE Press.

[42] E. Raymond. The Cathedral and the Bazaar - Musings on
Linux and Open Source by an Accidental Revolutionary.
O’Reilly, 1999.

[43] P. C. Rigby and C. Bird. Convergent contemporary software
peer review practices. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 202–212, New York, NY, USA,
2013. ACM.

[44] P. C. Rigby and M.-A. Storey. Understanding broadcast
based peer review on open source software projects. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 541–550, New York,
NY, USA, 2011. ACM.

[45] C. Santos, G. Kuk, F. Kon, and J. Pearson. The attraction of
contributors in free and open source software projects. The
Journal of Strategic Information Systems, 22(1):26 – 45,
2013. Service Management and Engineering in Information
Systems Research.

[46] S. K. Shah. Motivation, governance, and the viability of
hybrid forms in open source software development.
Management Science, 52(7):1000–1014, 2006.

[47] J. Sheehy. There is no now. ACM Queue, 13(3):1–8, 2015.
[48] L. Sigelaman. Question-order effects on presidential

popularity. Public Opinion Quarterly, 45(2):199–207, 1981.
[49] I. Steinmacher, T. U. Conte, M. Gerosa, and D. Redmiles.

Social barriers faced by newcomers placing their first
contribution in open source software projects. In
Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing, pages
1–13, 2015. To appear.

[50] J. Tsay, L. Dabbish, and J. Herbsleb. Influence of social and
technical factors for evaluating contribution in github. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 356–366, New
York, NY, USA, 2014. ACM.

[51] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s talk about it:
Evaluating contributions through discussion in github. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
2014, pages 144–154, New York, NY, USA, 2014. ACM.

[52] E. van der Veen, G. Gousios, and A. Zaidman. Automatically
prioritizing pull requests. In Proceedings of the 2015
International Working Conference on Mining Software
Repositories, 2015. To appear.

[53] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software
innovation: a case study. Research Policy, 32(7):1217 –
1241, 2003. Open Source Software Development.

[54] B. Weiss. Github is your resume now.
http://anti-pattern.com/

github-is-your-resume-now, June 2012. Accessed
2015/03/10.

[55] P. Weissgerber, D. Neu, and S. Diehl. Small patches get in!
In Proceedings of the 2008 International Working
Conference on Mining Software Repositories, MSR ’08,
pages 67–76, New York, NY, USA, 2008. ACM.

[56] Y. Ye and K. Kishida. Toward an understanding of the
motivation of open source software developers. In
Proceedings of the 25th International Conference on
Software Engineering, 2003, pages 419–429, May 2003.

[57] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing
time: an empirical study of commercial software projects. In
Proceedings of the 2013 International Conference on
Software Engineering, pages 1042–1051. IEEE Press, 2013.

http://anti-pattern.com/github-is-your-resume-now
http://anti-pattern.com/github-is-your-resume-now

	Introduction
	Background and Related Work
	Research Method
	Research questions
	Study Design
	Analysis

	Results
	Discussion
	Recommendations for practitioners
	Implications for researchers

	Limitations
	Conclusions
	References

