
Rethinking the Java software stack: Optimisation
opportunities in the face of hardware resource

virtualisation

Georgios Gousios and Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
{gousiosg,dds}@aueb.gr

ABSTRACT
The purpose of the jvm is to abstract the Java language from
the hardware and software platforms it runs on. Currently,
there is an obvious duplication of effort in service provision
and resource management between the jvm and the operat-
ing system that has a measurable cost on the performance
of Java programs. The emergence of efficient hardware re-
source virtualisation mechanisms presents implementers with
new opportunities for optimising the Java software execution
stack.

In this paper, we examine the sources of the runtime over-
head imposed on the Java programming language by the na-
tive execution environment. We use both synthetic and real
world applications as benchmarks along with modern instru-
mentation tools to measure this overhead. We base our mea-
surements on the assumption that the jvm can be directly
hosted on virtualised hardware. Based on our findings, we
also propose a cost estimation heuristic, which allows us to
estimate the minimal gain to be expected when applications
will be moved to hypervisor-hosted virtual machines.

Categories and Subject Descriptors
C.0 [General]: Hardware/software interfaces; C.4 [Per-
formance of Systems]: Performance attributes; D.4.7
[Operating Systems]: Organisation and Design; D.4.1
[Operating Systems]: Process Management

General Terms
Virtual Machine, Operating System, Performance

Keywords
JVM, dtrace, Performance, Operating System, Bench-
marking, Virtual Machine

1. INTRODUCTION
In recent years, there has been a trend toward de-

veloping and running Internet and network servers us-
ing safe languages and processes-level Virtual Machine
(vm)-based runtime environments. This trend is jus-
tified; vms offer a more secure execution environment

than native platforms, while they allow programs to be
portable. Those facilities come at a cost: process-level
vms introduce several layers of indirection in the chain
of management of computing resources. vm runtime
environments offer services complimentary to those of
operating systems, such as processing time sharing and
preemptive multithreading, memory management, and
i/o request handling. Despite the advances in auto-
matic memory management and Just-In-Time (jit) com-
pilation, which brought the number crunching abilities
of process vms to nearly-native levels, there is a very
small number, if any, of vm-based server software ap-
plications that can match the performance of widely
deployed, natively compiled network servers, such as
Apache or Samba.

On the other hand, hardware virtualisation has be-
come mainstream. Hypervisors such as Xen [3] and
vmware esx [32] along with specially designed instruc-
tion sets on modern processors enable hardware consol-
idation and efficient resource utilisation. Hypervisors
have some interesting properties: they enable hosted
programs to directly access processor and memory re-
sources while presenting a portable abstraction to i/o
devices. Older [34] and recent [9, 1] research has shown
that it is entirely possible to run modified applications
directly on top of virtualised hardware with increased
performance.

Our research work involves modifying a jvm to run
directly on top of virtualised hardware. In this paper,
we evaluate the impact of the duplication in effort of
resource management between the jvm and the operat-
ing system on the performance of contemporary jvms.
We also identify optimisation possibilities and quantify
the gains in performance that can be expected in our
implementation.

We conducted our experiments on version 1.6 of Sun’s
jvm and the latest available built (nv66 as of this writ-
ing) of the OpenSolaris operating system. We also con-
ducted a limited number of performance tests on an
experimental port of the JikesRVM jvm to the Open-
Solaris platform. The choice of this particular stack was

1

mainly driven by three reasons:

• The availability of advanced instrumentation tools
which can leverage data sources in both the os and
the jvm at the same time

• The availability of the source code for the entire
stack

• The fact that Solaris and the Sun’s jdk are used
in production environments to host complex ap-
plications

Our experiments were deliberately run on standard
pc hardware, instead of high performance servers, to
demonstrate better the overheads involved. Unless stated
otherwise in a particular experiment description, we
utilised a Core 2 Duo dual core machine featuring 1gb
of ram and 2mb of l2 cache, shared among the proces-
sors. We used dtrace(1) [8] as our main performance
evaluation tool and a combination of readily available
and custom-developed benchmarks.

The major contributions of this paper are (1) a dis-
cussion on the necessity of services provided by the os
for the operation of the jvm and (2) a quantitative
study of the effect of the os protection and service han-
dling mechanisms to the performance of Java. The pa-
per also employs performance evaluation tools not pre-
viously considered for jvm performance measurements.

2. MOTIVATION
Virtualisation of computing resources can take place

either at the hardware or at the software level [30]. Vir-
tualisation allows resource sharing architectures to be
stacked [13, 23]. vm stacking is common in current ar-
chitectures as it enables lower level vms to expose simple
interfaces to the hardware or software they virtualise,
which in turn allows higher level vms to remain un-
aware of the hardware/software complications present
in the lower levels. The raison d’ être of the jvms is
to abstract the Java language from the hardware and
software combination it runs on. In the Smith and Nair
vm taxonomy [30], the jvm is a high level language vm,
which also implies that it is a process vm.

The jvm is a software representation of a hardware
architecture that can execute a specific format of in-
put programs. Being such, it offers virtual hardware
devices such as a stack-based processor and access to
temporary storage (memory) through machine code in-
structions. The jvm is not a general purpose machine,
though: its machine code includes support for high level
constructs such as threads and classes, while memory is
managed automatically. On the other hand, there is
no provision in the jvm specification about i/o. Most
implementations use the os to access i/o devices while
these services are provided to Java programs through
the Java library, using some form of binding to the os

native library functionality. The observation that the
jvm is both a provider and a consumer of equivalent
classes of services leads to the question of whether the
jvm can assume the role of the resource manager.

