
TOOLS AND METHODS FOR LARGE

SCALE EMPIRICAL SOFTWARE

ENGINEERING RESEARCH

A thesis submitted to the

Athens University of Economics and Business

for the degree of Doctor of Philosophy

2012

By

Georgios I. Gousios

Department of Management Science and Technology

Athens University of Economics and Business

viii

Contents

Abstract xix

Acknowledgements xxiii

1 Introduction 1

1.1 Context . 2

1.2 Contributions . 3

1.3 Thesis Outline . 4

1.4 Work Performed in Collaboration . 4

2 Related Work 7

2.1 Empirical Methods in Software Engineering 8

2.2 Ingredients of Empirical Studies . 10

2.2.1 Metrics . 11

2.2.2 Data . 16

2.2.3 Metric Tools and Measurement Automation 21

2.2.4 Analysis Approaches . 28

2.3 Analysis of Related Work . 34

2.3.1 A Classification Framework for Empirical Studies 34

2.3.2 Analysis . 35

2.3.3 Results . 36

2.4 Summary . 40

3 Problem Statement and Proposed Solution 43

3.1 Performing Large Scale Studies with Empirical Data 43

3.2 The Software Engineering Research Platform 45

3.3 Hypotheses . 46

3.4 Relation to Other Approaches . 47

3.5 Limits of Research Scope . 49

ix

4 Research Platform Design and Implementation 51

4.1 Requirements . 52

4.1.1 Integrate Data Sources . 52

4.1.2 Manage Computing Resources E�ciently 53

4.1.3 Working with Large Data Volumes 55

4.1.4 Result Sharing and Experiment Replication 57

4.2 Data . 58

4.2.1 Raw Data and Mirroring . 58

4.2.2 Structured Metadata . 65

4.3 Tools . 68

4.4 Operation . 70

4.4.1 Representing scm Data in Relational Format 71

4.4.2 Resolving Developer Identities Across Data Sources 84

4.4.3 Clustering . 89

4.5 Summary . 92

5 Empirical Validation 93

5.1 Intense Electronic Discussions and Software Evolution 93

5.1.1 Research Questions . 94

5.1.2 Method of Study . 96

5.1.3 Results . 99

5.2 Development Teams and Maintainability 101

5.2.1 Research Questions . 102

5.2.2 Method of Study . 102

5.2.3 Results . 105

5.3 The Perils of Working with Small Datasets 105

5.4 Hypotheses Validation . 107

5.5 Summary . 109

6 Conclusions and Future Work 111

6.1 Summary of Results . 111

6.1.1 Systematic Analysis of Related Work 112

6.1.2 Building the Platform . 112

6.1.3 Conducting Large Scale Experiments 114

6.2 Future work . 114

6.2.1 Data Validation . 115

6.2.2 Results Distribution . 115

6.2.3 Repositories for Tools and Results 115

6.2.4 Validate Existing Work . 116

x

6.3 Conclusions . 116

Bibliography 117

xi

xii

List of Tables

2.1 Empirical research methods as used in software engineering works. . . . 10

2.2 Tools used in empirical software engineering research 23

2.3 Implemented updaters in sqo-oss . 26

2.4 Types of social networks in oss development 31

2.5 Publication outlets considered for this systematic review 34

2.6 A classification framework for empirical software engineering studies . . 36

2.7 Legend of possible values for Table 2.8 37

2.8 Categorisation of empirical studies according to the framework presented

in Table 2.6. A legend for field values can be seen in Table 2.7 41

4.1 Non-exhaustive list of software process support systems 53

4.2 Key size metrics for selected projects as of November 2008. 55

4.3 The project.properties file format . 65

4.4 List of metrics included in the serp default dataset 69

4.5 Description of the input to the scmmap algorithm 72

4.6 Correspondence of the fields for the svn and git scm systems to the

input fields for the scmmap algorithm. Values correspond to the log

messages shown in Listing 4. 76

4.7 Examples of identities for the same developer in various data sources. . 85

4.8 List of heuristics used by the idmap algorithm 88

4.9 Cluster services supported commands, results and scheduling implications 91

5.1 Results from the discussion heat plugin. 100

5.2 Maintainability Index (MI) - Developer count correlation coe�cients. . . 104

xiii

xiv

List of Figures

2.1 Possible bug states in bts systems . 20

2.2 The sqo-oss system architecture . 25

2.3 Overlap of msr research categories . 29

2.4 Decomposition of identified research focus categories to individual re-

search focus items. 38

2.5 Distribution of research methods, objects of study, purposes of study,

research focus points (enconding as per Figure 2.4), analysis method,

data sources and number of projects in the study sample. 39

3.1 The four pillars of better empirical studies 46

3.2 The serp platform architecture with our specific contributions highlighted. 48

4.1 Program (left) vs data (right) clustering. 56

4.2 The project mirror schema . 64

4.3 The data storage schema . 66

5.1 Number of messages per thread (a), thread depth (b), and thread dura-

tion distributions for all mailing list threads in the serp database 95

5.2 Distribution of the number of emails per thread in various projects . . . 96

5.3 Scatter plot of the number of messages vs the thread depth. The two

variables are correlated (R2 = 0.70). 99

5.4 Maintainability index plug-in dependencies on other plug-ins. 103

5.5 Sample maintainability index plot for the whole lifetime of three popular

Open Source Software (OSS) projects. 104

5.6 MI vs Number of Developers at the project level, for all project versions. 105

5.7 MI vs Number of Developers at the module level, for all directories. . . 106

5.8 Correlation co-e�cient distribution for linear regression between module

MI and developers that worked on the module. 107

xv

xvi

To my parents, for their infinite support.

xvii

xviii

Abstract

Software engineering is concerned with the study of systematic approaches towards soft-

ware development and maintenance. According to many authors, software engineering

is an empirical science as it strives to produce models that capture the characteristics

of the development process or to predict its behaviour. Being an empirical science,

software engineering is in a constant need for data.

The emergence of the Open Source Software (oss) movement has provided soft-

ware engineering researchers with rich process and product data. oss projects make

their source configuration management, mailing lists and issue tracking database sys-

tems publicly available. Although they are free to use, oss data come with a cost for

the researcher. During a lifetime spanning multiple decades, several oss projects have

amassed gigabytes of data worth studying. The computational cost for processing such

large volumes of data is not trivial and lays beyond the capabilities of single worksta-

tion setups. Moreover, each project uses its own combination of the aforementioned

and other project management systems management tools, such as Wikis and docu-

mentation generators. Without the appropriate abstractions, it is challenging to build

tools that can process data from various projects at the same time.

In the recent years, software engineering research benefited from the availability of

oss repositories and a new stream of research that takes advantage of the rich process

data residing in those repositories emerged. To evaluate the extend and use of oss

data in empirical software engineering studies, we conducted a systematic literature

review. Specifically, we constructed a classification framework which we then applied

on 70 randomly selected studies published in various software engineering publication

outlets from 2003 onwards. The classification provided interesting insights:

• Studies are being performed almost exclusively on data originating from oss

projects.

• The vast majority of studies use data from less than 5 projects.

• There is no cross validation of the results of published works.

We attribute the obtained results to the inherent complexity of experimenting with

xix

oss data. To remedy the situation, we propose performing large scale software engin-

eering research studies on an integrated platform, that combines easy to use and extend

tools and readily analysed data. Drawing from the experiences of other mature empir-

ical fields, we believe that shared research infrastructures are crucial for advancing the

state of the art in research, as they enable rigourous evaluation, experiment replication,

sharing tool, results and raw data and, more importantly, allow researchers to focus on

their research questions instead of spending time to re-implement tools or pre-process

data.

In this thesis, we investigate novel ways to integrate process and product data from

various oss repositories in an e↵ort to build an open Software Engineering Research

Platform (serp) consisting of both software tools and shared data. We base our work

on sqo-oss, a tool designed to perform software quality analysis. We analyse the

design of the raw data and metadata storage formats and as part of its implementa-

tion, we develop novel solutions to the problems of: (i) representing distributed and

centralised source configuration management data in relational format (ii) identifying

and resolving developer identities across data sources, and (iii) e�ciently representing

and distributing processing workload towards fully exploiting the available hardware.

To demonstrate the validity of our approach, and the e↵ectiveness of the proposed

platform in conducting large scale empirical research, we perform two case studies us-

ing it. The first one examines the e↵ect of intense email discussions on the short-term

evolution of a project. The hypothesis under investigation is that since oss projects

have limited human resources, intense discussions on mailing lists will have a meas-

urable e↵ect on the source code line intake rate. After examining the characteristics

of intense communications, we construct a model to calculate the e↵ect of discussions

and implemented it as an extension to our platform. We run the study on about 70

projects and we find that there is no clear impact of intense discussions in short term

evolution.

In the second case, we correlate maintainability metrics with key development pro-

cess characteristics to study their e↵ect on project maintenance. Specifically, we study

whether the number of developers that have worked on a project or on a specific source

module is indicative of how maintainable the project as a whole or the module is. Using

the serp platform, we run the study on 210 c and Java projects. We find no correla-

tion between the number of developers that have worked on a project or a source code

module and its maintainability, as this is measured by the maintainability index metric.

One of our findings is that in both case studies, the application of bias on the

selection of the examined sample, would lead to completely di↵erent results. In fact,

we show that there are more hypothesis validating cases (even though the hypotheses

have been overall invalidated) for each case study than the average number of cases

xx

evaluated per case study in currently published studies, which we derived from the

systematic literature review. We consider this result as a strong indication of the value

of large scale experimentation we advocate in this thesis.

Overall, our contribution has both a scientific and a practical aspect. More spe-

cifically:

• We describe a framework for classifying empirical software engineering research

works and we use it to analyse the shortcomings of the current state of the art.

• We analyse the requirements and describe the design of a platform for large scale

empirical software engineering studies.

• We introduce a relational schema for storing metadata from software repositories,

which provides our platform with enough abstractions to retrieve software process

metadata across projects and across software repositories.

• We introduce an algorithm for mapping semi-structured data from software con-

figuration management repositories in a relational format.

• We introduce algorithms for resolving developer identities across data sources and

for distributing the load of computation across nodes in a cluster environment.

• We validate our platform by conducting two case studies using it. We find that

intense email discussions do not a↵ect short term project evolution and that

development team size does not a↵ect software maintainability at the module or

project level.

• We show that the results of the aforementioned case studies could be radically

di↵erent if bias is applied on the selected experimentation dataset, thereby val-

idating our thesis on the importance of conducting experiments on large scale

datasets.

Finally, we make the software we developed and the data we produced available to

the research community under non-restrictive licenses.

xxi

xxii

Acknowledgements

Writing a thesis is hard; when doing it under time pressure, it can be a task for the

daring. Fortunately, I had been in similar situations many times in the 41

2

years I have

worked at the Information Systems Technology Laboratory of the Athens University of

Economics and Business, so I had in my arsenal the tools and methods to carry this

task out. Here is a list of people that have contributed in more ways than they could

imagine.

My “thank you” section will start with my supervisor, Diomidis Spinellis. I have

been working with Diomidis since 2001, and not in a single moment did I have second

thoughts. The way I see it, there are two kind of mentors: those that take you by the

hand and show you the whereabouts and those that throw you in the cold sea without

a life vest but provide you with the necessary support and guidance in order not to

drown. Diomidis followed the second approach, and allowed me to be hit hard by paper

reviewers and bureaucratic procedures, but always supported me. I believe this kind

of research training made me a better researcher, in the same way hard training makes

commandoes better at their job than infantry. So, thank you Diomidis for being my

research boot camp trainer and for all the opportunities you gave me during all those

years!

I have had other mentors too, although I doubt that they will acknowledge their

role. Vassileios Karakoidas was my intro to the funded research world. Early on, he

gave me one of the best pieces of advice that a noob researcher can receive: “never

make another one’s problem your own”. Other than that, he has been a close friend,

a very interesting person to discuss with and a worthy challenger on 2 player video

games. The combination of his assertive quotes with the other Vassileios we had at the

lab, Vlahos, faster-than-blink replies had excellent e↵ects on morale, even though the

e↵ects on productivity remain questionable. Speaking of the other Vasilleios, he was

my mentor in o�ce, business-like, behaviour; his sense of responsibility, willingness to

help and support when I was feeling blue went missing from the lab when he graduated.

“Doing a PhD requires a strong gut” he used to say; how true!

