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ABSTRACT
A security-related bug is a programming error that intro-
duces a potentially exploitable weakness into a computer
system. This weakness could lead to a security breach with
unfortunate consequences. Version control systems provide
an accurate historical record of the software code’s evolu-
tion. In this paper we examine the frequency of the security-
related bugs throughout the evolution of a software project
by applying the FindBugs static analyzer on all versions of
its revision history. We have applied our approach on four
projects and we have come out with some interesting results
including the fact that the number of the security-related
bugs increase as the project evolves.
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1. INTRODUCTION
The majority of software vulnerabilities derive from a small
number of common programming errors [39, 25]. Accord-
ing to sans (Security Leadership Essentials For Managers),1

two software bugs alone were responsible for more than one
and a half million security breaches during 2008. This is be-
cause most programmers have been trained in terms of writ-
ing code that implements the required functionality without
considering its many security aspects [16, 18]. One of the
most common approaches to identify software vulnerabili-
ties is static analysis. This kind of analysis is performed by
automated tools either on the program’s source or object
code and without actually executing it [9, 28]. Usually, such
analysis takes place by security auditors at the end of, or
during the development of the program.

1http://www.sans.org/

To manage large software projects, developers employ ver-
sion control systems (vcs) like Subversion2 and Github3.
Such systems can provide project contributors with major
advantages like: automatic backups, sharing on multiple
computers, maintaining different versions and others. For
every new contribution, which is known as a commit, a vcs
system goes to a new state which is called a revision. Every
revision stored in a repository represents the state of every
single file at a specific point of time.

In this work we introduce a framework that examines how
security-related bugs evolve into a software repository, through
time. To achieve this we automatically analyze every re-
vision of the project from its early revisions to the latest
commits. Our framework combines FindBugs,4 an effec-
tive static analysis tool that has already been used in re-
search [6, 3, 15], and Alitheia Core, an extensible platform
designed for performing large-scale software quality evalu-
ation studies [13, 12]. To show how the number of bugs
change through time, we have applied our framework to four
different open source projects. Our initial observations set
the basis for discussing issues that may improve vulnera-
bility discovery models [27, 29, 35, 38], identify recurring
vulnerabilities [8, 17]. Finally, we highlight security-related
issues like the domino effect [34].

2. FRAMEWORK DESCRIPTION
Our framework includes a static analysis tool as a bug de-
tector and a platform that provided us an efficient way to
access different projects and their repositories.

2.1 FindBugs
FindBugs [14, 10] is an open source static analysis tool that
searches for software bugs. It works by examining the com-
piled Java virtual machine bytecodes of the programs it
checks, using the bytecode engineering library (bcel) [11].
It supports plug-in bug detectors and it has an extensive
mechanism for reporting errors, both through a gui and by
textual output. To detect a bug, FindBugs uses various for-
mal methods. For example, to detect null pointer bugs it
utilizes control flow and data flow analysis. It has also other

2http://subversion.tigris.org/
3https://github.com/
4http://findbugs.sourceforge.net/
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Figure 1: A state diagram indicating the steps taken by our framework.

detectors that employ visitor patterns over classes and meth-
ods by using state machines to reason about values stored in
variables or on the stack. FindBugs warnings are grouped
into bug patterns which in turn are grouped into categories
such as correctness, malicious code vulnerability and bad
practice. In our experiment we are interested only in two
categories namely: security and malicious code vulnerabil-
ity.

Findbugs has been used many times either for commercial
or research needs. For instance, it was used to analyze all
available builds of jdk [5] while Google has also incorporated
it into its software development process [4, 32]. It has also
been extended to verify api calls [33] and discover bugs in
AspectJ applications [32].