Generic architectures usually sacrifice absolute speed
in favour of versatility, expandability and modularity.
In our opinion, this need not be the case for purpose-
specific systems, such as application servers and em-
bedded devices. The basic question that our research
is trying to answer is whether the services provided by
the os are strictly necessary for the jvm to execute Java
programs and, if not, what will be the increase in the
performance of the jvm if it is modified so as to man-
age the computing resources it provides to programs
internally. Part of our work is to assess the necessity
of certain services offered by the os to the operation of
the jvm operation and to measure their effect on the
jvm performance, to obtain an estimate of the possible
speedup that could be expected if the jvm assumed the
role of the resource provider/broker, in the context of
purpose specific systems.

We are currently in the process of implementing the
JikesXen [16] hypervisor-hosted jvm. As its name im-
plies, we use the Xen hypervisor and Jikesrvm as our
runtime system; a thin native code layer is placed be-
tween the two and is responsible for initialisation and
interrupt processing. We try to push our system’s per-
formance enhancing possibilities by implementing hard-
ware drivers for the Xen-exported devices in Java. Drivers
and application software run in the same heap and are
able to share objects using the JSR-121 [26] mecha-
nisms. The Java system library (classpath) is modi-
fied to interact directly, via method calls, with a thin
resource management layer, which also includes the de-
vice drivers. Our system uses the m:n threading model
and thread switching inside the jvm, as it is currently
implemented in JikesRVM. The JikesRVM virtual pro-
cessor threads are mapped directly on the available pro-
cessors, although currently our system does not support
more than one physical processors. The system mem-
ory manager uses a non-segmented memory space as
its garbage collected heap. All memory is allocated at
boot time and currently there is no support for memory
swapping. Finally, our system does not support loading
or executing native code, through interfaces such as the
jni.

2.1 What is overhead?
The software stack used to execute Java programs

currently consists of three layers of software: the jvm,
the jvm implementation language native library (usu-
ally libc) and the os kernel. Table 1 summarises the
most important resource management tasks for each re-
source type that are performed in each one of the three
software layers. In the context of JikesXen, many of the

2

ResourcesJVM System Library Kernel JikesXen
CPU Java to Native Thread

Mapping
Native to Kernel Thread
Mapping

Thread Resource Alloca-
tion, Thread Scheduling

Multiplexing Java
threads to cpus, Thread
initialization

Memory Object Allocation and
Garbage Collection

Memory Allocation and
Deallocation from the
process address space

Memory protection,
Page Table Manipula-
tion, Memory Allocation

Object Allocation and
Garbage Collection

I/O Java to System Library
i/o Mapping, Protect
Java from misbehaving
i/o

Provide i/o abstractions System call handling,
Multiplexing of requests,
Provision of unified
access mechanisms to
classes of devices

Driver infrastructure, i/o
multiplexing

Table 1: Resource management tasks in various levels of the Java execution stack and in JikesXen

resource management tasks are redundant, while others
are performed in the jvm, using our resource manage-
ment layer. With the term overhead, we refer to the ex-
ecution time spent in redundant resource management
tasks, for services that were requested by the jvm in or-
der to support the execution of the Java programming
language. Services offered by the jvm and which are
hard requirements for the Java language to work effi-
ciently, such as the jit compiler, the garbage collector
or the bytecode verifier, are not considered to impose
overhead.

Most of the resource management tasks that are de-
scribed in Table 1 can be regarded as redundant. For
example, since our system does not use page swapping,
no memory management tasks should be executed out-
side the jvm. On the other hand, the time spent in
executing device driver code cannot be considered an
overhead as device drivers are also required in our sys-
tem. In order to calculate the native execution environ-
ment overhead, we must subtract from the set of all the
resource management tasks those which are required in
both the current implementations of the Java stack and
also in the standalone jvm. Therefore, with the term
guaranteed overhead we refer to the time that is cur-
rently spent in resource management tasks not required
for JikesXen. The calculation of the guaranteed over-
head value for the current Java execution stack provides
us with an estimate of the performance enhancements
we should expect from an os-less execution stack and
also sets the performance bar for the development of
JikesXen.

In the following section, we analyse the factors that
contribute to the generation of guaranteed overhead for
each resource category.

3. ACCESSING OPERATING SYSTEM SER-
VICES

Languages which are considered safe, such as Java,
cannot trust user code to access external services, such
as those provided by the operating system. The jvm is
required to check all data exchanges with external soft-

Task JNI Calls % Copying Bytes
Tomcat serving
a 10k web page

590 18 22k

Java2D demo
graphics

2.5M 12 360M

1M 10-byte ran-
dom read-writes

6.5M 18 10M

Table 2: Number of jni calls required to perform
routine tasks

ware, especially buffer lengths. On the other hand, in-
teroperability and compatibility requirements with ex-
isting code necessitate a generic mechanism for access-
ing data in the Java program memory space while the
jvm is executing the program. A mechanism for en-
abling this type of access but disallowing inappropriate
memory manipulations is thus required.

The mechanism used to handle interaction with na-
tive code is called Java Native Interface (jni) [24]. The
jni, among other things, defines the naming conven-
tions and the data types required for Java code to call
native functions (downcalls) and the necessary interface
for native code to manipulate Java objects in a live Java
heap (upcalls). The jni specification does not define
a universally applicable mechanism for invoking native
functions (i.e. stack layout, argument passing), or for
returning values from the native call to the Java code.
It allows each jvm to handle the return semantics differ-
ently. In a downcall, the function arguments are passed
to the native code either by copying, if they are prim-
itives, or by reference, if they are objects. Referenced
objects need to be copied prior to being manipulated,
due to the indirect referencing mechanism that is used.
The return values must be copied to the Java heap since
the native code calls execute in the calling thread local
context.

