
Mining Software Engineering Data from GitHub

Georgios Gousios
Department of Software Technology

Delft University of Technology

Delft, The Netherlands

g.gousios@tudelft.nl

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business

Athens, Greece

dds@aueb.gr

Abstract—GitHub is the largest collaborative source code
hosting site built on top of the Git version control system. The
availability of a comprehensive API has made GitHub a target
for many software engineering and online collaboration research
efforts. In our work, we have discovered that a) obtaining data
from GitHub is not trivial, b) the data may not be suitable for all
types of research, and c) improper use can lead to biased results.
In this tutorial, we analyze how data from GitHub can be used for
large-scale, quantitative research, while avoiding common pitfalls.
We use the GHTorrent dataset, a queryable offline mirror of the
GitHub API data, to draw examples from and present pitfall
avoidance strategies.

Index Terms—GitHub; GHTorrent; empirical software engi-
neering; Git

I. DESCRIPTION

GitHub is a collaborative code hosting site built on top of the

git version control system. It includes a variety of features that

encourage teamwork and continued discussion over the life of

a project. GitHub uses a “fork & pull” collaboration model [1],

where developers create their own copies of a repository and

submit requests when they want the project maintainer to

incorporate their changes into the project’s main branch, thus

providing an environment in which people can easily conduct

code reviews. Every repository can optionally use GitHub ’s

issue tracking system to report and discuss bugs and other

concerns. GitHub also contains integrated social features: users

are able to subscribe to update by “watching” projects and

“following” other users, resulting in a constant stream of data

about people and projects of interest. The system supports user

profiles that provide a summary of a person’s recent activity

within the site, such as their commits, the projects they forked

or the issues they reported.

Due to the combination of reasons such as data availability,

data homogeneity and volume, GitHub has become both the

target of choice and the source of data for various research

efforts, ranging from distributed collaboration [1] to deep

learning on software data [2]. However, GitHub data do not

come for free for researchers: initially, GitHub is imposing

limits on their API, which, given the volume of interesting

projects, can put a significant delay on data acquisition;

the technicalities of the retrieval complicate the acquisition

process. Moreover, there is no data schema (GitHub is only

exposing its data as JSON responses through a REST API),

while the data only represent the current project state. In

addition, selection and filtering of GitHub data imposes threats

to the quality of the study itself; as a result, many GitHub -

bound studies suffer from data validity issues [3], [4].

A notable archiving attempt, which emerged through the

repository mining community, is the GHTorrent project [5], a

scalable, off-line mirror of all data offered through the GitHub

API. GHTorrent follows the GitHub event stream and system-

atically retrieves from it all data, their metadata and their

dependencies. It then processes and stores all retrieved items

in a relational database, while also storing the original data in a

MongoDB database. GHTorrent offers to interested researchers

both downloads of the corresponding database dumps (cur-

rently, >15 TB of data) and online access facilities (including

live database access and Google BigQuery).1 GHTorrent has

been very successful: more than 200 researchers have sub-

scribed and used the online access points, 33% of all empirical

research publications on GitHub are based on it [4], while it

is being used in production by companies, such as Microsoft.

As GHTorrent is becoming the de facto standard dataset

for large scale quantitative analysis for GitHub data, we

believe that it is crucial for researchers to know how to use

GHTorrent to sample for projects, how to treat the data and

how to avoid common pitfalls in order to minimize the risk

of doing unsound research.

In the tutorial, we address the following topics.

• GitHub data collection strategies, including querying the

API, using online services such as GitHub Archive and

GHTorrent.

• Using GHTorrent to sample appropriate repositories for

various types of research questions.

• Writing, managing, and optimizing complex and expen-

sive relational queries on GHTorrent relational data.

• Using GHTorrent effectively: understanding the data col-

lection challenges and avoiding common pitfalls.

• Copyright and privacy issues when using the GitHub data.

II. SPEAKER BIOGRAPHIES

The two speakers have pioneered the use of data from

GitHub in software engineering research with the introduction

of the GHTorrent data collection framework [6]. They have

both been active on GitHub related research ever since. Apart

from creating GHTorrent, the speakers have studied the pull-

request based distributed software development practice [1],

1https://bigquery.cloud.google.com/queries/ghtorrent-bq

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.164

503

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

503

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

503

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

505

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.164

501

co-created an automated work-prioritization framework for

pull request based projects [7], co-examined the build and test

practices of projects on TravisCI [8] and co-documented the

pitfals of using GitHub-based datasets [3].