I also had the chance to work with other brilliant people: Stephanos Androutsellis-

Theotokis, Dimitris Mitropoulos and Kostas Stroggylos, I didn’t get to know them as

xxiii

well as I would like; my apologies, this is an open task for the future. Nevertheless,

we had a very good time working together at the lab and even more so when going

out for the occasional co↵ee. Panos Louridas helped me in too many occasions to

remember individually with the unconceivable amounts of knoweledge he stores in his

head. Eirini Kalliamvakou helped me understand that there is actually a lot of research

that can be done without writing code, which in my mind initially seemed irrational.

Her supervisor, Nancy Pouloudi, was kind enough to give me a personalised short

“research methods for dummies” seminar, that changed the way I wrote chapter 2.

The following persons have contributed to my work without knowing it. I occasion-

ally came in touch with them with seemingly unrelated questions, only to have their

unbiased opinion: Ioannis Samoladas, Mirko Böhm and the other people from the sqo-

oss project, Israel Herraiz, Ian Rogers, Stavros Grigorakakis, Georgios Zouganelis and

perhaps others that I may forget (my apologies!). Finally, I would also like to thank

both organisations that supported my research.1

Last, but not least, Fenia Aivaloglou was my normal life counterpoise. She stood

by me when I was under pressure, understood me when I told her I had to work yet

another long day and provided all kinds of support from emotional to purely technical,

being my resident database expert and paper reviewer. After all what we have gone

through together (she also did a PhD at the same time), I believe that the di�cult part

finally comes to an end.

Georgios Gousios

June 2009

1 The work presented in this thesis was supported by the Greek Secretariat of Research and Technology

through the Operational Programme competitiveness, measure 8.3.1 (Reinforcement Programme of

Human Research Manpower – pened), financed by National and Community funds (25% from the

Greek Ministry of Development-General Secretariat of Research and Technology and 75% from the

European Social Fund). Additional support, in the form of equipment, travel and conference funding,

was provided by the European Community’s Sixth Framework Programme under the contract ist-2005-

033331 “Software Quality Observatory for Open Source Software” (sqo-oss).

xxiv

Chapter 1

Introduction

empirical, adj: based on, concerned with, or verifiable by observation or experience

rather than theory or pure logic.

— The Oxford American Dictionary

This dissertation is concerned with the study of tools and methods for enabling

large scale software experimentation. The problem we are trying to tackle is how we

enable empirical software engineering research to be performed on very large process

and product datasets. What we propose is a platfrom, combining an e�cient and

extensible tool with preprocessed datasets, which researchers can use in order to conduct

experiments with. By abstracting the raw data formats and the processes required

to manipulate them, we show that complex experiments involving both process and

product data can be e↵ectively reduced to compact algorithmic descriptions of the

measurements that the experiment must produce. At the same time, the processing

load can be distributed to clusters of machines thereby enabling experimentation with

large data volumes. The validity and applicability of our approach is demonstrated

via two case studies in which we use the proposed platform as a tool for studying

how process characteristics reflect on product development, on a very large data set.

Our results show that large scale research with empirical data originating from both

product and process data sources is possible, provided the appropriate abstractions and

hardware infrastructure.

In this chapter we describe our motivation for undertaking this research, by identi-

fying the work context and presenting our goals and contributions. We also provide a

summary of each chapter, to guide the reader through the contents.

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

The adjective “empirical” is attached to various scientific fields to denote that their

primary focus is the analysis of observations made on existing systems and the intro-

duction of models that explain the observed behaviours. While we do not refer to other

sciences as empirical to signify their involvement with natural phenomena or the fact

that they validate theoretical predictions by applying the scientific method, currently

we do so only to characterise a specific branch of software engineering. For many years

since the start of the computer age, the term software engineer was equivalent to that

of a source code developer. Only when software systems became excessively complic-

ated did software engineering emerge as a separate discipline that studies the software

development process and its e↵ects on the produced product [IEE90]. Today, similarly

to other engineering fields, software engineering has taken two directions: applied soft-

ware engineering is concerned with the large scale production of software while research

software engineering strives to advance the state of the art by producing methods and

tools that improve the software development process. The second branch of software

engineering is what we refer to as empirical.

Currently, there is a growing interest in software engineering research to use data

originating from OSS projects [Moc09]. It could be argued that, apart from the software

landscape, the OSS movement has also changed the way the study of software is being

done. OSS projects make their Software Configuration Management (SCM), mailing lists

and Bug Tracking Systems (BTS) publicly available. The wealth of combined process

and product data has attracted the interest of many researchers, as this is the first

time in the history of software engineering that large scale empirical studies can be

performed with real data outside the walls of large software organisations. However,

even though they are free to use, OSS data come with a cost for researchers:

• During a lifetime spanning multiple decades, several OSS projects have amassed

gigabytes of data worth studying. The computational cost for processing such

large volumes of data is not trivial. For fast experiment turnover, researchers must

design their analysis tools to exploit modern multiprocessor machines. However

those e↵orts are often not enough, as the capacities of single machines are easily

saturated by the processed data volumes.

• Each project uses its own combination of SCM, mailing list, BTS and other pro-

ject management tools, such as Wikis and documentation systems. Without the

appropriate abstractions, it is challenging to build tools that can process data

from various projects at the same time.

• Empirical studies are often conducted in several phases, and a diverse set of tools

1.2. CONTRIBUTIONS 3

can be applied in each phase. Intermediate results must be stored and retrieved

e�ciently in formats suitable for use by chains of tools.

As a result of the above, several studies [kwW97, SHH+05], including ours, show

that empirical studies in software engineering neither take full advantage of the data on

o↵er nor (or at least, seldom) base their experimental results on prior studies. The same

studies urge software engineering researchers to validate their models more rigorously,

as this is what drives general applicability of the performed studies [PPV00]. This

dissertation attempts to improve this situation by describing and evaluating a platform

for software engineering research.

1.2 Contributions

It is our thesis that software engineering as a disciple should strive towards more rig-

orous experimentation. The OSS movement presents a unique opportunity in that re-

spect as it provides researchers with access to rich historical process and product data

originating from some of the top quality software projects in existence today [MFH02,

SSAO04]. However, existing studies only partially take advantage of the existing wealth

of data, which, in our view, renders the presented results vulnerable to falsification and

precludes their re-use in other studies.

The main contributions of this thesis can be summarized as follows:

• We describe a framework for classifying empirical software engineering research

works (Section 2.3.1) and we use it to analyse the shortcomings of the current

state of the art (Section 2.3.3).

• We analyse the requirements (Section 4.1) and describe the design (Sections 4.2

— 4.3) of a platform for large scale empirical software engineering studies.

• We introduce a relational schema for storing metadata from software repositories,

which provides our platform with enough abstractions to retrieve software process

metadata across projects and across software repositories (Section 4.2.2).

• We introduce an algorithm for mapping semi-structured data from software con-

figuration management repositories in a relational format (Section 4.4.1).

• We introduce algorithms for resolving developer identities across data sources and

for distributing the load of computation across nodes in a cluster environment

(Sections 4.4.2 — 4.4.3).

• We validate our platform by conducting two case studies using it. We find that

intense email discussions do not a↵ect short term project evolution (Section 5.1)

4 CHAPTER 1. INTRODUCTION

and that development team size does not a↵ect software maintainability at the

module or project level (Section 5.2).

• We show that the results of the aforementioned case studies could be radically

di↵erent if bias is applied on the selected experimentation dataset, thereby val-

idating our thesis on the importance of conducting experiments on large scale

datasets (Section 5.3).

1.3 Thesis Outline

The remainder of this dissertation is organised as follows:

In Chapter 2, we describe and analyse previous work that relates to and motivates this

dissertation. After a systematic literature review, we show that, despite the abundance

of free software engineering data, the datasets used for conducting case studies are

very small, while there is no experiment replication that would reinforce the reuse of

research findings.

In Chapter 3, we present the problem we are trying to solve and motivate the need

for a platform for large scale software engineering research. We also formulate a set of

hypotheses for our model platform.

In Chapter 4, we present the requirements the design and bits of the implementation

of the proposed platform.

In Chapter 5, we present two confirmatory case studies which we use as a vehicle

to validate our hypotheses in two di↵erent experimental contexts. We also present

evidence on the importance of conducting large scale experiments.

Finally, in Chapter 6, we present a list of future research topics that emerge from this

work and we conclude the dissertation.

1.4 Work Performed in Collaboration

Much of the work described in this thesis has been carried out using the tools and equip-

ment infrastructure provided by the Software Quality Observatory for Open Source

Software (SQO-OSS) project, a European Commission funded research e↵ort aiming to

produce software quality evaluation tools and techniques. While the project was active,

I served it as its manager, chief designer, and have contributed the largest portion of

code to the SQO-OSS system’s code base. However, some pieces of the work have been

carried out entirely by other people while others have been carried out in co-operation

with me. Specifically, I designed and developed the tool’s metadata updaters, storage

1.4. WORK PERFORMED IN COLLABORATION 5

data schema for metadata, plug-in architecture, project data mirroring schema, cluster

architecture, and I have contributed large parts of the raw data access components.

Other project participants developed various other system parts, which I have used to

implement the functionality required to build the described research platform.

An overview of the SQO-OSS tool, that includes contributions made be others, can

be found in Section 2.2.3.1. My specific contributions to the SQO-OSS tool that form

part of the Software Engineering Research Platform (SERP) platform described in this

dissertation, are analysed in Chapter 4. Additionally, the idea of applying scores to the

developer identity matching algorithm presented in Section 4.4.2 came from Panagiotis

Louridas.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

No amount of experimentation can prove me right. A single experiment can prove me

wrong.

— Albert Einstein

The use of the term software engineering can be traced back at least as far as

the 1968 NATO Conference in Garmisch, West Germany. One of the pioneers in the

subject, Peter Naur, defined software engineering as:

Software engineering is the establishment and use of sound engineering principles in order

to economically develop software that is reliable and works e�ciently on real machines.

A more formal definition is given in the Institute of Electical and Elecronic Engin-

eering (IEEE) Standard Glossary for Software Engineering [IEE90]:

(1) The application of a systematic, disciplined, quantifiable approach to the develop-

ment, operation, and maintenance of software; that is, the application of engineering to

software.

(2) The study of approaches as in (1).

Software engineering is mostly concerned with the study of tools and methods used

to construct better software. According to several authors [Bas96, WW00, PPV00,

SHH+05], software engineering is an empirical science, as both the studied artefacts and

the developed methods are (or are applied on) real, existing systems. Moreover, Wohlin

and Wesslen [WW00] argue, that software engineering is governed by human behaviour,

as in the end it is people who develop; consequently, it is not possible to find any formal

rules or laws in software engineering except when focusing on specific technical aspects.

One of the founders of experiment-based software engineering, Vic Basili, notes that

“software engineering is a laboratory science” and consequently he advocates a cycle

of observation, model building, experimentation, and learning [BSH86].

7

8 CHAPTER 2. RELATED WORK

In this chapter, we present a structured overview of the literature in the field of em-

pirical software engineering. Near the end of the chapter (Section 2.3), we also perform

a meta-analysis of the studied works to discover interesting trends and shortcomings in

current empirical software engineering work.

2.1 Empirical Methods in Software Engineering

Empiricism is a branch of epistemology (a division of philosophy that deals with the

theory of knowledge), whose basic assertion is that knowledge arises from experience.

Empiricism emphasizes the role of experience and evidence, especially sensory percep-

tion, in the formation of ideas, while discounting the notion of innate ideas. It seeks

to explore and explain natural phenomena by using evidence based on observation and

logical thought. Empiricists tend to focus on the tentative and probabilistic nature of

knowledge in contrast with other philosophical views of science which may be more

assertive (e.g. rationalism).

Empirical observations form an fundamental part of the scientific method. The

scientific method requires a researcher to observe the phenomena under investigation,

formulate hypotheses, and collect data and/or design experiments to validate or falsify

the hypotheses. A hypothesis is a reasoned proposal suggesting a possible correlation

between or among a set of phenomena. A proof of a hypothesis based on empirical

methods is never conclusive; however, an experiment that contradicts the predictions

of a hypothesis is enough to invalidate it. An excellent study on scientific reasoning is

provided by Popper [Pop35].

Empirical research approaches incorporate both qualitative and quantitative meth-

ods for analysing data; quantitative methods involve the analysis of numerical data

with statistical tools in order to quantify the relationships between data groups while

qualitative methods rely more on conceptual analysis of the studied artefacts. Both

types of methods can, and have, been used in software engineering research. Quantit-

ative methods are more common, as it is usually straightforward to collect data from

sources related to software engineering, and set up experiments or perform explorat-

ory studies. Quantitative research usually entails interaction with humans or design

and execution of controlled experiments. Analyses of data collection methods specific

to software engineering are presented by Seaman in [Sea99] and by Lethbridge et al.

in [LSS05].