The jni is used extensively in various jvms as it is
the only universally accepted mechanism for interfacing
Java code to i/o services offered by the os. As by spec-
ification the jni is a copying mechanism, all accesses to

3

i/o facilities need to pass through a copying layer of
software, which in turn restricts the overall i/o capac-
ity of the Java language. Table 2 illustrates the extend
of use of the jni copying mechanisms in the Java execu-
tion environment. To gather the data, we ran a simple
dtrace(1) script that counts the total number of calls
to the jni layer and the bytes that were copied during
those calls, on a collection of programs that perform a
variety of tasks. As copying functions, we only consider
jni functions that copy entire memory regions, such as
arrays and strings. On both the Sun jvm and Jikesrvm
the results are almost the same, with small variations
that can be attributed to different bootstrapping se-
quences. From the table, we can see that a large number
of jni calls copy data, an operation which systems de-
signers try very hard to avoid. All Java programs, espe-
cially those relying on i/o to function, are handicapped
performance-wise by a poorly designed data exchange
mechanism.

In addition to the jni, the two jvms we examine fea-
ture private interfaces to the os. Those interfaces ab-
stract the operating system functionality at the cost
of a function call to facilitate the porting of each jvm
across operating systems. All classpath method calls
in addition to each vm’s internal api calls that require
native function implementations to access os services
are routed through the indirection layer. The particu-
lar implementation details differ in each case, but the
fact remains that another layer of indirection is placed
between the jvm and the os, causing unnecessary over-
head. The cost in the case of Sun’s jvm is equal to that
of a virtual method dispatch, while in Jikesrvm the in-
direction layer functions are prebound at compile time.
However, in our experiments with heavy i/o workloads
we did not find the indirection layer to contribute more
than 1% to the real execution time in both jvms.

Since all interactions between the executing Java code
and the native execution environment have to pass through
either the jni or the indirection layer, or both, those two
mechanisms are responsible for the lion’s share of the
guaranteed overhead imposed by the os access mecha-
nisms to the Java language.

3.1 Input/Output

3.1.1 Blocking I/O
Blocking i/o is the most common form of i/o in Java;

it is based on proved primitives such as streams and the
read/write system calls. Java supports blocking i/o
through the java.io class hierarchy. It also supports
random access i/o through the RandomAccessFile in-
terface. All Java i/o functions are mapped to native
calls that access the os-provided i/o services through
the system library. The exact same mechanism is also
used for accessing both network and graphics devices

and therefore similar restrictions and performance bot-
tlenecks apply.

In order to demonstrate the overhead imposed by the
jni copying semantics, we used dtrace(1) to instru-
ment a program that, in a tight loop, performs writes
of 10 byte arrays to the system’s null device, imple-
mented in both c and Java. The dtrace(1) sensors
count the number of invocations of the memcpy(3) li-
brary function and the amount of data passed to the
write(2) system call. The results of the experiment
are presented in Table 3.

The C implementation is more than 100% faster than
the Java implementation. This fact cannot be attributed
to differences to the c compiler or the Java vm that were
used, since the program’s critical path only includes a
loop construct and a system call, none of which can be
optimised. In fact, fully optimised versions of the native
program did not exhibit any measurable performance
increase. Also, only 750 system calls were performed
during the jvm initialisation. The time that might be
required by the jit to compile the used methods to
native code is also too small to affect performance con-
siderably, as the method that performs the system call
cannot be compiled to machine code. Therefore, the
reason for these significant performance differences can
be mainly attributed to the differences of the operating
system services calling semantics between the c and the
Java languages, the most important being the jni layer.

In the case of blocking i/o the guaranteed overhead
is generated by: (1) the copying in the jni layer and
(2) the os kernel copyin/out functions. The jni layer
overhead is assessed by measuring the time spent in
the memcpy function. Due to technical limitations in
the current implementation of dtrace(1), the cost of
the kernel copying functions cannot be measured, but
it can be approximated with good precision. 1 The
approximation method we used was to set it equal to
the cost of the library memcpy function. By calculating
the bytes that each i/o system call is pushing to or
pulling from the kernel, we can approximate the total
time spent in the kernel copying functions by diving
the number of bytes with the constant cost of copying,
eg 100 bytes. For our benchmark system, the constant
time to copy 100 bytes was found to be equal to 10µsec.
The guaranteed overhead in the case of i/o is 2.2sec,
which os time only devoting to copying data.

3.1.2 Memory Mapped I/O
Memory mapping is a special case of i/o in that it

employs the os’s virtual memory system to create file
mappings to a process’s address space. No system calls

1The fbt dtrace(1) provider is not able to instrument
functions which do not setup a stack frame and the OpenSo-
laris kernel implements copyin/copyout as inlinable, hand-
optimised assembly routines.

4

Function C Java JikesRVM
Calls Bytes Time Calls Bytes Time Calls Bytes Time

memcpy(3) 14 68 10µsec 106+ 107+ 1.1sec
write(2) 106 107 — 106 107 —

copyin(9F) 106 107 1sec 106 107 1sec
exec. time 21.62sec 45.16sec sec

Table 3: The cost of copying in blocking i/o

are required for accessing or updating data in mem-
ory mapped files, although any possible performance
gains can be quickly amortised if the whole file is ac-
cessed. Java supports mapping of files in the jvm pro-
cess space, through the nio i/o framework [28]. The
MappedByteBuffer class allows a file to be accessed as
a byte array. The nio api allows both sequential and
bulk reads and writes. The two systems we examine
handle memory mapped i/o differently. The Sun jvm

is an interesting difference on how operations involv-
ing primitive arrays and operations involving objects or
array ranges are handled:

• Bytes in container objects and array ranges are
copied in a loop directly to the mapped file, one
byte per loop iteration.

• On the other hand, byte arrays are copied from
the executing thread context to the mapped file
area using the memcpy(1) library function

The memory mapping functionality in Java does not
pose any significant overhead to the Java language exe-
cution, apart from the overhead introduced by the page
manipulation functions at the kernel level. The cost of
memory mapping at the kernel level does not contribute
to the guaranteed overhead, as an equivalent mecha-
nism will be required to be present in the standalone
jvm implementation.

