
The JikesXen Java Server Platform

Georgios Gousios
Athens University of Economics and Business

gousiosg@aueb.gr

Abstract
The purpose of the JVM is to abstract the Java language from
the hardware and software platforms it runs on. For this rea-
son, the JVM uses services offered by the host operating sys-
tem in order to implement identical services for the Java lan-
guage. The obvious duplication of effort in service provision
and resource management between the JVM and the operat-
ing system has a measurable cost on the performance of Java
programs. In my PhD research, I try to find ways of min-
imizing the cost of sharing resources between the OS and
the JVM, by identifying and removing unnecessary software
layers.

Categories and Subject Descriptors C.0 [General]: Hard-
ware/software interfaces; C.4 [Performance of Systems]:
Performance Attributes; D.4.7 [Operating Systems]: Orga-
nization and Design

General Terms Performance, Languages

Keywords JVM, Performance, Operating System, Virtual
Machine

1. Background and Motivation
The raison d’ être of contemporary JVMs is to virtualize
the Java language execution environment to allow Java pro-
grams to run unmodified on various software and hardware
platforms. For this reason, the JVM uses services provided
by the host OS and makes them available to the executing
program through the Java core libraries. Table 1 provides an
overview of those services.

The JVM is a software representation of a hardware ar-
chitecture that can execute a specific format of input pro-
grams. Being such, it offers virtual hardware devices such
as a stack-based processor and access to temporary storage
(memory) through bytecode instructions. The JVM is not a
general purpose machine, though: its machine code includes

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

support for high level constructs such as threads and classes,
while memory is managed automatically. On the other hand,
I/O is handled by the OS and access to I/O services is pro-
vided to Java programs through library functions. The ob-
servation that the JVM is both a provider and a consumer of
services leads to the question of whether the JVM can assume
the role of the resource manager.

Generic architectures sacrifice absolute speed in favor of
versatility, expandability and modularity. A question that
emerges is whether the services provided by the OS are
strictly necessary for the JVM to execute Java programs
and, if not, what will be the increase in the performance
of the JVM if it is modified so as to manage the computing
resources it provides to programs internally. Part of my work
is to assess the necessity of certain services offered by the
OS to the operation of the JVM and to measure their effect
on the JVM performance, to get an estimate of the possible
speedup that could be expected if the JVM replaced in the OS
in the role of the resource provider/broker, in the context of
purpose-specific systems.

My initial findings show that Java pays a large price to the
OS for services it does not necessarily require. All standard
OSs are designed for a specific purpose: to protect programs
from accessing each other’s memory and to protect I/O re-
sources from being accessed concurrently. As others have
shown [2], if the execution environment is based on a type-
safe language and therefore protects itself against invalid
memory access, then memory protection, as it is currently
implemented by OSs, is mostly unnecessary. My currently
unpublished findings show that the mechanisms employed
by JVMs to overcome the restrictions placed to them by the
OS APIs can deteriorate their performance, mainly when ex-
ecuting memory and I/O intensive applications.

2. Our Research
The specific question my research tries to answer is the fol-
lowing: Can the performance of Java server platforms be
improved by allowing them to manage directly the comput-
ing resources they require?

For the purposes of my research, I make the following
assumptions — based on worked published by other re-
searchers:

947



Resources JVM System Library OS Kernel JikesXen
CPU Java to Native Thread Map-

ping
Native to Kernel Thread
Mapping

Thread Resource Alloca-
tion, Thread Scheduling

Multiplexing Java threads
to CPUs, Thread initializa-
tion

Memory Object Allocation and
Garbage Collection

Memory Allocation and
Deallocation from the
process address space

Memory protection, Page
Table Manipulation, Mem-
ory Allocation

Object Allocation and
Garbage Collection

I/O Java to System Library I/O
Mapping, Protect Java from
misbehaving I/O

Provide I/O abstractions System call handling, Uni-
fied access mechanisms to
classes of devices

Driver infrastructure, I/O
multiplexing

Table 1. Resource management tasks in various levels of the Java execution stack and in JikesXenJVM

• A JVM is able to manage efficiently computational re-
sources by scheduling Java threads to physical processors
internally. Multiprocessing can be implemented within
the JVM very efficiently [1].