According to Basili [Bas96], a scientifically sound empirical software engineering

study requires (1) the building of a model that explains the processes behind the studied

phenomenon (2) the construction of hypotheses derived from the model and (3) the

validation of the hypothesis through empirical methods. In a similar work, Perry et

al. [PPV00] go in depth with what constitutes a successful empirical study; their main

2.1. EMPIRICAL METHODS IN SOFTWARE ENGINEERING 9

contribution is that they describe in a systematic fashion the constituents of successful

empirical studies in the context of software engineering. The following research methods

have been proposed by several authors [WW00, GVR02, KPP+02, SDJ07, ESSD08] for

empirical software engineering studies:

Experiments An experiment is an empirical inquiry that investigates relationships

between variables. Specifically, experiments are characterised by the measure-

ment of the e↵ects of manipulating one variable on another variable and by the

fact that subjects are randomly assigned to experiment actors. An experiment

implies control over some of the conditions in which the study takes place and

also control over the independent variables that are being tested.

Surveys A survey is the collection of information from a specific population, usually

by means of questionnaires and interviews. It is useful for studying a large number

of variables using a large sample size and rigorous statistical analysis. Surveys

are especially well-suited for answering questions about what, how much, or how

many, as well as questions about how and why.

Case Studies A case study investigates a set of phenomena in their context they have

occurred. In the context of software engineering, this usually means studying the

behaviour of a set of independent variables towards the construction of models

that describe findings in large data sets. Exploratory case studies are used as

initial investigations of some phenomena to derive new hypotheses and build

theories, while confirmatory case studies are used to test existing theories and

hypotheses. Confirmatory case studies are often used to falsify hypotheses, since

falsification based on empirical data is more convincing than falsification based on

experiment generated data. Case studies can also be characterized as qualitative,

when they study variables that cannot be quantified, and quantitative otherwise.

Not all authors agree on the exact definition of each research method. For example,

Glass et al. [GVR02] introduce the notion of “conceptual analysis” and appear to be

using it in place of what we refer to as qualitative case study; conceptual analysis is

a analytic method in philosophy that works out a problem by decomposing it into its

constituent parts and identifying their relationships. Similarly, a qualitative case study

will try to identify relationships between non-quantitative characteristics by breaking

them down to their constituents. Runeson and Höst [RH09] classify experiments as

special cases of case studies; in our opinion, quantitative case studies di↵er from exper-

iments as the data a case study is performed upon already exist, while in the case of

experiments, the data required to validate a hypothesis do not exist and the experiment

is conducted in order to generate them.

10 CHAPTER 2. RELATED WORK

Table 2.1: Empirical research methods as used in software engineering works.
Study Sample Size Empirical Experiments Surveys Case Studies

[kwW97] > 600 — 3% — 10.3%
[GVR02] 369 14% 3% 1.6% 2.2%
[SHH+05] 5453 15% 1.9% < 1.1% 12%

Furthermore, Easterbrook et al. [ESSD08] describe ethnography and action research

as other potential research methods; in agreement with [RH09], we believe that ethno-

graphic studies is a particular approach to case study research that focus on develop-

ment teams or communities practices. We also fail to see how action research di↵ers

as a research method from case studies in the context of software engineering. Ac-

tion research requires the researcher to manipulate the behaviour of participants under

investigation through his own participation towards improving it while the study is run-

ning. This implies that the observed phenomena falsify the model under investigation

in some manner. The continuous model evolution approach taken by action research

is conceptually a repetitive confirmatory case study, with a new investigation subject

(the refined model) in each iteration.

As a consequence of the definition babel, it is not easy to compare the findings of

exploratory literature studies. Three surveys on the use of empirical research methods

have been carried out by Sjøberg et al. [SHH+05], Glass et al. [GVR02], Zelwowitz and

Wallace [kwW97]. The findings are summarized in Table 2.1. From of a total of 5453

scientific articles published in 12 major software engineering journals and conferences

in the decade 1993–2002, Sjøberg et al. identified 113 controlled experiments, reported

in 1.9% of the study corpus, in which humans performed software engineering tasks.

Glass et al. investigated 369 works and found only 3% of them reporting on controlled

experiments. Zelkowitz and Wallace [kwW97] found similar numbers by examining

more than 600 papers. The use of surveys as a research tool is equally minimal; only

1.6% of papers are reported as survey by Glass et al. and less than 1% by Sjøberg et al.

Furthermore, case studies occupy 2.2%, 10.3% and 12% of the total number of research

papers respectively. From the reported findings, it becomes apparent that the overall

use of empirical methods in software engineering is very small for a science field that

is primarily using empirical data.

2.2 Ingredients of Empirical Studies

In this section, we describe in a structured format the constituents of empirical studies.

From reading and analysing over 200 works (a selected sample of which is presented

in Table 2.8), we observed that most empirical studies, especially case studies and

empirical validations of models and tools, follow a certain recipe:

2.2. INGREDIENTS OF EMPIRICAL STUDIES 11

Study = Model + Metrics + Data + Tools + Analysis approaches + Results

analysis

Researchers working with empirical data have access to a limited set of data sources,

tools and data extraction paradigms. The important outcome of each empirical research

is usually not a new data source or a new data extraction method, but insight from

applying and validating a newly discovered model to existing sets of data, thereby

discovering new knowledge. This observation is intuitive, but su�cient to organise the

presentation of the related work around it. In the next sections, we present a structured

overview of the ingredients common to all empirical studies.

2.2.1 Metrics

Metrics are measures of software properties or its specifications. There are many char-

acteristics of software and software projects that can be measured, such as size, com-

plexity, quality and adherence to process [Kan03, Lai06]. What to measure is a common

question in all empirical studies; the Goal Question Metric (GQM) approach [BCR94]

has been widely used to assess a metric’s suitability towards answering a research

question. In the following sections, we describe the various software metrics that are

used in empirical software studies. Metrics are usually divided in three broad categor-

ies [FP98, Kan03]:

Product metrics quantify various characteristics of the software. They are divided in

two categories [FP98]:

• Internal attribute metrics, that access the size and structure of the product.

• External attributes metrics measure how the internal attributes of the soft-

ware reflect to its quality.

Process metrics are metrics that refer to the software development activities and

processes. Measuring defects per testing hour, time, number of people, etc. falls

under this category.

Resources [FP98] or Project [Kan03] metrics are metrics that refer to any input to

the development process (e.g. people and methods).

In the following sections, we present the most commonly used metrics in empirical

software engineering studies.

2.2.1.1 Product Metrics

Product metrics measure internal attributes of the software under investigation. Product

metrics do not reveal any important information if reported standalone; for this reason

12 CHAPTER 2. RELATED WORK

most empirical studies use product metrics to assess the e↵ectiveness of development

process modeling or tuning. The two most important internal properties to assess are

size and structure.

Internal Characteristics - Size Size is a fundamental attribute of software. Size

measurements are important to compare project sizes, evaluate the amount of e↵ort

that was required to develop the software or evaluate team productivity. The size of

a project is also usually correlated with defect counts, security flaws and evolutionary

metrics. Several metrics of software size have been proposed, which measure program

words [SEG68], lines or functionality.

The simplest way to measure software size is by summing up the Lines of Code (LOC)

of the source files that comprise the software. There are two major types of LOC

measures: physical LOC and logical LOC. Physical LOC is the total number of lines

in a source module, while logical LOC is usually measured as the number of program

statements. The LOC metric is overly simplistic as it does not account for comments,

licence notes or code formating and, more importantly, in expressive di↵erences between

the various programming languages. To account for those problems, researchers have

produced frameworks for counting lines of code in an integrated manner [Par92] and

devised length equivalence tables between programming languages [Jon91]. Despite

criticism, the LOC metric is widely used in empirical studies, especially so in software

evolution research.

Halstead in his classic “Elements of software science” [Hal77] work extended the

notion of software size to include other code elements such as source code operators

and operands. For Halstead, the length (N) of a program is equal to the total number of

operators (N
1

) and operands (N
2

), while the program’s volume (Halstead Volume (HV))

is equal to N ⇥ log
2

(µ
1

+ µ
2

) where µ
1

and µ
2

is the number of distinct operators

and operands respectively. The program volume is essentially a measurement of the

length of an algorithm implementation without being based on code layout. Since

their inception, Halstead’s metrics have been a constant target for criticism in the

literature [FL78, Wey88, CALO94, FP98, MSCC04, Her08], but they are popular in

the evaluation of software maintainability.

The previous size measures count physical size: lines, operators and operands. Many

researchers [AG83, Cha95] argue that this kind of measurement can be misleading,

since it does not capture the notion of how the counted physical entities reflect on

the function the software carries out. Albrecht [Alb79] developed a methodology to

estimate the amount of functionality that is performed by software, in terms of the

data it uses and generates. The function is quantified as function points, i.e. as a

weighted sum of the numbers of inputs, outputs, master files, and inquiries provided

to, or generated by, the software. Function point analysis has been used for planning

2.2. INGREDIENTS OF EMPIRICAL STUDIES 13

and for productivity assessment, although it has been criticised as di�cult to apply

and automate.

Internal Characteristics - Structural Complexity One of the first and most

widely accepted metrics for software complexity is the McCabe Cyclomatic Complexity

(MCC) [McC76]. The metric examines the control flow graph of a function and calculates

a measurement of its complexity by enumerating the number of possible execution paths

a program function has. The Extended McCabe Cyclomatic Complexity (EMCC) metric

also considers the number of boolean operations in the total number of execution paths.

Henry and Kafura’s Information Flow (IF) [HK81] metric relates a module’s com-

plexity to the number of cross-references between the module and other modules. Spe-

cifically, given the number of modules that call functions in the given module (fi) and

the number of modules that are used by the given module (fo), it defines the IF for the

modules as IF = (fi ⇥ fo)2. The IF metric is essentially a measurement of a package’s

or program’s (depending on the calculation scope) structural complexity.

Based on various approaches to measure the structural and modular complexity

of software, Card and Glass [CG90] proposed an integrated system complexity model.

For Card and Glass, system complexity is the sum of structural and data complexity.

Structural complexity is defined as the mean fan-out factor for all system modules

and data complexity is proportionate to the number of i/o variables and inversely

proportionate to the fan-out of a module. They also derived a function that correlates

the results of their model with the project’s error rate.

All structural metrics discussed so far were initially targeted to the assessment of

procedural programs. With the rise of object-oriented programming, software metrics

researchers tried to figure out how to measure the complexity of such applications. The

most widely known set of metrics for object-oriented programs is the Chidamber and

Kemerer (CK) metrics suite [CK94]. The metrics that CK propose are:

Weighted Methods per Class (WMC) The sum cyclomatic complexity for all meth-

ods visible in a class. As method visibility is di�cult to assess before runtime in

many environments, for example due to dynamic loading, the WMC metric is usu-

ally set equal to the number of methods in a class definition without considering

the super classes.

Depth of Inheritance Tree (DIT) The length of the maximum path of class hier-

archy up to the evaluated class.

Number of Children (NOC) The number of immediate subclasses of a class.

Coupling Between Objects (CBO) The number of classes a class depends upon

(“imports” or “includes” in Java and c++ terminology respectively).

14 CHAPTER 2. RELATED WORK

Response For Class (RFC) The total number of di↵erent methods that are being

called from public method bodies in response to a message being received by an

instance of a class.

Lack of Cohesion in Methods (LCOM) The number of di↵erent methods within a

class that reference a given instance variable.

Even though numerous toher object oriented have been proposed in the literat-

ure [FP98], the CK metrics suite is by far the most popular for assessing the design qual-

ity of object-oriented software. Several studies show that the CK metrics suite assists

in measuring and predicting the maintainability of object oriented systems [BBM96,

BMB96, FP98, Spi06b]. Moreover, Rosenberg et al. [RSG99] present a set of thresholds

for each metric; if a class scores worse than the threshold in any 2 metrics, it should

be a target for refactoring. Finally, studies show that certain CK metrics are linked to

faulty classes and can help predict such [Kan03].

External Characteristics - Quality Quality is a functional and aesthetic meas-

urement, used, for instance, to specify a user’s satisfaction with a product, or how

well the product performs compared to similar products. Quality is a very di�cult

property to measure because humans tend to understand quality as the level of the

productb••s conformance to their expectations. Software quality is formally defined

by the iso/iec 9126 standard [ISO04] as comprising of six high level characteristics,

namely functionality, reliability, usability, performance, maintainability and portability.