3.2 CPU resource sharing

3.2.1 Java and os threads
The Java language offers built-in support for threads

and also for thread related functionality such as syn-
chronization and semaphores. For efficiency, most jvms
do not implement Java threads internally, but instead
they map them to os-managed threads. The Sun jvm
uses an 1:1 threading model: all instances of the Java
Thread class are mapped to a native os thread, through
the system’s native thread library. Other jvms, such
as the Jikesrvm, use more sophisticated m:n threading
models, which enable them to manage thread priorities
internally and put less pressure on the os scheduler in
highly multithreaded environments.

The performance of the os threading architecture is
a critical component for the performance of the jvm.

System 100 Threads Init Time
Opensolaris, Pentium III
733 MHz

72.4

MacOSX, Core 2 Duo,
2.33GHz

21.0

Solaris 10, Dual Sparc,
750MHz

17.3

Linux 2.6.11, Dual
Opteron, 2.2GHz

7.2

Table 4: NoOp threads creation time across dif-
ferent platforms. Times are in milliseconds

When a jvm needs to create service threads for a large
workload, it must initialize both the Java related data
structures and the native thread data structures. Our
experiments show that allocating and starting 100 Java
threads with an empty run() method, (NoOp threads)
can take from 7.2ms to 21ms on various combinations
of modern 2ghz multiprocessing hardware and operat-
ing systems (see Table 4). Given that the jvm is the
same program version across almost all the platforms we
tested, this small experiment proves that threading is
indeed causing an overhead and that overhead is mostly
os-dependent.

In the case of the threading, both the kernel thread
initialization and cleanup and the library equivalents
contribute to the guaranteed overhead. Accurate mea-
surements of the guaranteed overhead introduced by the
native threading services can be performed by insert-
ing dtrace(1)-based counters at each layer’s thread
initialization code. The entry point to each layer is
not too difficult to be discovered; on Solaris, calls to
the thr create function denote entry to the system’s
c/threading library while system calls initiated while
in the threading library are performed to create the ap-
propriate kernel threads. The entry points to all the
layers of the threading stack were used to construct a
dtrace(1) script that counts the processing time for
each layer. The script was run against the NoOp threads
program described above. Except from our dedicated
test machine, we also run the experiment on a Pentium
III machine.

Table 5 presents a breakdown of the time devoted to
each layer of the threading stack. As a reference, we
also calculated the time required by Java to initialize

5

System Java Native Overhead
Java jvm libc kernel

OpenSolaris,
Pentium
III

110.3 64.1 69.9 89.9 91%

Solaris 10,
Dual Sparc

127.3 51.9 15.7 52.2 37%

Table 5: Cost of various levels of the threading
stack on Java performance. Times are in mi-
croseconds

thread related structures, in both the Java and the jvm
layers. On our Solaris test machine, the native thread-
ing initialization time is imposing a 37% overhead on
the Java platform. The situation is much worse on the
Pentium III uniprocessor machine, where the native ex-
ecution environment slows down the Java platform by
a factor of 94%.

3.2.2 Locking and Mutual Exclusion
Related to threading is the issue of locking a resource

from concurrent access and excluding concurrent exe-
cution of a specific code path. The Java language pro-
vides inherent support for both locking and mutual ex-
clusion via the synchronized keyword and library-jvm
co-design. The jvm handles the locking of Java objects
internally and therefore no overhead is introduced by
requiring the os to do the job for the jvm. os-level
locking is required by the jvm to implement locking of
shared os-provided resources, such as files or sockets,
when performing operations on those resources on be-
half of Java code.

3.3 Memory
The jvm uses the system library as the interface to

the operating system memory management mechanisms.
The jvm maintains an internal memory allocator which
co-operates with the garbage collector. The allocator
requests memory in chunks of increasing size; most of-
ten, the allocated memory is not returned to the operat-
ing system until the end of the jvm lifetime. The system
library uses the brk(2) system call to request memory
from the operating system, while it also maintains inter-
nal structures, usually segregated lists, to keep track of
allocations. This is a serious source of overhead for the
Java language: while the jvm features advanced mem-
ory management mechanisms, the overall performance
of the Java memory subsystem depends heavily on, and
is limited unnecessarily by, the native memory alloca-
tion mechanisms, which were repeatedly proven to be
slow [5, 21].

The guaranteed overhead in the case of memory man-
agement is the sum of the time spend in the system li-
brary and the kernel page manipulation functions. In
order to evaluate the effect of the native resource man-

Program Exec time libc kernel Overhead
antlr 35382 1179 3.9 3.3%
bloat 294101 2587 4.2 0.9%
chart 96169 5737 2.4 5.9%
eclipse 377705 31037 10.6 8.2%
fop 17640 1185 3.1 6.7%
hsqldb 59964 930 1.7 1.6%
jython 223652 100628 4.6 45.0%
luindex 43978 1724 1.8 3.9%
lusearch 87812 4156 2.6 4.7%
pmd 98809 1492 3.2 1.5%
xalan 226861 27375 3.8 12.0%

Table 6: Memory allocation costs for the Da-
Capo benchmark. Times are in milliseconds

agement tasks we instrumented the system library mem-
ory related functions (the *alloc() family, free())
and also the brk(2) system call to report the total time
spent in memory operations. We use the memory in-
tensive DaCapo [6] benchmark suite as our workload.
The results of our experiment are presented in Table 6.
The average guaranteed overhead, which was calculated
by comparing the time reported by our instrumented
functions to the total execution time, of the system li-
brary memory management subsystem on the jvm was
5%, excluding the jython benchmark whose the perfor-
mance was an order of magnitude worse. This overhead
is entirely superfluous, as the service offered by the na-
tive library memory manager is not required for our
standalonejvm to function. On the other hand, the os
kernel was found not to affect the memory subsystem
performance significantly.