2.2 Alitheia Core
Alitheia Core [13] is a platform designed for facilitating large
scale quantitative software engineering studies. To do so, it
preprocesses software repository data (both source code and
also process artifacts, such as emails and bug reports) into an
intermediate format that allows researchers to provide cus-
tom analysis tools. Alitheia Core automatically distributes
the processing load on multiple processors while enabling
both programmatic and rest api based access to the raw
data, the metadata, and the analysis results. Alitheia Core
is extensible through plug-ins, in both the analysis tool front
and also the raw data access from. A wealth of services, no-
tably a metadata schema and automated tool invocation, is
offered to analysis tool writers by the platform.

To analyse a project, Alitheia Core needs a local mirror of
the project’s source code, mailing list and bug repository.
The analysis itself is split in pre-defined phases (e.g. data ex-
traction, data inference, metric extraction etc), during which

Alitheia Core automatically applies a set of pre-defined data
extraction and analysis plug-ins. At the end of the process,
the researcher can either query the results database directly
or browse the results using a simple web based interface.

2.3 Integration
To integrate FindBugs with Alitheia Core we have created a
new Alitheia Core metric plug-in that works in the following
steps (Figure 1 depicts these steps as a uml state diagram):
for every project and every revision of this project, the met-
ric creates a build. Then it invokes FindBugs to examine
this build and create an analysis report. A user can select
whether to examine the project alone or the project together
with its dependencies. Finally, from this report, it retrieves
the security-related bugs and updates the database. Figure 2
presents how the two components are integrated.

Building a software project is a multistep process that in-
volves discovering and downloading the project dependen-
cies, invoking the project’s build script and retrieving the
build artifacts. To automatate some of these tasks, modern
build systems such as Maven5 include support for resolv-
ing and downloading dependencies declared in the project’s
build file, while they also follow a standard directory struc-
ture for code and build artifacts. The Findbugs plug-in
exploits the conventions supported by Maven to automati-
cally build each project and retrieve the generated bytecode
archives. For example, it knows that source code is placed
into the src/main/java directory, while build artifacts are
placed under target/. It is therefore sufficient to walk the
directory structure and find the bytecode archives (jar files)
in order to retrieve the project’s (or any sub-project’s) pack-
age structure and compiled code, respectively.

5http://maven.apache.org/



Alitheia Core

Results & Metadata Database

OSGi

REST API

DB 
Service

Logging Job 
Scheduler ActivatorCluster

Service

Plug-in
Admin

SubVersion Bugzilla 
XMLMailDirGit

Analysis 
Plug-inAnalysis 

Plug-inAnalysis 
Plug-in

Admin 
Interface

Data 
Plug-inData 

Plug-inData 
Plug-inData Accessor Service 

Metadat
a Plug-inMetadat

a Plug-inMetadata 
Plug-in

Metadata 
Updater 

FindBugs 
Plug-in

FindBugsMaven

Figure 2: Alitheia Core and FindBugs integration.

After a build the Findbugs binary is invoked. In order to
examine the bytecode that is created by the sources that
belong to the specified project and not by its dependencies
we collect all the corresponding project packages and then
we use the -onlyAnalyze option of FindBugs to pass them as
one parameter. By using the -xml option the report that is
made contains all the bug descriptions in an xml format. As
a result, we can easily parse this report in order to collect the
bugs that we are interested in. The bugs are then associated
with file revision information that Alitheia Core stores in
its database, through path name matching and thus results
can be stored with respect to each file version. To speed
up searches, the Findbugs plug-in also stores summaries of
number of incidents found per project version.

3. INITIAL RESULTS
We have examined four open source projects that are based
on the Maven build system namely: xlite,6 sxc,7 javancss,8

and grepo.9 Our experiment included two measurements.
First, for every revision, we applied FindBugs only to the
bytecode of a specified project. Then for our second mea-
surement, we also included the dependencies of this project.
Figure 3 depicts the results of both measurements for every
project.