The standard also defines a set of attributes for each characteristic. Not all iso 9126

characteristics are of concern in software engineering, mainly because they cannot be

quantified statically (e.g. performance) or at all (e.g. functionality). Below, we refer

to the two characteristics that have received the most attention in software metrics

bibliography [FP98, Kan03], namely maintainability and reliability. A more thorough

examination of the field of software quality with respect to the iso 9126 standard is

provided by [Spi06b].

Maintainability Maintenance is the software life cycle stage that begins after

the software has been successfully released. It is believed to occupy the majority of

the software’s life cycle [Hat98], thereby incuring most of the development costs.The

processes that take place during software maintenance are o�cially described in [?].

The IEEE glossary for software engineering [IEE90] defines 3 types of maintenance

operations: corrective, perfective and adaptive. Based on these definitions, Coleman

et al. [CALO94] define maintainability as the ease at which software can be modified

in order to fix and remove defects, adapt to a new operating environment, meet new

2.2. INGREDIENTS OF EMPIRICAL STUDIES 15

requirements, and improve the overall software structure in order to make the future

maintenance easier (refactoring [Fow99]).

Coleman et al. [CALO94] provide a widely known formula for calculating a measure

of maintainability for a given software system, the MI:

MI = 171� 5, 2⇥ ln(avg(HV))

�0, 23⇥ avg(MCB)

�16.2⇥ ln(avg(LOC))

+50⇥ sin(
p
2.4PerCM)

avg(HV) is the average Halstead Volume per module, avg(MCB) is the average

extended cyclomatic complexity per module, and avg(LOC) is the average lines of code

per module. The PerCM metric denotes the percentage of comment lines in the total

number of lines in the project.

The MI is a composite metric whose constants were derived through experimenta-

tion with large c/c++ data sets. The validity of the individual metrics that compose

the maintainability index has been an issue of scrutiny [SI94, Wey88, FL78], and there-

fore their composition is dubious. Each base metric has been particularity selected to

account for the inability of the rest to measure software growth factors: for example

the MCB metric’s, insensitivity to program length is counterpoised by HV inability

to capture program structure. The maintainability index is regarded as non-suitable

for object oriented languages, since various stydies have shown that object oriented

structural metrics are better for assessing maintainability [BBM96, DJ03].

Reliability Software reliability can defined as the probability of failure-free soft-

ware operation for a specified period of time in a specified environment. Reliability is

a widely studied external characteristic, as it is related with one of the most important

properties of software: correctness. According to [Kee94], software reliability is very

di�cult to assess preemptively (as is the case with hardware reliability) and impossible

to reinforce by means of redundancy, since software as a product depends mostly on

human factors rather than natural laws and pre-existing components.

A simple reliability metric is the defect density; it is expressed as the number of

defects found per certain amount of software. This amount is usually counted as the

number of lines of code of the delivered product. Many researchers split the kind

of defects into two categories: known defects, which are the defects that have been

discovered during testing (before the release of the product) and latent defects, which

16 CHAPTER 2. RELATED WORK

are the defects discovered after the release of product. For each of these two categories,

there is a separate defect density metric. More complex reliability models are described

in references [FP98] and [Pel01]. Most models attempt to model reliability as a function

of basic product measures such as size and/or complexity.

2.2.1.2 Process Metrics

Defect Removal E↵ectiveness (DRE) denotes the development team’s ability to remove

defects. The metric is defined as: N
N+S where N is the number of defects found during

the development of the software while S is the number of errors found after end of the

software development cycle. The granularity at which N and S is calculated depends

on the development process being used; for example, in a waterfall-based process, S

would be calculated after the delivery of the software. In more iterative development

cycles, S would be calculated after each iteration cycle. The Backlog Management

Index (BMI) is a measure of the e↵ectiveness of a development process to deal with

incoming defects. The BMI is defined as the ratio of the number of problems closed

to the number of problems arrived in a specified time frame. Closely related is the

Mean Time To Repear (MTTR) metric, which measures the average time to resolve

an issue. Obviously, higher values in all metrics denote both an e↵ective development

team and/or software which is easy to maintain.

2.2.2 Data

Empirical studies use a variety of data sources, which fall under one of the following

categories:

Product data is the direct outcome of the development process. It mainly contains

the source code but can also include other artifacts such as image files, tool

configuration files, documentation files etc.

Process data is a by-product of the development process. Examples include data

maintained from tools developers use to manage the project versions (SCM sys-

tems), electronic communication trails (mailing lists, Instant Relay Chat (IRC)

logs), organisational memory records (Wiki systems, document archives) and BTS.

Not all kinds of data enjoy equal use in empirical studies. Naturally, product data

have been available for study since the beginning of the software engineering discipline,

so empirical studies started as early as 1960. Since the wake of the OSS movement from

1990 and onwards, a lot of software is being written using tools and methods originating

in distributed development environments. Moreover, a vast amount of OSS data have

been made available on the Internet, which makes their use suitable for researchers. A

2.2. INGREDIENTS OF EMPIRICAL STUDIES 17

new wave in software engineering research, colloquially referred to as Mining Software

Repositories (MSR), explores the use of process data originating from software tools

in conjunction with product data to evaluate the development process and the quality

of software projects. As we show in Section 2.3, most empirical studies use software

repositories to extract facts about the software development process and to create

models of software evolution.

2.2.2.1 Source Code

Source code is the main outcome of the development process. As such, it is the target

for the application of product metrics described in Section 2.2.1 and clone detection

methods described in Section 2.2.4.4. The source code of a project represents a snapshot

of its development lifeline, which in itself is not a very rich source of information for

empirical studies. By applying tools on source code, one can obtain information about

the size, the complexity and the structure of the project. Further analysis of source

code artefacts can yield authorship information at the file [FSGK06] or line [GPGA09]

level, the license under which it is distributed [Sca04], the size and coverage of code

documentation, or the existence of “code smells” [Fow99, MVL03] (pieces of code that

need refactoring).

2.2.2.2 Source Code Management Systems

SCM systems store a project’s source code along with meta information about the

development process.

The typical workflow when working with an SCM system is the following: The

checkout command retrieves the latest version from the project’s repository and creates

a workspace. The update command updates the current workspace state: it retrieves

all changes since the last checkout or update and creates new files, replaces outdated

files, and removes files that have been deleted in the repository. If a file has been

changed in both the workspace and the repository, modern SCM systems try to integrate

the changes automatically at the line level; a conflict can occur when a file has been

concurrently modified at the repository and on the developer’s workspace. The commit

command submits changes made by a developer to the repository. Changesets can

modify, add or remove files; in more advanced SCM systems (e.g. Subversion (SVN))

changesets also include file copies between repository locations. A tag is a pointer to

a particular state of the project under revision control, for example it can be added

to signify a released version of the project. Finally, when developers want to test new

features that might render the source code base unstable, they usually create a branch,

which is essentially a fork of the code base at the moment the branch is created. When

the new feature has been tested, the branch is merged to the main code base tree.

18 CHAPTER 2. RELATED WORK

SCM systems can be divided in three categories, based on the type of access they

provide developers with:

Centralised systems keep all versions and metadata in a central location (usually

an internet server) and permit concurrent access of multiple developers to the

repository contents. The repository acts as the central depot of project artefacts

and consequently maintains a centralized view of project history. First generation

centralised SCM systems maintain state per file and therefore it was not possible to

retrieve the state of the whole code base after a commit; newer systems maintain

state in a project wide fashion. Examples include, the Source Code Control

System (SCCS) [Roc75], the forefather of all SCM systems, the Concurrent Version

System (CVS) [Fog99] and the SVN [PCSF08] system.

Distributed systems combine a local SCM with remoting functionality that enables

developers to manage versions locally but also to share their changes with others

online. Distributed SCM systems do not have the notion of project history; in fact,

a project might have multiple parallel lifelines that only materialise if they are

published and then merged with the main development tree. As of this writing

distributed SCM systems are very new and have not yet been used widely for

research purposes [BRB+09, Moc09].

In typical analysis scenarios, software repositories are not used directly; it is usually

more e�cient to extract semi-structured information from the SCM repository and store

it in a relational or raw text format [FPG03, ZW04, RKGB04, Ger04b, JKP+05, Moc09,

?]. The typical method of converting project repository data to relational formats

involves the following steps:

• Extracting the revision log from the repository. The revision log contains inform-

ation about the files that have been changed by each commit along with meta

information about the change, such as the author or the time of change.

• Identifying project revisions: The revision log is used to extract information about

the currently processed revision, such as whether the revision includes branching

or tagging operations.

• Recreating file state: Using the revision log and pre-processed data from previous

revisions, the processing algorithms recreate the project’s file tree at any instance

in its lifetime.

• Resolving transactions and revision order: First generation centralised SCM sys-

tems do not have the notion of project state, so it is necessary to derive it in

the form of a transaction for each commit [ZW04, Ger04b]. On the other hand,

2.2. INGREDIENTS OF EMPIRICAL STUDIES 19

distributed SCM systems do not have the notion of project lifetime; in that case

an approximation based on commit timelines must be implemented.

SCM systems are goldmines of information, containing both process and project

data. For the point of view of researchers, it is like a time-machine that they can use

to travel back in time to examine the state of the project at specific points in time

and correlate these states with process metrics. SCM system data have been used to

evaluate maintainability [MV00, NM03, PP05] and refactoring operations [KWB05],

to perform software archaeology studies [RGBH05] and to extract developer turnover

information [ARGB06, ?].

2.2.2.3 Electronic Communication Trails

Software developers use electronic communication systems in order to increase im-

mediacy in information exchange. This applies especially in global software develop-

ment projects, where time and distance can be significant hurdles in project devel-

opment [Spi06a]. The electronic communication tools developers most often use are

electronic mail, IRC for group discussions, and Instant Messaging (IM) for person to

person discussions. Discussions on IRC and IM are considered informal and personal

and thus projects seldom maintain discussion logs; consequently, there has been a lim-

ited number of studies due to the lack of data [SJH09]. On the other hand, email

message exchanges are usually archived and in the case of OSS, those archives are usu-

ally available to browse and download. Public mailing list data have been used in a

number of empirical studies either standalone [LM03, VTG+06, SSA06, WM07], or

combined with data from other data sources [CH05, WND08].

Mailing list data is neither easy to obtain nor to process. A variety of mailing list

management software packages is in use by OSS projects while archives are usually pub-

lished through a custom web page per project. There are no programmatic interfaces

that can be used to automate the process of retrieving mailing lists. Additionally, the

few web sites that collect emails from OSS projects, like the Mail Archive (MARC)1 and

Nabble2, only allow browsing through the archives on a per message basis. In general,

retrieving email archives requires a custom process for each project, which results to a

prohibitive cost for using mailing list data in large scale empirical research. Moreover,

the emails that comprise the archives do not always follow the standard [Cro82] for the

message header contents, while extracting semantical information from unstructured

text in the message body requires natural language processing and information retrieval

techniques to be employed. For those reasons, emails are primarily used for studying

the social aspects of software development instead of the development process itself,

1http://marc.info
2http://www.nabble.com/

http://marc.info
http://www.nabble.com/

20 CHAPTER 2. RELATED WORK

NEW

OPEN

ASSIGNED

REASSIGNED

PARTIALLY FIXED

TESTING

CLOSED

REOPENED

INVALID

DUPLICATE

Administrative
decission

Administrative
decission

Assigned to
developer

FIXEDAdministrative decission

Assign to
developer

Test OK

Some tests OK

Some fix

Some fix

Pass to another developer

New issue

New problems
 reported

Administrative
decission

Pass to
another

developer

Fix more

Developers cannot
fix issue

Figure 2.1: Possible bug states in bts systems

which only requires the extraction of thread participation relationships from the mail

headers.

2.2.2.4 Bug Tracking Systems

BTS are used to collect bug reports and feature requests from users and developers in

a manual or semi-automatic manner (e.g. through application crash handlers). Most

BTS are organised around bugs reports; each new bug is given a unique identification

number and this is what developers use in order to refer to it. As shown in Figure 2.1,

BTS systems maintain a set of states for the bug reports they receive. Apart from state,

a bug is usually assigned a fix priority and a severity level. Users and developers are

also allowed to comment on the bug’s resolution progress. Most popular BTS systems

(currently Bugzilla, Trac and others) maintain a database with all bug related activity

and feature user and programmatic interfaces to access and query data in the database.

BTS are a very important source of information for empirical research as they contain

both product and process data in a structured format that can be easily processed.