3.4 Implicit sources of overhead

3.4.1 Context switching
The operating system, in order to protect its state

from misbehaving processes, runs in privileged mode.
When the jvm, which runs in a less privileged mode, re-
quests a service from the kernel, it must issue a software
interrupt. At this point, the processor’s protection level
must be escalated which involves saving the request-
ing process’s runtime state (registers and stack) and
loading the operating system’s previous runtime state.
This mechanism, refereed to as context switching, has
been studied extensively and is known to affect a pro-
cess’s execution time by both the processing required,
and most importantly, by invalidating the processor’s
caches. The cost of process-initiated context switching
is directly proportionate to the number of i/o opera-
tions; in i/o-bound workloads, the kernel and processor
architecture play an important role on minimizing the
effects of context switching.

3.4.2 Interprocess Communication
Interprocess communication (ipc) is a term used to

describe the mechanisms required for two processes run-

6

ning in different process spaces, or even on different
machines, to exchange data. In current operating sys-
tems, the generic mechanisms offered are mainly shared
memory and message passing. In all cases, the operat-
ing system is responsible to establish the communica-
tion, to grant access to the exchanged information and
to transfer control between the sending and the receiv-
ing process. This means that ipc is an operating system
based class of services and therefore programs written in
natively compiled languages can use those mechanisms
efficiently. Due to garbage collection and memory con-
sistency requirements, Java programs cannot use shared
memory to exchange objects or other types of informa-
tion; they must rely on cross address space mechanisms
such as sockets and named pipes for message passing.
This need not be the case in the standalone jvm system:
research [27, 19] has shown that is feasible and practi-
cal to share objects between Java programs sharing the
same heap.

4. COST ESTIMATION
Up to this point, we have shown that running the jvm

on top of an os limits its performance in a way that
it is both existing and measurable. The question that
emerges is whether we can approximate the guaranteed
cost that the native execution environment inflicts on
the jvm in a generic, os-independent way, that will al-
low us to predict the cost prior to deploying a service.
For this reason, we can think the jvm as a consumer
of os-provided services. The os service provision inter-
faces are well defined and, additionally, similar across a
multitude of oss. Each interface provides a unique ser-
vice that is exported to the jvm through the system li-
brary. Interfaces can be stacked or otherwise combined;
for example the thread interface can hold references of
the filesystem interface. The total cost is the sum of
the costs incurred by each os-provided service.

Cos = Cthr + CI/O + Cmem (1)

The cost Cthr refers to the overhead of establishing
service threads. On a given platform, the guaranteed
cost for creating a thread (Cnt) is, mostly, constant;
Therefore the total cost for thread creation depends on
the number of threads Ntrh to be created.

Cthr = nthr ∗ Cnt (2)

The cost CI/O for i/o can be further broken down to
the individual costs for establishing an i/o link, such
as opening a file (Cfile) or accepting a server network
connection request (Clink), and the cost of reading and
writing bytes to the link. Since the cost CI/Ochunk of
performing i/o operations of constant chunk size using
blocking i/o primitives, such as the read and write

system calls, can be measured relatively easily on most

platforms, it is helpful to analyze the i/o operation cost
to the number of chunks times the cost per chunk. Fur-
thermore, since the cost of writing to networking sockets
is not very different to that of writing to files, at least
in fast networks, we can either opt to calculate sepa-
rate costs for file i/o and networking or to calculate
the mean value:

CI/O = Cnet + Cfile (3)

Cnet = nlinks ∗ ((nchunks ∗ CI/Ochunk) + Clink)(4)

Cfile = nfiles ∗ ((nchunks ∗ CI/Ochunk) + Cfile)(5)

Finally, the cost Cmem for allocating and freeing mem-
ory depends heavily on the jvm used, as each jvm
features different policies for allocating and for free-
ing memory. In previous work [17], we have witnessed
different heap expansion patterns for two production
jvms, even between different configurations of the gc on
the same jvm. In the same study, we observed that the
heap size remained constant when the workload stabi-
lized, as the executed application filled its object pools
with adequate objects. Those two observations com-
bined mean that it is not straightforward to predict the
cost of allocating memory but this cost is only paid
once during the application ramp up period, so it can
be regarded as a constant value that can be discovered
through experimentation.

The initial cost formula can be simplified if we con-
sider the structure and operation of server applications.
Those applications have an initial startup cost, which
is very small in comparison with the runtime cost when
the application is under full load. Also, once the appli-
cation has reached a steady state, the only os-related
costs that apply are those related to the number of
threads (nthr) started and to the number (nchunks) of
basic i/o operations.

Cos = nthr ∗(Cnt +Clink +nchunks ∗CI/Ochunk)+Cmem

(6)
The heuristic presented above is an approximation

for the total cost, expressed in terms of runtime slow-
down, that makes some necessary, albeit non-intrusive,
simplifications. It does not represent a formal cost eval-
uation model but, as proven by our experiments, it cap-
tures the measured runtime cost with good approxima-
tion accuracy. The constants Cnt, CI/Ochunk and Clink

need to be measured via experimentation for each plat-
form/hardware combination. For our test platform, the
values, measured in microseconds, are:

Cnt = 173

CI/Ochunk = 3.3

Clink = 140

5. EXPERIMENT

7

Microbenchmarks, such as those presented in the pre-
vious sections, serve to isolate a specific performance
bottleneck of a single subsystem. In order to under-
stand how the problems that were illustrated using mi-
crobenchmarks affect real-world applications, we run
a series of mostly i/o and kernel-bound applications,
which we stressed using load generators. Specifically,
we tested a dynamic web content application and a mes-
sage room application, both of which put a significant
load on the operating system.