The most interesting observation that we can make is that
the security bugs are increasing as projects evolve. This
is particularly noteworthy and shows that bugs should be

6http://xircles.codehaus.org/projects/xlite
7http://xircles.codehaus.org/projects/sxc
8http://xircles.codehaus.org/projects/javancss
9http://xircles.codehaus.org/projects/grepo

fixed in time to decrease the effort and cost of the security
audits after the end of the development process. Another
observation is the existance of the domino effect. The usage
of external libraries introduces new bugs. As we can see in
all cases the sum of the security related bugs in the second
measurement is bigger or equal than the first one. A math-
ematical representation of the this could be the following: If
bop is the variable that represents the sum of the security
related bugs of every project for every revision, boa the sum
of the bugs that also concern the dependencies of the project
for every revision and i is the number of a project revision,
the following expression stands for every project:

n∑
i=0

boa ≥
n∑

i=0

bop (1)

There are also cases where there is no security bug in the
majority of the revisions of a project but there are bugs in
the libraries that it includes i.e. in the javancss project.
Still, there is a case (the sxc project) where there are no
bugs in the libraries that the project depends on.

The Alitheia Core framework provides ways to check what
changes have been made after a commit. By taking ad-
vantage of this feature we observe that there are situations
where the total bugs are increased after the addition of a
new library. For instance, in the 591st revision of the xlite
project, the 349th revision of the grepo project and the 30th
revision of the javancss project, developers have added new
libraries in their project. On the other hand, the number
of bugs decreases when developers update a library (for ex-
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Figure 3: Bug frequency for all four projects.



ample in the 30th revision of the javancss project). Thus,
project libraries should always be updated not only because
of the additional functionality that they provide, but also for
security reasons. In general we can observe how the changes
made in third-party software can affect the evolution of a
project while its developers are unaware of that.

Another interesting issue regards the bugs themselves. Ta-
ble 3, shows for the last revision of every project the secu-
rity bugs that have been found. As we can see, even after
hundreds of revisions there are trivial bugs but there are
also bugs that could be severe for the application. For in-
stance, the last revision of javancss includes a code fragment
that creates an sql prepared statement from a non-constant
string. If this string is not checked properly, an sql injection
attack is prominent.

By determining the occurance of a bug for a large number of
projects, and by examining all revisions, we could generate
the frequency of the appearance of this bug. Such an esti-
mation could be crucial for vulnerability discovery models.

4. RELATED WORK
There are many approaches introduced by the research com-
munity that are used to extract conclusions by observing
the history, or the changes of sotware repositories. Such
conclusions concern the evolution of a software project, the
identification of programming errors between revisions, the
impact of a change on the whole project, the prediction of
bugs and providing the developers with useful data.

One of the first approaches to be introduced, involves a sys-
tem called cocr, that analyzes the whole history of the soft-
ware repository of a project in order to provide the develop-
ers with data in an efficient way [24]. Specifically, the anal-
ysis includes the history of every developer, the creation of
a graph of mails among developers and the usage of a back-
tracking system that keeps track of the various requests for
changes. By analyzing this elements, cocr can search for
specific code fragments, introduced by the same contributor
and in a specific period of time. A similar approach called
history slicing, involves the generation of a graph that links
every line of code in a repository, with its corresponding
previous revision [31]. By utilizing this graph, a contribu-
tor can locate specific versions that contain changes for the
lines of code of his interest and their exact details (including
contributor, filenames, and others). To help find the right
person to resolve a bug report, an approach that incorpo-
rates a machine learning algorithm has been introduced [2].
First, this algorithm is applied to the bug reports that ap-
pear in the repository and when a new report arrives, the
classifier that is produced by the algorithm suggests specific
developers that can resolve the report. Furthermore, an ap-
proach that observes the api-level refactorings through the
evolution of large projects has shown that there a is an in-
crease of bug fixes after a refactoring [19]. Also the time
taken to fix a bug after a refactoring is smaller than before.