Product data is the actual defects in the project itself or in its subsystems; process

data can be extracted by analysing the characteristics of the defect fixing operation,

for example the time required to fix critical defects or the number of bugs that are

open at a given moment. Records in BTS can be correlated to entries in SCM systems

by analysing commit messages [MFH02, GM03, SZZ05] or by analysing the contents of

bug reports and finding the files they a↵ect [CC05].

2.2. INGREDIENTS OF EMPIRICAL STUDIES 21

2.2.2.5 Pre-processed Data Repositories

A recent development in the field of data sources is the provision of research-oriented

pre-processed datasets. As empirical research has become more sophisticated and

researchers often need to explore properties of large datasets originating from OSS

projects, experiments are becoming increasingly di�cult to setup. Collecting and re-

processing data, calculating metrics, and synthesizing composite results from a large

corpus of project artifacts is a tedious and error prone task lacking direct scientific

value. In other fields of computer science, researchers use predefined data sets (e.g.

the Association for Computing Machinery (ACM) Knoweledge Discovery in Databases

(KDD) cup datasets for data mining research [ACM]) or software platforms for devel-

oping and executing experiments. Both pre-configured datasets and research platforms

lead to experiments that are easy to replicate and also to research results that are

comparable and that can be extended by further research. Two research projects

are currently working on providing canned datasets for facilitating research, namely

FlossMole and FlossMetrics.

The FlossMole [HCC06] project was first to provide an open research data set. It

collects and processes data from several OSS software forges (SourceForge, ObjectWeb

and the Free Software Foundation (FSF) among others) and consolidates them in an

integrated database. As the project does not have internal access to the forges, the

datasets it provides are a mirror of what can be accessed through each forge’s web

page. Nevertheless, the data is useful for research not involving access to source code

artefacts.

In a similar fashion, the FlossMetrics project [GSy] provides data from several OSS

projects. The FlossMetrics database is derived by downloading the SCM repository,

the full mailing list archives and the bug database for each project and running the

CVSAnaly [RKGB04], the MlStats and other tools on each project resource. The

resulting databases are o↵ered for downloading. The databases contain structured views

from unstructured repository data and simple source code metrics, such as cyclomatic

complexity and Halstead’s Volume. The FlossMetrics datasets o↵er a good source of

research data, even though the databases are separate for each project and thus do not

readily enable research across projects.

2.2.3 Metric Tools and Measurement Automation

Metrics calculation is a prerequisite to almost any study involving empirical data. The

tools available to calculate metrics vary from language specific to language independent

and from standalone to integrated into development environments. The majority of

metrics tools calculate structure and size metrics and work for languages such as c++

and Java. A common characteristic of the majority of the available tools is that they

22 CHAPTER 2. RELATED WORK

only calculate metrics on source code checkouts rather than SCM systems and thus

they require extra e↵ort to link the measurements to specific project states. A notable

exception is the Columbus framework [FSG04] that calculates over 80 c++ metrics

and is extensible to other languages.

Researchers working with empirical data understood early on that standalone product

data measurements would not su�ce. A variety of tools have been developed to auto-

mate the process of extracting and processing data from SCM systems. The CVSAnaly

tool by Robles et al. [RKGB04], converts information from CVS repositories to a rela-

tional format. CVSAnaly works in three steps; it first parses the CVS log, then it cleans

the data and extracts semantic information from it, and finally it produces statist-

ical data about the project. During the first step, CVSAnaly extracts semi-structured

information such as the files a↵ected by each commit along with characteristics of

the commit, for example whether it applies a patch or resolves a bug using text-

based heuristics. During the semantic reconstruction step, CVSAnaly infers inform-

ation about commit transactions using the sliding window algorithm [Ger04b, ZW04]

and resolves duplicate developer names. Finally, it produces a set of simple statistics

to reveal interesting facts about the project’s history. CVSAnaly has been used to

study properties and characteristics of the OSS development process in several stud-

ies [Mas05, HRA+06, ARGB06, RGBM06].

The Hackystat tool [JKP+05] was the first e↵ort that considered both process and

product metrics in its evaluation process. Hackystat is based upon a push model

for retrieving data, as it requires tools (sensors) to be installed at the developerb••s
site. The sensors monitor the developers use of tools and updates a centralized server.

As Hackystat was designed as a progress monitoring console rather than a dedicated

analysis tool, it cannot be used for post-mortem analyses, like the ones performed with

OSS software. However, it provides valuable information about the software process

while it is developed.

The Release History DataBase (RHDB) [FPG03] was first to combine data from

more than one data sources, namely from bug databases and SCM systems. Similarly

to CVSAnaly, the RHDB tool uses the CVS log to extract and store to a database

information about the files and versions that changed. It improves over CVSAnaly in

that it stores information in a format that allows it to recreate the project state for

each project version on-the-fly. The process of combining the data is relatively simple:

every time a reference to a bug report is discovered (through heuristics) in the revision

log, the system retrieves and processes the bug report and stores a link to the a↵ected

file. A similar tool is SoftChange [GM03, Ger04b, GH05]. Softchange extracts data

from an additional datasource (Changelog files) and infers facts from the source code

once the data extraction is finalised.

2.2. INGREDIENTS OF EMPIRICAL STUDIES 23

Table 2.2: Tools used in empirical software engineering research
Data Sources

Tool SCM Bug Mails Other Num Projects
CVSAnaly X 1
Hackystat X 1
RHDB X X 1
Softchange X X ChangeLog 1
Hipikat X X X Docs 1
Kenyon X >1
Map Reduce X >1

The Hipikat tool [CM03, CMSB05] was designed to act as an automated store of pro-

ject memory. It provides artifact-based search for project-related artefacts. It combines

structural relationships with relationships found by a measure of textual similarity. To

build the search index, the Hipikat server imports data from source code repositories,

mailing lists, bug management databases and project documentation and extracts and

persists links between all project artefacts. The Hipikat tool can then be queried to

return all artefacts that are related to a specific artefact that the user is currently

working with. A similar recommendation system was built by Microsoft [Ven06] using

internal tools and data sources, although no further details have been made available.

A notable tool, architecturally similar to the one described in this thesis, is Kenyon.

From the limited documentation available [BWKG05, Bev06], it appears that Kenyon

is a platform that pre-processes data from various types of SCM repositories, in a unified

schema and then exports the database to other tools which are invoked automatically.

The Kenyon database is specifically tuned for studying source code instability factors.

Finally, in recent work [SJAH09], Shang et al. attempted to combine large scale,

distributed processing paradigms, such as Map-Reduce [DG04], with standalone tools

in order to facilitate research with large data volumes. They evaluated this approach

by porting an available tool to the Hadoop framework, an implementation of the Map-

Reduce paradigm. They find good experiment execution speedup, but this approach

requires modifications to existing tools, careful selection of mapping and reducing

strategies through experimentation, and may not be suitable for analysis algorithms

where the analysis result of a single state depends one the results of the previous state.

Table 2.2 presents a comparative evaluation of the tools that have been used for

empirical studies. Most tools are used to analyze product and historical data originating

from SCM repositories.

24 CHAPTER 2. RELATED WORK

2.2.3.1 The sqo-oss Tool

In this section, we describe the SQO-OSS tool, an extensible tool targeted to software

quality evaluation. We used SQO-OSS as the basis of our work and moreover we imple-

mented large parts of its functionality. Our original contributions to the tool and their

scientific value are described in detail in Chapter 4; here, we provide an overview of

the tool and briefly go through its design.

SQO-OSS is a tool that incorporates data from SCM repositories, mailing lists and

BTS databases. It was specifically designed and implemented to support product and

process data analysis on large datasets. It is also extensible through plug-ins that

calculate metrics by combining metadata and raw data from all three datasources or

from other metrics. It also automates the plug-in excecution and can distribute the

processing load on clusters of machines. In comparison to the tools presented above,

SQO-OSS is more advanced in almost every respect, ranging from the data volumes it

can process, to the fact that it can fully automate quality evaluations and also supports

interfaces for controling and viewing the results of the analysis tool executions.

The tool’s architecture can be seen in Figure 1. To separate the concerns of mir-

roring and storing the raw data and processing and presenting the results, the system

is designed around a three-tier architecture:

Tier 1 is the data layer. It contains software components that organise raw data and

manage metadata and results. Di↵erent data storage formats are used for raw

project data and metadata. They are described in detail in Section 4.2.

Tier 2 is the processing layer. It contains the necessary components to support the

execution of custom analysis tools (from thereon: plug-ins) and provides abstrac-

tions to the underlying data.

Tier 3 is the results and metadata presentation layer. It allows external clients to

connect to the system in order to retrieve metadata and analysis results.

The core’s role is to provide the services required by metric plug-ins to operate. The

core is based on a service oriented architecture; various services are attached to a com-

ponent based infrastucture and are accessed via a service interface. Implementations of

services are fully independent from the service interface and in fact implementations can

be removed or altered at runtime while only a↵ecting the service clients. The core can

also host various versions of service interfaces at the same time to cater for scenarios

where minor updates in service interfaces a↵ect the operation of plug-ins. The core

provides the runtime platform for plug-ins. Plug-ins are loosely coupled with the core;

they are discovered and enabled during startup but they can be disabled at any time

2.2. INGREDIENTS OF EMPIRICAL STUDIES 25

SQO-OSS Connector Library

Web Interface IDE Plug-in

Results & Metadata Database SubVersion Bugzilla XMLMailDir

OSGi

Web services

DB

Service

Logging
Job

Scheduler

Metric

Activator

Tier 1:

Data Mirroring,

Storage & Retrieval

Tier 2:

System Core

Tier 3:

Results

Presentation

Thin Data

Storage

Fat Data

Storage

Metric

Plug-inMetric

Plug-inMetric

Plug-in

Messaging Security
Cluster

Service

Plug-in

Admin

Metadata

Updater

Parser

Service

Web

Admin

Raw Data Mirror

Figure 2.2: The sqo-oss system architecture

while the system is running. The core implementation is based on the osgi [OSG07]

component model.

The SQO-OSS tool implements the following services:

Data Access Stack The data access stack consists of two basic components: the

database service and the fat/thin data access stack. Access to raw data is regulated by

a plug-in based stack of accessors whose lower layers directly touch the mirrored data

(Thin Data Store—tds), while the higher parts provide caching and combined raw data

and processed metadata access (Fat Data Store—fds). The tds service abstracts the

data o↵ered by the raw data stores in an intermediate format and provides an object

oriented interface to both the data and the data stores. It is based on accessors, libraries

that know how to access the underlying data formats, and supports extensions through

plug-ins. On the other hand, the fds service provides a data-agnostic, higher level

service: it applies on metadata formatting filters that return structures representing

the semantic relationships of the data. For example, the InMemoryCheckout formatter

would create an in-memory tree representation of the project’s files that would be

equivalent to retrieving it from an on disk checkout of the same version of the project.

The fds is a very versatile and powerful tool as it creates structures using metadata

in the database, while it can also filter out unwanted entries.

The database service is central to the system as it serves the triple role of abstracting

the underlying data formats by storing the corresponding metadata, storing metric

26 CHAPTER 2. RELATED WORK

Table 2.3: Implemented updaters in sqo-oss
ID Updater Input Data A↵ected Tables Phase Depends
1 SVN An SVN repository in-

stance
ProjectVersion,
ProjectFile,
Developer

1 —

2 Maildir
Multipurpose In-
ternet Mail Exten-
sions (MIME) mail
messages stored in a
maildir-formatted
directory

MailMessage,
Developer

1 —

3 Bugzilla re-
ports

A directory contain-
ing eXtensible Mark-
cup Language (XML)
formatted bug reports,
one file per report

Bug, BugSeverity,
BugPriority,
BugStatus,
BugReportMessage,
Developer

1 —

4 Ohloh
Devs

ohloh.net data, in
XML format

OhlohDeveloper 1 —

5 Developer
Matcher

The Developer and
OhlohDeveloper table

Developer,
DeveloperAlias

2 1,2,3

6 Mailing
Thread

The MailMessage

table
MailingListThread 2 2

results, and providing the types used throughout the system to model project resources.

It uses an Object Relational Mapping (ORM) to eliminate the barrier between runtime

types and stored data [O’N08], and has integrated transaction management facilities.

ORM facilitates plug-in implementation by transparently converting simple queries to

method calls and hiding important queries through method implementations. It also

enables navigation by means of method calls among entries in the object graph that

feature parent-child relationships.