Georgios Gousios is an assistant professor at the Web

Information Systems group, Delft University of Technology.

His research interests include software engineering, soft-

ware analytics and programming languages. He works in the

fields of distributed software development processes, software

quality, software testing, developer productivity assessment,

research infrastructures and software security. His research

has been published in top venues, where he has received

four best paper awards and various nominations. In total, he

has published more that 50 papers and also co-edited the

“Beautiful Architectures” book (OReilly, 2009). He is the

main author of the GHTorrent data collection and curration

framework and the Alitheia Core repository mining platform.

Georgios holds and MSc from the university of Manchester

and a PhD from the Athens University of Economics and

Business, both in software engineering. In addition to research,

he is also active as a speaker, both in research and practitioner

oriented conferences.

Diomidis Spinellis is a Professor in the Department of

Management Science and Technology at the Athens University

of Economics and Business, Greece. His research interests

include software engineering, IT security, and cloud sys-

tems engineering. He has written two award-winning, widely-

translated books: Code Reading and Code Quality: The Open
Source Perspective. His most recent book is Effective De-
bugging: 66 Specific Ways to Debug Software and Systems,

which was published as part of Addison-Wesley’s Effective
Software Development Series in 2016. Dr. Spinellis has also

published more than 200 technical papers in journals and

refereed conference proceedings, which have received more

than 5000 citations. He served for a decade as a member

of the IEEE Software editorial board, authoring the regular

Tools of the Trade column. He has contributed code that

ships with macOS and BSD Unix and is the developer

of CScout, UMLGraph, ckjm, dgsh, and other open-source

software packages, libraries, and tools. He holds an MEng in

Software Engineering and a PhD in Computer Science, both

from Imperial College London. Dr. Spinellis has served as

an elected member of the IEEE Computer Society Board of

Governors (2013—2015), and is a senior member of the ACM

and the IEEE. From January 2015 he is serving as the Editor-

in-Chief for IEEE Software.

III. RELATED PRESENTATIONS

• The GHTorrent dataset and toolsuite2

• Mining GitHub for Fun and Profit3

• The issue #32 incident4

• Working Effectively with Pull Requests5

2https://speakerdeck.com/gousiosg/the-ghtorrent-dataset-and-toolsuite
3https://speakerdeck.com/gousiosg/mining-github-for-fun-and-profit
4https://speakerdeck.com/gousiosg/the-number-issue32-incident
5https://speakerdeck.com/gousiosg/working-effectively-with-pull-requests

Acknowledgement

The project associated with this work has received fund-

ing from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 732223.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in ICSE 2014: Proceedings of
the 36th International Conference on Software Engineering. New York,
NY, USA: ACM, 2014, pp. 345–355.

[2] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
FSE 2016: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. New York, NY,
USA: ACM, 2016, pp. 631–642.

[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. German, and
D. Damian, “An in-depth study of the promises and perils of mining
GitHub,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[4] V. Cosentino, J. Luis, and J. Cabot, “Findings from GitHub: methods,
datasets and limitations,” in MSR 2016: Proceedings of the 13th Inter-
national Workshop on Mining Software Repositories. ACM, 2016, pp.
137–141.

[5] G. Gousios, “The GHTorrent dataset and tool suite,” in MSR 2013:
Proceedings of the 10th Working Conference on Mining Software Repos-
itories, May 2013, pp. 233–236.

[6] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a firehose,”
in MSR 2012: Proceedings of the 9th Working Conference on Mining
Software Repositories, M. W. Godfrey and J. Whitehead, Eds. IEEE,
Jun. 2012, pp. 12–21.

[7] E. van der Veen, G. Gousios, and A. Zaidman, “Automatically prioritizing
pull requests,” in MSR 2015: Proceedings of the 12th Working Conference
on Mining Software Repositories, May 2015, pp. 357–361.

[8] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
travis CI and GitHub for full-stack research on continuous integration,”
in MSR 2017: Proceedings of the 14th Working Conference on Mining
Software Repositories, 2017.

504504504506502502502502502502