The first application we selected is an open source
variation of the well-known Java Pet Store application,
called JPetStore. The JPetStore application simulates
an e-commerce site; it uses dynamic web pages and an
embedded database to store information.It also features
an object persistency layer in order to minimize the
cost of accessing the database. The JPetStore appli-
cation is run by the Tomcat application server. By
default, the JPetStore application returns web pages
which are very small in size; we increased the size of
the return pages in order to match real world situa-
tions. For the purposes of the experiment, Tomcat was
configured with a large connection thread pool and a
heap space equal to 1gb. We used a custom-developed
lightweight http load generator in order to be able to
control the workload parameters, namely the number of
concurrent threads and the number of pages each thread
retrieved before it halted.

The second application we measured was the VolanoMark
workload. VolanoMark simulates a Internet Relay Chat
environment, where users are able to create chat rooms
to which other users are able to connect and exchange
messages. The benchmark load generator allows the
specification of the number of users, rooms and ex-
changed messages to be simulated. Each user connec-
tion generates two server threads, which listen for and
dispatch incoming messages from the chat room object
to the user socket and vice versa. The VolanoMark
benchmark is mainly taxing the operating system sched-
uler and the synchronization methods on both the jvm
and the os. When a large number of messages are ex-
changed by many threads can the networking subsystem
can also be exercised.

The workload generator for both benchmarks was run
on a different machine than the workload itself. The
machines used 100Mbps networking for interconnection.
During benchmarking, we paid particular attention to
stress the tested applications adequately,but not bring
the tested machine down to its knees as this would in-
troduce unacceptable delays in i/o related operations.
The maximum load on the workload machine did not
climb to more than 95% of the machine’s capacity.

5.1 Instrumentation

Java execution time
memory overhead
I/O overhead

Figure 1: VolanoMark experiment results

We used the dtrace(1) tool exclusively for instru-
menting the benchmark. In order to demonstrate bet-
ter the overheads involved, we only instrumented the
factors that were identified in the previous sections to
contribute to the generation of guaranteed overhead.
Those are the jni-initiated data copying, the kernel ini-
tiated data copying and the time spent in the native
threading services respectively. The latter was found
to have only minimal impact and was therefore not in-
cluded in the benchmark results.

For each service interface whose cost we wanted to
assess, we collected and organized the respective library
functions or system calls into a single dtrace(1) probe
which calculated the total time in each thread spent in
them. We took extra steps to prohibit a thread from
entering more than one dtrace(1) probe at once. The
memory related overheads were measured directly using
the appropriate counters in the dtrace(1) probes. In
the case of kernel copying functions, we followed the
approximative approach described in Section 3.1.1. In
any case, we avoided measuring i/o related activities,
beyond the data copying stage, as this would introduce
unacceptable unpredictability to our results.

We run the benchmark workload generators four times
for each benchmark, each time increasing the work-
load. For the Tomcat benchmark, we concurrently in-
creased both the number of threads and the number
of retrieved web pages, leading to quadratic increase in
the total workload. We could not do the same for the
volano benchmark due to server hardware limitations;
in that case, a more conservative approach of doubling
the workload in each benchmark run was used.

5.2 Results
The results of the VolanoMark mark benchmark are

presented in Figure 1. The guaranteed overhead ranges
from 23% to 40% with a tendency to decrease as the

8

Java execution time
Memory overhead
I/O overhead

Figure 2: Tomcat experiment results

load increases. This can be justified by the heavily mul-
tithreaded execution profile of the benchmark. As the
number of threads increases, so does the pressure on the
runtime system, leaving little execution time for actual
work. The VolanoMark benchmark takes multithread-
ing to the extreme; on full load, there were 800 threads
being executed in parallel. Also, when under full load,
VolanoMark requires that on message receipt at least 20
threads should be waken up and use their open socket
to push the incoming message to the client.

On the other hand, the results for the Tomcat bench-
mark were much closer to what we expected and to
what the microbenchmarks indicated. The native exe-
cution overhead in that case ranges from 15% to 45%.
The Tomcat application software is a production grade
application that has gone through several optimization
phases. It thus uses several techniques to minimize the
overhead imposed by the communication with external
resources, such as connection and thread pooling. The
result is that almost no overhead could be measured,
except for i/o.

5.3 Cost heuristic evaluation
In order to evaluate the heuristic we introduced in

Section 4, we run the Tomcat experiment with an in-
creasing number of connections. First, we used the
values we calculated for our platform as input to the
heuristic formula 4.6. The average page size for our
modified JPetStore application was 133 i/o chunks. We
set the Cmem cost to zero, as our application’s heap size
was considered stable. The real overhead was calcu-
lated by running the same analytical dtrace script as
in our main experiment. The results are presented into
Table 7. As it turns out, our heuristic is able to cap-
ture, with some variation, the cost of the os on the jvm.
However, as the number of served connections increases,
the difference also increases. This may be due to the in-

connec-
tions

Estimated Cost Real Cost Diff

100 72.5 77.1 5.9%
1000 725.0 851.0 14.8%
3500 2537.0 3024.0 16.1%

Table 7: Estimated vs Real Cost. Times are in
milliseconds.

creased synchronization costs, which are not taken into
consideration in our heuristic definition. More effort
needs to be put towards analyzing the overhead caused
by native synchronization primitives.

6. RELATED WORK
As with every layer of software, resource management

layers incur some overhead to the layers running on top
of them [23, 36, 25]. Studies of the performance of the
jvm mainly evaluate the overhead of garbage collec-
tion [5, 20], or that of jvm-level threads running on top
of os threads [18, 4]. However, while the performance
of jit compilation and garbage collection has been sub-
ject to extensive study, there is not so much work in the
direction of evaluating the performance of i/o in Java
or accessing the overhead of overlapping responsibilities
between the jvm and the os.

The Java platform was one of the first general pur-
pose programming environments to offer support for au-
tomatic memory management, with the introduction of
garbage collection as a standard feature of the language.
Due to its, initially, low performance, the garbage col-
lection process [20, 5, 11] and the memory allocation
patterns of Java programs [29, 35] have been studied
extensively. Other researchers tried to employ the op-
erating system’s virtual memory system to co-operate
with the jvm garbage collector in order to improve its
performance [2, 31, 21]. The DaCapo suite of applica-
tions has emerged as the standard memory management
benchmark [6].