Metadata Updater The SQO-OSS system uses both raw data from the projects it

measures, and metadata derived from the raw data. Metadata must be updated every

time the raw data are updated. The job of the metadata updater service is to maintain

consistency between the raw data and the metadata. The metadata update service is

one of the few services that receive external input. It does so in order to get notified

by external tools when raw data updates have finished. The processing of the update

request is performed by a component that validates input and schedules the appropriate

update job depending on the request and underlying data format.

The SQO-OSS tool hosts two sets of metadata: those that map directly to raw data

and those that are the result of extracting semantic relationships from the metadata.

Consequently, the metadata update is a two phase process. In the first phase, metadata

are extracted from the raw data and are stored in the system database. Second phase

ohloh.net

2.2. INGREDIENTS OF EMPIRICAL STUDIES 27

updaters work on the imported metadata and analyse them in order to extract inform-

ation that is hidden by the one-to-one mapping approach that is used by phase one

updaters. Examples of second phase updaters include the mailing list thread updater

and the developer matcher. As a result, a large number of MSR tasks described in Sec-

tion 2.2.4.1 can be implemented as a second phase updater in a cross-project manner

in SQO-OSS, except if the analysis method uses tool-specific data. Table 2.3 lists all

currently implemented updaters.

Job Scheduler One of the most important functions SQO-OSS performs is the split-

ting of the processing load on multiple cpus. Typically, all plug-in invocations and a

considerable number of maintenance tasks are run in parallel. A job scheduler com-

ponent is required to manage the sharing of processors among tasks as the rate of

task generation can at any time be higher than the rate of task consumption, in which

case a direct task-cpu assignment using operating system provided semantics would

overwhelm the operating system.

All tasks in SQO-OSS are modelled as jobs. A job is a generic abstraction of an ex-

ecutable entity. Each job maintains a list of dependencies on other jobs and is assigned

a priority level. The scheduler uses this information to order the execution of jobs.

A job can be in a finite number of states, which can only be modified by scheduling

decisions. Other SQO-OSS subsystems can implement custom jobs by providing imple-

mentations of the task to be executed and assigning those jobs to the scheduler for

execution.

The job scheduler service maintains a task queue and a configurable size worker

pool and assigns tasks to idle workers. The scheduler is neither required to implement

task fairness policies nor to pre-empt long running tasks. For this reason, it does not

maintain information about the runtime devoted to its task. It does however need to

resolve which job should execute next in an e�cient manner. The scheduler maintains

two job queues, the work queue, which is a priority queue data structure whose head

always contains the next job to execute and the blocked queue that contains jobs that

have been blocked due to unsatisfied dependencies. By default, when a job is enqueued,

its dependencies are checked: if it does not have any dependencies or its dependencies

have already finished executing, then the job is added to the work queue directly,

otherwise it is added to the blocked queue. Upon successful job execution, the scheduler

informs the jobs that depend upon it about the event and the jobs must check their

dependencies to decide whether they can be executed or not. The scheduler will use this

information to move the job from the blocked queue to the work queue. This type of

asynchronous scheduling decisions e↵ectively substitutes classic dependency resolution

algorithms (for example, topological scans) on large work queues while also allowing

the execution of scheduling decisions on multiple cpus (the cpu that finished executing

28 CHAPTER 2. RELATED WORK

a job also performs the dependency resolution steps), with minimal synchronisation.

A more thorough, architecture-level description of the job scheduler is provided

in [?, Chapter 12].

Auxiliary Services The SQO-OSS tool features several auxiliary services. The log-

ging service o↵ers a customisable, centralised diagnostic output component. The plug-in

administration service manages plug-in configuration and executes the plug-in registra-

tion routines on behalf of the plug-in. The metric activator service is responsible for

resolving metric plug-in dependencies and scheduling metric jobs with the appropriate

order on user request or when a metadata update has finished. The messaging service

sends short messages (for example emails) using configurable backends.

Interfaces The SQO-OSS tool has two kinds of interfaces, for controling the evaluation

process and for presenting the evaluation results. The first type of service is provided

by both a user accessible interface and a programmatic one that is used for scripting

and automating the evaluation process. The results presentation interface is provided

by a dedicated component over an XML-rpc (web services) transfer. The web services

interface is used by the upper layers to render the metric run results. Currently, clients

include a web site and an Eclipse plug-in.

2.2.4 Analysis Approaches

2.2.4.1 Repository Mining

Even though the name might suggest so, SCM repository mining is not related to classic

data mining, which is covered in section 2.2.4.3. Repository mining is a broad definition

that encompasses various types of investigations performed on software repositories. A

unique characteristic of these methods is that they employ software repositories in

order to extract data from a project’s history rather than study single instances of a

project. In this section, we present methods proposed in the literature to mine software

repositories, organised by the type and scope of the results achieved. A more thorough

examination of the area is presented by Kagdi et al. in their survey [KCM07b].

Repository mining is a widely used technique for exploratory and analytical studies

and currently constitutes a very active topic of research. The following list summarises

the application of MSR techniques to study various research problems. The categor-

isation scheme employed was first proposed in [KCM07b]; we built on it and extended

it to include categories not present in the original scheme, as their specific target was

software evolution. As in the case of Kagdi et al., the categorisation cannot be strict,

as papers touch subjects in various categories. In such cases, We assigned the paper to

its major category; Figure 2.3 hopefully disambiguates category overlapping.

2.2. INGREDIENTS OF EMPIRICAL STUDIES 29

Archaeology

Defect Classification

Developer Assistance

Change-together clustering

SL01

ARV05
ZZWD05

KYM06

GHJ98

GJK03

HH04FORG05

 LZ05

Change Classification

MV00

 NM03

PP05
Ger04a

KWB05

SZZ05

CMR04b

GT00Her08

CMR04a

 FRLWC08

RGBMA06

Software Evolution

MSCC04

NBZ06
WH05

AHM06
CC05

 CC06

CCW+01

CM03

CMSB05

RGBH05

GJR99

BAY03 VRD04

 Ger05

Ven06

Project Management

WPZZ07

MMM+07

RSG08

PG08

TMM+06

ARGB05

GKS08

MM07

ADG08

KHM08

SZ08

AHM06

AM07

CMSB05

Developer
Expertise

Mining

Figure 2.3: Overlap of msr research categories

Change-together clustering involves the identification of software artefacts that

change together. The hypothesis under investigation is that if a cluster of similar

objects changed together in the past, they will continue to change together. This

helps the identification of re-occurring erroneous behaviour and/or the provision

of context help to developers, based on recorded actions performed in prior re-

source modification sessions. Studies have studied artefacts such as source code

files ([SL01, ARV05, ZZWD05, KYM06, MM07]), modules ([GHJ98, GJK03]) or

program code ([HH04, FORG05, LZ05]).

Change classification According to the IEEE glossary of software engineering [IEE90],

all changes during software maintenance can be classified as either corrective,

perfective or adaptive. Several works employed software repositories to extract

information in order to automatically classify changes to source code in the above

categories [MV00, NM03, PP05] or in clusters according to the change size [PP05],

the changed artefact type [Ger04a] or the refactoring function that yielded the

change [KWB05]. Corrective maintenance action identification is studied in detail

in [SZZ05]. More fine grained change analysis can also be done using compiled

30 CHAPTER 2. RELATED WORK

source code [PG08].

Software Evolution Studies of software evolution are concerned with the analysis

of the properties that govern the growth (or the lack thereof) of a software sys-

tem. The foundations of software evolution research were set by Lehman in

the form of 8 laws [LRW+97]. Software repositories are used to extract meas-

urements of a project’s source code size [CMR04b, GT00, Her08], source code

module size [CMR04a, FRLWC08] or even cumulative measurements of various

projects [RGBMA06] at various points of their lifetime in order to generate models

or predictions of how software will evolve.

Defect Classification Software repositories were used in studies to correlate issue

reports with software structure measurements [MSCC04, NBZ06], to guide static

analysis [WH05a], to assign bugs reports to developers in an automatic fash-

ion [AHM06], to study the impact of bugs reports on software evolution [CC05,

CC06, RSG08] and to group together similar bug reports [MMM+07] in order to

discover duplicates.

Social Network analysis As a technique, Social Network Analysis (SNA) is described

in section 2.2.4.2. Software repositories have been used to extract data in order

to analyse the community structure [BLR04, Ger06], to build social networks and

analysing interactions from emails [BGD+07, BGD+06, VTG+06] or from commit

messages [BM07] and to study knowledge acquisition and proliferation [LM03,

SSA06, WM07].

Developer Assistance Software repositories contain a wealth of information about

the process that was used to develop the product. Researchers have considered us-

ing this information for annotating patches with SCM system log messages [CCW+01]

in order to improve the developer’s comprehension. Moreover, software repositor-

ies where used to construct a project-wide knowledge base consisting of changed-

together artifacts and developer actions [CM03, CMSB05, Ven06] in order to

minimize the developer’s working context.

Archaeology Software archaeology deals with the study of the properties of software

that is obsolete and/or unmaintained [HT02]. The theoretical foundations of soft-

ware aging are described by Parnas in reference [Par94]. Robles et al. [RGBH05]

describe a model for identifying aged software while other authors introduce visu-

alisations for discovering unmaintained areas of code [GJR99, BAY03, VRD04,

Ger05].

Developer expertise mining Developer expertise mining approaches try to quantify

2.2. INGREDIENTS OF EMPIRICAL STUDIES 31

Table 2.4: Types of social networks in oss development
Type Purpose Works
Developers Network Study the participation of developers in pro-

jects
[MFT02] [XGCM05],
[OOOM05][GM07]

Committer Network Network of developers that have changed the
same source code module

[LRB06]
[MRRGBOP08]

Module Network Network of source code modules that have
been modified by the same developer

[LRB06]

Communication
Network

Network of people that have communicated by
exchanging messages on a communication me-
dium

[HM03] [Mut04]
[VTG+06] [BGD+06]
[SSA06] [CSX+06]

Community Net-
work

Links projects with common developers (or
community members)

[WM07] [OOOM05]
[VTG+06] [GM07]

the experience a developer has accumulated by working with certain types of arte-

facts and to build classifiers that recommend developers for future maintenance

tasks. Specifically, approaches include analysing commit activity to identify which

developer has performed most changes on sets of related files [MM07, ADG08,

KHM08], building networks of developers that worked on the same file [SZ08],

and mining information from bug reports about who fixed bugs in a specific

file [AHM06, AM07]. A system that integrates all MSR data sources in a compre-

hensive recommendation framework is described in [CMSB05].

Project Management Software repositories store information about the develop-

ment process that might be of use for project management purposes. This in-

formation has been used to estimate e↵ort based on existing team competencies

[WPZZ07, TMK+06] and to develop models of developer turnover to development

process[ARGB06, ?].

2.2.4.2 Social Network Analysis

Social networks are graph representations of social structures where each actor is rep-

resented by a graph node and its dependencies with other participants are represented

by graph edges. Various types of dependencies exist: social networks have been built to

model dependencies such as values, visions, work relationships, trade or idea exchanges.

SNA is a set of techniques that analyse the structure of social network graphs in order

to gain insight on what drives the creation of relationships or how similar graph groups

are clustered [WF94].

In the context of software engineering, SNA has been used primarily to understand

the structure and operation of development communities. In a comprehensive study of

the field [Sow07], Sowe compiled a list of types of social networks that have been used

to model certain aspects of OSS development, which can be seen in Table 2.4.

32 CHAPTER 2. RELATED WORK

2.2.4.3 Data Mining

The term data mining (or Knowledge Discovery in Databases – KDD) refers to a col-

lection of techniques for extracting knowledge from large sets of structured data. Data

mining tasks typically attempt to predict the future behaviour of the dataset by build-

ing models from it or to describe the dataset by discovering relationships among the

various variables that comprise it [FPSS+96]. A more detailed classification of the

techniques involved in data mining is presented below:

Clustering or unsupervised learning algorithms attempt to group similar data objects

together. In unsupervised learning scenarios, there are no predefined classes or

bias with respect to the valid relations. Data clustering is also used to auto-

matically identify data outliers in data. In a sense, unsupervised learning can

be thought of as finding patterns in the data above and beyond what would be

considered unstructured noise.

Clustering is a common technique for analysing results in empirical studies; it is

used when researchers need to find relationships between seemingly independent

variables. Clustering has been used to identify artefacts in software repositories

that change together (as described in Section 2.2.4.1), to find defects by analys-

ing program execution profiles [DLA01] and to group together components with

similar metric results [KDTM06].