Some approaches involve the detection of the variations be-
tween revisions. In particular, Sieve [30] is an automated
tool, that is based on impact analysis [21] to test if the
changes introduced in a new revision comply to the invari-
ants assumed in the previous one. Another similar tool

called parcs (performance-aware revision control support)
uses calling context tree (cct) [1] profiling and performance
differencing [40] to provide feedback to the project develop-
ers. This feedback concerns how the changes after a com-
mit affect the performance and behavior of the whole ap-
plication. In addition, a technique called change classifica-
tion, has been introduced for predicting bugs for every revi-
sion [20]. To detect a bug the technique builds classification
models by extracting specific features (log messages, reports
and others) from the history of the repository by facilitating
another tool called Kenyon [7]. Then, for every new conti-
bution, it compares the commited code to the trained model
to check for existing bugs.

Apart from bug detectors that act between revisions, there
are others based on repository mining. Menzies et al. [26]
base their approach on using techniques like data mining
and static analysis to detect bugs in large repositories. Dy-
namine [22] is a tool that combines software repository min-
ing and dynamic analysis to discover common use patterns
and code patterns that are likely errors in Java applications.
In a similar way, pr-Miner mines common call sequences
from a code snapshot and then marks all non-common call
patterns as potential bugs [22]. A method to examine source
code change history minning is also used for bug detec-
tion [37]. This method involves a static checker that searches
for commonly fixed bugs and at the same time it utilizes in-
formation mined directly from the project repositories to
refine its results.

Our work partially differs from the bug detection approaches
since we are not aiming to only provide this functionality.
We also want to provide an automated way to show the
frequency of security-related bugs during the software de-
velopment process and either provide valuable information
to the developers of a project or assist the project planning
of a new one.

5. DISCUSSION AND FUTURE WORK
Observing the changes and history of the software devel-
opment environment has provided the research community
with many useful inductions. In this paper we provided
initial results concerning the appearance of security bugs
through the evolution of a software project. To achive this
we have combined two tools that have been previously used
in research. Our experiment included four maven-based
open source projects. Our preliminary observation had to do
with the increase of the bugs as the project evolves. Other
ovservations included the existance of the domino effect and
the dependence of a software project from its libraries. No
matter how well a programmer secures a software compo-
nent it won’t matter if she is using another library with
existing vulnerabilities. In addition, programmers should
use the latest versions of the libraries that their project de-
pends on. Finally, measuring the occurance of a security bug
through the revisions could lead to useful input for defect
identification models.

Even if we used one static analysis tool in our approach, the
key idea behind our framework is to combine more tools in
order to have more substantial results. Currently, there are
numerous tools that analyze Java code and could be easily
imported to Alitheia Core for our purposes [23, 36].



Project Name Bug Description (taken from the FindBugs website) Occurance
javancss Dm: Hardcoded constant database password 2
javancss EI: May expose internal representation by returning reference to mutable object 8
javancss MS: Field isn’t final and can’t be protected from malicious code 3
javancss MS: Field should be moved out of an interface and made package protected 4
javancss MS: Field should be package protected 14
javancss MS: Field isn’t final but should be 4
javancss SQL: A prepared statement is generated from a nonconstant String 1
sxc EI: May expose internal representation by returning reference to mutable object 7
xlite MS: Field should be both final and package protected 1
xlite EI: May expose internal representation by returning reference to mutable object 8
xlite MS: Public static method may expose internal representation by returning array 1
xlite MS: Field should be package protected 1
xlite MS: Field isn’t final but should be 60
grepo EI: May expose internal representation by returning reference to mutable object 5

Table 1: Occurences of security bugs in the last revision of every project.

In addition, using FindBugs raises restrictions in the au-
tomation of the process since FindBugs runs on bytecode.
Hence our projects should be based on a build system that
allows automated builds and keep a standard directory struc-
ture for code and build artifacts. Using static tools that run
over source code should allow us to run our framework on
more projects and enrich our results.

By running our framework on more projects we could vali-
date the statistical significance of our results and draw even
more conclusions like: finding overlapping vulnerable depen-
dencies, if there is a correlation between the lines of code and
the security bugs of a project and others.
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