• Virtual memory is deteriorating the performance of
garbage collection [4] and thus it should be omitted in
favor of a single, non-segmented address space.

• A specially modified JVM can be run directly on hard-
ware with minimal supporting native code [3], and there-
fore the unsafe part of the system can be minimized down
to a very thin hardware abstraction layer.

To investigate my research question, I am in the pro-
cess of designing and building the JikesXen virtual machine,
which is a port of JikesRVM to the Xen VMM platform.
JikesXen is based on a very thin layer of native code, the
nanokernel, whose main purpose is to receive VMM inter-
rupts and forward them to the Java space and also to initial-
ize the VMM on boot. I use parts of the Xen-provided MiniOS
demonstration operating system as the JikesXen nanokernel.
The system itself is essentially a blob that lumps together
the JikesRVM core image and stripped down version of the
classpath which are already pre-compiled to native code dur-
ing the JikesRVM build phase. JikesXen does not require a
device driver infrastructure; instead, the Java core libraries
will use the devices exported by the VMM directly, through
adapter classes for each device. The adapter classes are also
responsible to prevent concurrent access to shared resources,
such as I/O-ports using Java based mutual exclusion prim-
itives (e.g. synchronized blocks). It also implements other
functionality relevant to the device class such as caching,
network protocols, file systems and character streams. Ta-
ble 1 presents an overview of the functionality of JikesXen
as a resource manager.

My work falls into the bare metal JVM research stream.
But how does it differ from already existing approaches?
The distinctive characteristic of my system is that it does
not run directly on hardware. The use of the Xen VMM
for taking care of the hardware intricacies, allows me to
focus on more important issues than communicating with the
hardware, such as providing a copy-less data path from the
hardware to the application. Additionally, since all access
to hardware is performed through the classpath, I plan to

use the JVM locking mechanisms to serialize access to it.
This will render the requirement for a resource manager,
or a kernel, obsolete. Finally, my system’s focus being a
single multithreaded application, I do not consider a full-
fledged process isolation mechanism. Instead, we base our
object sharing models on proven lightweight object sharing
mechanisms (isolates [1]).

3. Conclusions
My work is in its early stages of development. I am currently
constructing a build system that will compile the classpath
and JikesRVM in a single binary image. I have already suc-
ceeded in loading the JikesRVM boot image in the Xen hy-
pervisor, but at the moment the system does nothing useful
as important subsystems remain to be implemented.

Acknowledgments
This work is partially funded by the Greek Secretariat of Re-
search and Technology thought, the Operational Programme
“COMPETITIVENES”, measure 8.3.1 (PENED), and is co-
financed by the European Social Funds (75%) and by na-
tional sources (25%) and partially by the European Com-
munity’s Sixth Framework Programme under the contract
IST-2005-033331 “Software Quality Observatory for Open
Source Software (SQO-OSS)”.

References
[1] Grzegorz Czajkowski, Laurent Daynès, and Ben Titzer. A

multi-user virtual machine. In Proceedings of the General
Track: 2003 USENIX Annual Technical Conference, pages
85–98, San Antonio, Texas, USA, June 2003. USENIX.

[2] Galen Hunt et al. An overview of the Singularity project.
Microsoft Research Technical Report MSR-TR-2005-135
MSR-TR-2005-135, Microsoft Research, 2005.

[3] Georgios Gousios. Jikesnode: A Java operating system.
Master’s thesis, University of Manchester, September 2004.

[4] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage
collection without paging. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 143–153, New York, NY,
USA, 2005. ACM Press.

948