Classification or supervised learning is a data mining technique used to predict group

membership for data instances. The classification problem can be defined as:

given a collection of records (training set) and a set of predefined categories,

induce a model that can be used to separate new data into those categories, with

minimal error. Popular classification techniques include decision trees, neural

networks and support vector machines.

Classification techniques are in widespread use in research with empirical data,

as they allow researches to automatically build models that organise data ac-

cording to multiple characteristics, thereby increasing data behaviour analysis

and prediction capabilities. Classifiers have been used to determine automated

testing scenarios [LFK05], to organise projects according to hosting site proper-

ties [BRM04], to classify software defect reports [PMM+03, FLMP04, MINK07],

to detect coupling between components [GHJ98], to detect maintenance changes,

as described in Section 2.2.4.1, and to predict defects based on previous beha-

viour [MPS08].

Association rule extraction Association rules reveal underlying correlations between

the attributes in a data set [AIS93]. Association rules are usually denoted as

2.2. INGREDIENTS OF EMPIRICAL STUDIES 33

A ! B where A and B are classes of attributes in the data (or columns in rela-

tional formats). A mined association rule has two important properties: support

defined as the probability of A and B occurring together (P (A&B)) and confid-

ence that signifies the number of appearances of the association with respect to

the number of appearances of the left attribute (P (B|A)). Association rule mining

aims to extract interesting correlations, frequent patterns, associations or casual

structures among sets of items in transaction databases or other data repositor-

ies. Association rules are widely used in various areas such as telecommunication

networks, market and risk management and inventory control.

As software engineering data are progressively stored in standardized relational

schemata, association rule extraction will be a promising analysis technique to

infer relationships between data. Pioneering work on the field was carried out

by [ZZWD05], who presented perhaps the first use of association rules in his

developer assistance tool. Association rules have also been used to identify

defects that introduce changes [KZPW06], to correlate defects with sta↵ ef-

fort [MMM+07] and to recommend developers for solving issues based on their

previous experience [KCM07a] .

2.2.4.4 Clone Detection

A code clone is a code portion in source files that is identical or similar to another. A

number of reasons can lead to the introduction of clones: bad coding practices, such

as copying-and-pasting code, intentional repetition of a code portion for performance

enhancement or unintentional repetition due to standard methods and algorithms used

by programmers to solve sets of problems (for example, re-implementation of sorting

algorithms) [BYM+98]. Code clones are know to a↵ect program maintainability and

for this reason a number of clone detection methods have been proposed in the literat-

ure [BvDTvE04]:

Text-based techniques [Joh93, DRD99] perform little or no transformation to the

source code before attempting to detect identical or similar lines of code. Typic-

ally, white space and comments are ignored.

Token-based techniques [Bak95, KKI02] apply a lexical analysis (tokenisation) to the

source code, and subsequently use the tokens as a basis for clone detection.

Abstract Syntax Tree (AST)-based techniques [BYM+98] use parsers to first ob-

tain a syntactical representation of the source code, typically an AST. The clone

detection algorithms then search for similar subtrees generated by other source

code entities. Moreover, program dependence graph approaches [KH01, Kri01]

34 CHAPTER 2. RELATED WORK

Table 2.5: Publication outlets considered for this systematic review
tse ieee Transactions on Softare Engineering
tosem acm Transactions on Software Engineering and Methodology
icse ieee–acm International Conference on Software Engineering
emse Empirical Software Engineering Journal
msr Working Conference on Mining Software Repositories
oss Open Source Systems Conference

go one step further in obtaining a source code representation of high abstraction.

Program dependence graphs contain information of semantical nature, such as

control and data flow of the program.

Metrics-based techniques [MLM96] are related to hashing algorithms. For each frag-

ment of a program the values of a number of metrics is calculated, which are

subsequently used to find similar fragments.

2.3 Analysis of Related Work

2.3.1 A Classification Framework for Empirical Studies

The goal of the comparative literature review presented in this section is to analyse

the current practice in performing empirical studies in the software engineering field

from a method and tool point of view. The examination is, therefore, going to be

normative rather than descriptive and exploratory rather than confirmatory as our

aim is to classify the contemporary literature into a set of pre-defined categories. The

specific questions we are trying to answer with this study are the following:

• What methods do researchers use in empirical studies?

• What research topics are of interest in recent empirical studies?

• What are the characteristics (data sources, size) of the empirical studies?

To conduct the review in a systematic way, we used the Systematic Review (sr)

framework by Kitchenham [KPP+02, Kit04]. The systematic review process is com-

posed of three steps: (1) Planning the review where the researcher identifies the data

sources, inclusion criteria and classification categories, (2) Conducting the review,

where the data extraction and synthesis takes place and (3) the reporting phase.

The classification started by defining the list of data sources to be used. A list

of venues and publication outlets that usually publish empirical studies was compiled,

based on experience and consultation. The list can be seen in Table 2.5. Not all data

2.3. ANALYSIS OF RELATED WORK 35

sources publish studies of the same quality level; this fact had to be accepted for the

sake of completeness.

Each data source was scanned for current publications; as current, we considered all

works published from 2003 onwards, since other works [GVR02, SHH+05] have already

covered earlier literature and our particular focus was on novel tools and methods, so

emphasis had to be given on newer studies. We downloaded all current papers that

appeared (from their title or abstract) to be, or contain results based on, the application

of at least one of the empirical research methods outlined above. The emphasis on

the word “appeared” in the previous sentence is placed in order to draw the reader’s

attention to the fact that we did not use any automated search or pattern-word based

method to filter the papers consider for review. The total number of papers reviewed

grew to about 200. We estimate the total number of works published in the identified

publication outlets since 2003 to about 600, so our analysis includes about 1/3 of those.

After the initial acquisition of papers, we studied each one of them. Several works

(more than 30) were immediately excluded from the study as they did not match the

quality expected from an empirical study: common quality deterioration factors were

the absence of clearly stated research questions or the absence of analysis of the research

results. The majority of those papers came from the early MSR and OSS conferences.

As one might expect, no papers were rejected due to methodological errors from those

downloaded from the top tier journals and conferences in our list.

The classification scheme was constructed to provide direct answers to the questions

posed above. Specifically, the question about the research methods was transfered dir-

ectly to the classification scheme. Following the categorisation of study goals presented

by Basili in reference [Bas96], we broke down the research topic question in three com-

ponents; The object of study and purpose of study fields can only take the same values

as in [Bas96]. On the other hand, the focus of the study is a free form text field,

which is filled in with a short description of the software engineering property under

investigation. Finally, the question about the study properties is answered through the

remaining three fields of the classification model. All three fields can hold multiple

values as it is common for a study to employ more than one data sources and ana-

lysis methods. The classification model fields along with the possible values they may

contain are presented in Table 2.6.

2.3.2 Analysis

From the 170 papers that were left in our sample after the initial quality cleanup, we

randomly selected 70 on which we applied our analysis framework. We feel that due to

the randomness of the sample the quality of the works in our study is representative

of the quality of the works an empirical software engineering researcher will face when

36 CHAPTER 2. RELATED WORK

Table 2.6: A classification framework for empirical software engineering studies
Category Description Values
Research Method The research method used to

perform the study.
Survey, Experiment, Case Study

Object of Study What is assessed by the study? Process, Product, Model
Purpose of Study The reason the study is being

performed wrt to the object of
study

Characterize, Evaluate, Predict,
Control, Improve

Focus What properties of software en-
gineering does the study ana-
lyse?

Depends on the study

Analysis Method The analysis method(s) used for
obtaining the results

Data Mining, Statistical Ana-
lysis, MSR, SNA, Clone Detection

Data source Where do the data presented in
the study come from?

Source (code), SCM, Electronic
Communication Trail (ECT),
BTS

Sample size Number of analysed projects Natural Number

attempting to investigate the area.

The classification scheme proved easy to apply to our study members. The values

that for each one of the classification fields came from the corresponding section in

this chapter. Table 2.7 presents all the possible values for each field. The “focus” field

proved particularly challenging to populate; initially, we tried to summarize the paper’s

direction of study in no more than 4 words. As perhaps expected, at the end of the

classification e↵ort, this field did not contain any particularly interesting (for our study

goals) information; therefore we decided to group together similar focus points into

broader categories. The criteria for the classification of focus points into the identified

categories were arbitrary, and we iterated over the classification scheme several times.

The graph in Figure 2.4 presents an expanded view of the identified categories. We

used the labels that are attached to each graph entry to tag entries in the classification

table (Table 2.8). We also produced a graphical overview of the frequency of each

classification entry, which can be seen in Figure 2.5.

2.3.3 Results

From this comparative literature review study we can extract several useful results,

the most important of which is that the average work in empirical software engineering

examines the validity of a method or tool by applying it to data coming from few

projects. To us, this result was a real surprise, if not a shock: given the vast amounts

of data available (Mockus [Moc09] reports amassed data sizes in the order of terabytes

from two hundred thousand projects) and that these data are free to use, why do

researchers use such limited datasets? One might argue that even small datasets are

enough to validate a hypothesis. This is, of course, a valid proposition. However, the

2.3. ANALYSIS OF RELATED WORK 37

Table 2.7: Legend of possible values for Table 2.8

Research Method Object of Study
Acronym Description
CCS Confirmatory Case Study
ECS Exploratory Case Study
EXP Experiment
FCS Field Case Study
SUR Survey

Acronym Description
PRC Process
PRD Product
MDL Model

Purpose of Study Analysis Method

Acronym Description
CAR Characterize
CTR Control
EVL Evaluate
IMP Improve
PRD Predict

Acronym Description
DM Data Mining
MSR Mining Software Repositories
SNA Social Network Analysis
INS Inspections
MTR Metrics
QST Questionnaires
VIS Visualisation
STA Statistical Methods

Data Source
Acronym Description
BTS Bug Tracking System
ECT Electronic Communication Trails
SCM Software Configuration Management
SRC Source Code
PRE Pre-processed datasets

38 CHAPTER 2. RELATED WORK

Empirical Studies

E. Evolution

M. Maintainance

P. Process

C. Change Clustering

D. Defects

DE. Developers DE1. Expertise

DE2. Identification Across Repositories

T. Tools & Frameworks

E1. Artifacts

E2. Visualisation

E3. Clone detection

E4. Aging

E5. Structural

M1. Models

M2. Prediction

M3. Refactoring

M4 Effects of Documentation

M5. Categorisation

M31. Identification

M32. Effect on process

P1. Response to requests

P2. Global Softare Development

P3. Effort Estimation

P4. Knowledge distribution

P5. Testing

C1. Patterns

C2. Methods

C3. Files

C4. Arterfacts

D1. Classification

D2. Duplicates

D3. Estimation

D4. Association with Code

D5.Prediction

T1. Metrics

T2. Clone detection

T3. Low level Changes

T4. Change recomendation

Figure 2.4: Decomposition of identified research focus categories to individual research
focus items.

value of a method can only be reinforced if the method is successfully validated against

several datasets and moreover if the method proves fit (in the Darwinian sense) it will

be more easily disseminated. This is also observed by Zannier et al. [ZMM06] and the

explanation they provide is that researchers are perhaps under pressure to publish new

work (also supported by Saw [Sha03]). In addition to their view, we believe that the

dataset format disparity and the sheer data volumes are what deter researchers from

evaluating their hypothesis more rigorously.

Another interesting finding is that in our sample, we have not found any study

that replicates prior work. Given the recognised quality of the venues we considered,

we expected that at least a few studies would be devoted to the task of externally

validating important works. Even the highest cited works in our study did not receive

any external validation. This either means that we either take other researcher’s work

2.3. ANALYSIS OF RELATED WORK 39

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 EXP FCS ECS CCS SUR

N
u
m

b
e
r

o
f
W

o
rk

s

Research Methods used

 0

 5

 10

 15

 20

 25

 30

0 MDL PRC PRD

N
u
m

b
e
r

o
f
W

o
rk

s

Objects of Study

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 CAR EVL PRD

N
u
m

b
e
r

o
f
W

o
rk

s

Purposes of Study

 0

 1

 2

 3

 4

 5

 6

0 D2 D3 P2 M5 P1 E1 M4 C1 T4 M31 D5 M1

N
u
m

b
e
r

o
f
W

o
rk

s

Research Focus Points (encoded)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 SNA STA MSR DM INS VIZ QST MTR

N
u
m

b
e
r

o
f
W

o
rk

s

Analysis Methods used

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 BTS SRC SF ECT SCM

N
u
m

b
e
r

o
f
W

o
rk

s

Data Source

 0

 5

 10

 15

 20

 25

 30

0 6 25 50 3 2 8 4 1 10 5

N
u

m
b

e
r

o
f

W
o

rk
s

Sample sizes (number of projects)

Figure 2.5: Distribution of research methods, objects of study, purposes of study, re-
search focus points (enconding as per Figure 2.4), analysis method, data sources and
number of projects in the study sample.