In reference [10], Dickens evaluates the i/o capabil-
ities of the Java platform in the context of scientific
computing. The paper examines the basic i/o capabil-
ities of the language, as these are exposed through the
core api, and also proposes several ways to by-pass the
Java’s inability to write to direct memory buffers of any
data type. The authors also benchmark the proposed
solutions in multithreaded environments and conclude
by proposing a stream oriented architecture for Java. In
reference [7], Bonachea proposes a mechanism for per-
forming asynchronous i/o in Java, also in the context of
scientific computing. The Java platform is found to offer
very weak i/o performance. Finally, Welsh and Culler
[33], present Jaguar, a mechanism to access raw memory
and operating system services such as memory-mapped
files without the need of the jni layer. Jaguar per-

9

forms i/o by translating predefined bytecode sequences
into inlined library calls, which in turn can perform
operations directly on hardware devices. Jaguar was
targeted to a custom, high-performance i/o architec-
ture prototype and not to generic hardware, though. A
lightweight evaluation of the jni overhead is also pre-
sented in the paper. A good overview of the default Java
platform i/o capabilities is presented in reference [4].
The authors use both blocking and non-blocking i/o
to implement server software that they expose to high
client volume. The paper presents evidence that heavy
threading causes significant performance degradation as
a consequence of context switching, although the au-
thors do not identify the cause.

The JikesXen Java runtime environment borrows ideas
from exokernel systems [12] and bare metal jvms [15].
However, it can not be categorised as either of the for-
mer, although it bares some resemblance with type safe
operating systems [14, 22]. The basic idea behind ex-
okernel systems is to move resource management to the
application instead of the system kernel, which is ef-
fectively reduced to a hardware sharing infrastructure.
Applications use library oss to help them communicate
with the hardware. Similarly, JikesXen manages com-
puting resources inside the vm, but it does not require
an external libos, as all functionality is self-contained.
Bare metal jvms and type safe oss must implement
driver infrastructures and protect shared subsystems
from concurrent access, as they are designed to run
multiple concurrent applications. On the other hand,
JikesXen will be required to implement drivers for the
Xen virtual devices, but since the hypervisor interface
is the same across all supported hardware no extra lay-
ers of infrastructure software will need to be developed.
Several optimisation opportunities emerge from this ar-
chitecture while resource management will be greatly
simplified.

Finally, Libra [1] is a recent effort to build an a system
that is in many aspects similar to JikesXen. Libra is a
library operating system designed to support slightly
modified applications to run as DomU Xen partitions.
The interesting idea behind it is that instead of using
the Xen virtual devices, it defers i/o to an Inferno 9P
server running on Dom0. The ibm j9 jvm has been suc-
cessfully ported on Libra. The performance figures pre-
sented in the paper show a very good speedup in heavy
multithreaded applications but performance is not as
good when considering i/o against the standard J9 on
Linux setup. bea systems has implemented a surpris-
ingly similar, in principle, ’‘bare-metal” jvm [9], but
little information is known about it.

7. CONCLUSIONS
We examined the runtime overhead imposed by the

operating system and the native execution environment

on the Java programming language. Our work demon-
strates that performing i/o in Java is an expensive op-
eration, due to limitations of the current interfacing
mechanisms employed by the jvm and the structure
of current operating systems. Memory allocation and
threading also affect the jvm performance, but their ef-
fect is mostly apparent in short running applications.
A simple heuristic for calculating the total overhead of
threaded applications was also presented in the paper
and, was found adequately accurate. We also presented
selected bits of our work on the JikesXen Java runtime
environment, which targets the exact problems we have
presented in this work.

Acknowledgements
This work is partially funded by the Greek Secretariat of
Research and Technology thought,the Operational Pro-
gramme competitivenes, measure 8.3.1 (pened), and
is co-financed by the European Social Funds (75%) and
by national sources (25%) and partially by the Euro-
pean Community’s Sixth Framework Programme under
the contract ist-2005-033331 “Software Quality Obser-
vatory for Open Source Software” (sqo-oss).

8. REFERENCES
[1] G. Ammons, J. Appavoo, M. Butrico, D. D. Silva,

D. Grove, K. Kawachiya, O. Krieger,
B. Rosenburg, E. V. Hensbergen, and R. W.
Wisniewski. Libra: a library operating system for
a JVM in a virtualized execution environment. In
VEE ’07: Proceedings of the 3rd international
conference on Virtual execution environments,
pages 44–54, New York, NY, USA, 2007. ACM
Press.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time
concurrent collection on stock multiprocessors. In
PLDI ’88: Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design
and Implementation, pages 11–20, New York, NY,
USA, 1988. ACM Press.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[4] S. Beloglavec, M. Hericko, Matjaz, B. Juric, and
I. Rozman. Analysis of the limitations of multiple
client handling in a java server environment.
SIGPLAN Not., 40(4):20–28, 2005.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley.
Myths and realities: the performance impact of
garbage collection. In SIGMETRICS
2004/PERFORMANCE 2004: Proceedings of the
joint international conference on Measurement

10

and modeling of computer systems, pages 25–36.
ACM Press, 2004.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. Eliot, B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The
dacapo benchmarks: Java benchmarking
development and analysis. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming
systems, languages, and applications, pages
169–190, New York, NY, USA, 2006. ACM Press.

[7] D. Bonachea. Bulk file I/O extensions to Java. In
JAVA ’00: Proceedings of the ACM 2000
conference on Java Grande, pages 16–25, New
York, NY, USA, 2000. ACM Press.

[8] B. M. Cantrill, M. W. Shapiro, and A. H.
Leventhal. Dynamic instrumentation of
production systems. In Proceedings of the 2004
USENIX Annual Technical Conference, pages
15–28. USENIX, 2004.

[9] J. Dahlstedt. Bare metal - speeding up Java
technology in a virtualized environment. Online,
2006.

[10] P. M. Dickens and R. Thakur. An evaluation of
Java’s I/O capabilities for high-performance
computing. In JAVA ’00: Proceedings of the ACM
2000 conference on Java Grande, pages 26–35,
New York, NY, USA, 2000. ACM Press.

[11] L. Dykstra, W. Srisa-an, and J. Chang. An
analysis of the garbage collection performance in
Sun’s Hotspot Java virtual machine. In
Conference Proceedings of the IEEE International
Performance, Computing, and Communications
Conference, pages 335–339, Phoenix, AZ, USA,
April 2002.

[12] D. R. Engler, M. F. Kaashoek, and J. J. O’Toole.
Exokernel: an operating system architecture for
application-level resource management. In SOSP
’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 251–266,
New York, NY, USA, 1995. ACM Press.

[13] R. P. Goldberg. Survey of virtual machine
research. IEEE Computer, 7(6):34–46, June 1974.

[14] M. Golm, M. Felser, C. Wawersich, and
J. Kleinöder. The jx operating system. In
Proceedings of the USENIX 2002 Annual
Technical Conference, pages 45–48, June 2002.

[15] G. Gousios. Jikesnode: A Java operating system.
Master’s thesis, University of Manchester,
September 2004.

[16] G. Gousios. The JikesXen Java server platform.
In Companion to the 23rd OOPSLA (Doctoral

Symposium), Oct 21-24 2007. (to appear).
[17] G. Gousios, V. Karakoidas, and D. Spinellis.

Tuning Java’s memory manager for high
performance server applications. In I. A. Zavras,
editor, Proceedings of the 5th International
System Administration and Network Engineering
Conference SANE 06, pages 69–83. NLUUG,
Stichting SANE, May 2006.

[18] Y. Gu, B. S. Lee, and W. Cai. Evaluation of Java
thread performance on two different
multithreaded kernels. SIGOPS Oper. Syst. Rev.,
33(1):34–46, 1999.

[19] C. Hawblitzel and T. von Eicken. Luna: a flexible
Java protection system. In OSDI ’02: Proceedings
of the 5th symposium on Operating systems design
and implementation, pages 391–401, New York,
NY, USA, 2002. ACM Press.

[20] M. Hertz and E. D. Berger. Quantifying the
performance of garbage collection vs. explicit
memory management. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming
systems languages and applications, pages
313–326, New York, NY, USA, 2005. ACM Press.

[21] M. Hertz, Y. Feng, and E. D. Berger. Garbage
collection without paging. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 143–153, New York, NY,
USA, 2005. ACM Press.

[22] G. Hunt, J. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fa?hndrich, C. Hawblitzel,
O. Hodson, S. Levi, N. Murphy, B. Steensgaard,
D. Tarditi, T. Wobber, and B. Zill. An overview
of the Singularity project. Microsoft Research
Technical Report MSR-TR-2005-135
MSR-TR-2005-135, Microsoft Research, 2005.

[23] S. T. King, G. W. Dunlap, and P. M. Chen.
Operating system support for virtual machines. In
Proceedings of the General Track:2003 USENIX
Annual Technical Conference, pages 71–84, San
Antonio, Texas, USA, June 2003. USENIX.

[24] S. Liang. Java Native Interface: Programmer’s
Guide and Specification. Addison-Wesley, first
edition, Jun 1999.

[25] A. Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W. Zwaenepoel. Diagnosing
performance overheads in the Xen virtual
machine environment. In VEE ’05: Proceedings of
the 1st ACM/USENIX international conference
on Virtual execution environments, pages 13–23,
New York, NY, USA, 2005. ACM Press.

[26] K. Palacz. JSR 121: Application isolation API
specification. Java Community Process, Jun 2006.

[27] K. Palacz, J. Vitek, G. Czajkowski, and

11

L. Daynas. Incommunicado: efficient
communication for isolates. In OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming,
systems, languages, and applications, pages
262–274, New York, NY, USA, 2002. ACM Press.

[28] M. Reinhold. JSR 51: New I/O APIs for the Java
platform. Java Specification Request, May 2002.

[29] T. Skotiniotis and J. en Morris Chang.
Estimating internal memory fragmentation for
Java programs. Journal of Systems and Software,
64(3):235–246, December 2002.

[30] J. E. Smith and R. Nair. The architecture of
virtual machines. IEEE Computer, 38(5):32–38,
May 2005.

[31] D. Spoonhower, G. Blelloch, and R. Harper. Using
page residency to balance tradeoffs in tracing
garbage collection. In VEE ’05: Proceedings of the
1st ACM/USENIX international conference on
Virtual execution environments, pages 57–67, New
York, NY, USA, 2005. ACM Press.

[32] VMware. Vmware esx server 2: Architecture and
performance implications. Vmware white paper,
VMware, 2005.

[33] M. Welsh and D. Culler. Jaguar: enabling
efficient communication and I/O in Java.
Concurrency: Practice and Experience,
12(7):519–538, Aug 2000.

[34] A. Whitaker, M. Shaw, and S. D. Gribble. Scale
and performance in the Denali isolation kernel.
SIGOPS Oper. Syst. Rev., 36(SI):195–209, 2002.

[35] Q. Yang, W. Srisa-an, T. Skotiniotis, and
J. Chang. Java virtual machine timing probes: a
study of object life span and garbage collection.
In Conference Proceedings of the 2002 IEEE
International Performance, Computing, and
Communications Conference, pages 73–80,
Phoenix, AZ, USA, April 2002.

[36] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan,
and J. E. B. Moss. Automatic heap sizing: taking
real memory into account. In ISMM ’04:
Proceedings of the 4th international symposium on
Memory management, pages 61–72, New York,
NY, USA, 2004. ACM Press.

12