40 CHAPTER 2. RELATED WORK

for granted or that we do not build on top of other’s work. A possible explanation to

this phenomenon was given by Carlo Ghezzi in his keynote address at the icse 2009

conference: in a, currently unpublished, study of the full set of proceedings of the icse

conference, Ghezzi found that only 20% of the tools and data that were reported as

vehicles for validation hypothesis could be retrieved and installed. This means that

researchers do not make it easy to other researchers to replicate their findings, which

would work in favour of their published methods.

On the positive side, we see that empirical studies increase over the years and a

larger diversity of methods are tested against real world data, which is the preferable

approach to validate hypothesis [Bas96, Sha03].

2.4 Summary

Software engineering is an empirical research field, as both new process models and new

analysis algorithms need to be validated against existing data. A variety of metrics have

been proposed for source code data, even though a small percentage of them is used since

the predictive and analytical power of the majority has not been validated in practice.

In the recent years, software engineering research benefited from the availability of

OSS repositories and a new stream of research that takes advantage of the rich process

data residing in those repositories emerged. However, the analysis of the available

work shows that the majority of those studies and the methods they produce are not

properly empirically validated (limited exposure to real world data, repository-specific

techniques) and consequently they should not be generalized.

2.4.
S
U
M
M
A
R
Y

41

Table 2.8: Categorisation of empirical studies according to the

framework presented in Table 2.6. A legend for field values

can be seen in Table 2.7

Work Research Object Purpose Focus Focus Analysis Data Source Sample Size

Method Code Method

[SJW+02] CCS PRD EVL Maintainability M1 MTR SRC 1

[MVL03] SUR MDL EVL Defect Indicators D1 STA SRC 1

[SSAO04] ECS PRD EVL Maintainability M5 MTR SRC 5

[GJK03] CCS MDL EVL Module Coupling M1 MSR SCM 1

[NM03] CCS MDL EVL, PRD Evolution E5 MTR SRC 1

[BAY03] CCS MDL EVL Change Proneness C1 MTR SRC 1

[MWZ03] CCS MDL EVL, PRD E↵ort estimation P3 MSR, MTR SCM, SRC 1

[HM03] SUR, ECS PRC CAR Global Software Development P2 QST, MSR SCM 1

[DJ03] ECS PRC EVL OO Metrics Maintainablity M1 MTR SRC 1

[PMM+03] CCS PRC PRD Failure Report Classification D1 DM BTS 2

[GM03] CCS PRC EVL Metrics gathering tool T1 MTR SCM, SRC 1

[FPG03] CCS PRC EVL Metrics gathering tool T1 MTR SRC 1

[CM03] CCS MDL EVL Project memory T4 MSR SCM, ECT, BTS 1

[FLMP04] CCS MDL EVL Bug classification D1 DM BTS 1

[CMR04a] ECS PRC CAR Stuctural Evolution E5 MSR SCM 25

[OW04] CCS MDL PRD Metrics to predict bugs D5 MSR, MTR SCM, BTS 3

[Ger04a] ECS PRC CAR Modification requests M5 MSR, VIZ SCM 6

[PSE04] ECS PRD EVL Evolution OSS vs closed E5 MSR, MTR SCM 6

[CMR04b] ECS PRC CAR Structural Evolution E5 MSR SCM 1

[BvDTvE04] ECS MDL EVL Cross cutting consearns M5 STA SRC 1

[GVG04] ECS PRD CAR Evolution E4 MTR, MSR SRC 1

[RRM04] ECS PRC CAR E↵ects of Documentation M4 MSR SRC 1

[FSG04] CCS PRD EVL Metrics tool T1 MTR SRC 1

[HH04] CCS PRC EVL Evolution (Change propagation) E5 MTR SCM 5

[MVL04] EXP PRD CAR Code Smell M5 QST SRC 1

[RRL+04] CCS PRC EVL Low level change tool T3 MTR SCM 2

[VRD04] ECS PRC EVL Evolution visualisation E2 MSR SCM 1

[YMNCC04] CCS PRC CAR Change Prediction T2 MSR SCM 2

[BWKG05] CCS, EXP PRD EVL Software analysis tool T3 MSR SCM 8

[Ger05] ECS PRC CAR Evolution E1 MSR SCM 2

[KWB05] ECS PRD CAR Change Patterns C1 MSR SCM 8

[KN05] CCS PRD EVL Code Cloning T2 MSR SCM 2

[LZ05] CCS PRD EVL Method change patterns C2 MSR SCM 2

[RGB05] ECS MDL EVL Developer identification DE2 MSR SCM, BTS, ECT 50

[RGBH05] ECS PRD CAR Software Aging process E4 MSR SCM 8

[Mis05] ECS MDL PRD Maintainability (design) M1 MTR SRC 50

[LYY+05] CCS MDL EVL Software bug patterns D1 DM BTS 4

[LFK05] CCS MDL EVL Test case failures P5 DM SRC 2

Continued on next page

42
C
H
A
P
T
E
R

2.
R
E
L
A
T
E
D

W
O
R
K

Table 2.8 – continued from previous page

Work Research Object Purpose Focus Focus Analysis Data Source Sample Size

Method Code Method

[SZZ05] CCS PRC CAR Fix inducing changes C1 MSR SCM, BTS 2

[WH05b] CCS PRD CAR Extract API usage patterns C2 MSR SCM, SRC 1

[BN05] CCS MDL EVL Clustering artifacts C4 MSR SCM 2

[GW05] CCS MDL EVL Refactoring identification M31 MSR SCM 2

[CMSB05] CCS, FCS MDL EVL Context help T4 MSR BTS, SCM, ECT 1

[PP05] ECS PRC CAR Small change characterisation C1 MSR SCM, SRC 1

[WH05a] CCS MDL EVL Bug identification D4 MSR SCM 2

[ZZWD05] CCS MDL EVL Change together artifacts C4 MSR SCM 8

[GFS05] ECS PRD PRD Metrics predict bugs D5 MTR SRC,BTS 2

[CC06] CCS MDL EVL Response to Issure request P1 MSR SCM,BTS 2

[KYM06] CCS PRC EVL Change together files C3 MSR SCM 10

[KPW06] ECS PRD CAR Design pattern evolution C1 MSR SCM 3

[NBZ06] CCS MDL PRD Metrics predict failures D5 MSR SRC,BTS 6

[RGBM06] ECS PRD CAR Software artifacts evolution E1 MSR SCM 1

[Spi06a] ECS PRC CAR Distributed development P2 MSR SCM 1

[SSA06] ECS PRC CAR Knoweledge distribution P4 MSR ECT 1

[AM07] CCS MDL EVL Developer Expertise (bugs) DE1 MSR BTS 1

[BM07] CCS MDL EVL Match BTS with SRC D4 MSR ECT,SCM 2

[MM07] CCS MDL EVL Bug Squad Recommendation D3 MSR SCM,BTS 3

[MMM+07] ECS PRC CAR Defect Classification D1 DM BTS 1

[WPZZ07] CCS MDL EVL Defect Recov. Time Estimation D3 DM BTS 1

[GM07] ECS PRC CAR Analysis of SF.net Developers DE SNA SF 1

[Moc07] ECS PRD CAR File reuse E3 MSR SCM 10

[ADG08] CCS MDL EVL Developer Expertise DE1 MSR, VIZ SCM 1

[WND08] CCS MDL EVL Patch classification C1 MSR SCM 2

[MPS08] CCS PRC PRD Defect Prediction D5 DM SCM, BTS 3

[SRB+08] SUR PRC CAR Defect Annotation Usage D1 QST 2

[GRW08] ECS PRD EVL Maintainability with ORM M1 MTR SRC 2

[FCS+08] ECS PRC EVL Design Stability M5 MTR SRC 2

[WCN08] ECS MDL EVL Defect Estimation D3 INS SRC 2

[Spi08] ECS PRD CAR Code Quality MTR SRC 4

[WZX+08] CCS MDL EVL Duplicate Defect Report D2 MSR BTS 2

[SJM08] CCS MDL EVL Framework Evolution Detection E5 DM SRC 3

[DR08] CCS MDL EVL Framework Change Recomendations T4 MSR SCM 3

Chapter 3

Problem Statement and

Proposed Solution

It is a good morning exercise for a research scientist to discard a pet hypothesis every

day before breakfast. It keeps him young.

— Konrad Lorenz

In the previous chapter, we presented an overview of the field of empirical soft-

ware engineering. In this chapter, we analyse the shortcomings of current research

approaches and provide the foundations of the proposed solution.

3.1 Performing Large Scale Studies with Empirical Data

Research with empirical data is deemed by many as a very important aspect of soft-

ware engineering [Bas96, WW00, PPV00, SHH+05]. A dedicated research branch has

emerged lately (MSR) to take advantage of the abundant information stored by software

development process management tools. Moreover, OSS plays an ever increasing role

in software engineering research, either as a rich source of process and product data

or as a social phenomenon with consequences on team organisation and management

in modern projects. But how does the empirical software engineering discipline use all

recent advancements in order to evolve?

The scientific method is a Darwinian process in what concerns theory validation:

the fittest theory is bound to out-survive the weaker ones. A fit theory is one that

invites falsification; in fact, the fittest a theory, the more open to falsification it will

be and, at the same time, the more phenomena it will explain [Pop35]. In empirical

sciences, scientists do not describe phenomena verbally; they collect measurements and

try to put their theories into frames that explain the collected measurements, i.e. they

43

44 CHAPTER 3. PROBLEM STATEMENT AND PROPOSED SOLUTION

build models. Models are rejected when they are found incapable of explaining physical

behaviours as recorded by measurement data. Exposing a model based theory to public

scrutiny is essential for progress in empirical sciences, as the more data a model is tested

against, the more likely it is to be found incapable of explaining phenomena.

Our systematic review has shown that the current typical empirical research paper

consists of a confirmatory case study that validates the applicability of a model on

limited quantities of data originating from SCM systems. Certainly, a model can be

validated by exposing it to empirical data. However, there are two (methodological)

questions that emerge:

• How can a model be proven fit if it is only tested against data from a single

project?

• How can other theories build on a theory that has not yet proven fit?

One might argue that the selection process required to distinguish fit from unfit

theories has a time dimension, meaning that if after a long time period that a theory is

being used it has not been invalidated, then the theory is probably fit. The argument

is partially correct; indeed most theories that stand the test of repeated validations

through time (with all changes in observation techniques and observed phenomena

time entails) could be fit. However, there is a classic counter-example in software

engineering that invalidates the “time-tested theory” conjecture: Halstead’s software

science theories have been equally invalidated [FL78, Wey88, CALO94, FP98, MSCC04,

Her08] and validated in various studies, while in the mean time other theories [CALO94]

have been build on top of them. Are Halstead’s theories fit or unfit?

Our thesis is that software engineering theories must be invalidated as soon as

possible, certainly before they are presented to the public, and invalidation can only

be done by rigorously exposing the theory to empirical data. Contrary to common

practice of testing models on a limited set of data just to prove that they work, we

believe that it is the duty of researchers to try hard to disprove their theories before

they publish them. If theories are published without being rigorously validated, they

can have a corrosive e↵ect on the theories that build on them. Of course, no amount

of experimental validation can prove that a theory is correct, but it is still desirable

and preferable to have a theory thoroughly tested, especially since empirical data from

various distinct sources can be used to test a large set of theories. Moreover, researchers

should work towards inviting other researchers to replicate their experiments by making

the experimentation instruments, namely the tools they developed and the data they

used, available to the public.

To return to the question we posed in the introduction of this section, from the

systematic review we present in Chapter 2, it appears that, apart from a few studies,

3.2. THE SOFTWARE ENGINEERING RESEARCH PLATFORM 45

mainstream research presented in major publication outlets exhibits the same char-

acteristics described by Tichy et al. [TLPH95] and Zelkowitz and Wallace [kwW97],

namely incomplete experimentation. The situation has certainly improved, as the vast

majority of the works include experimental validation of the presented systems and

theories and have started taking advantage of data in software repositories. However,

very few works rigorously validate their hypotheses with data from more than one data

sources.

3.2 The Software Engineering Research Platform

The main problem we are trying to tackle is how to enable software engineering re-

searchers to utilise the vast quantities of freely available data e�ciently while allowing

fast experiment turnover and experiment replication.

Currently, software engineering researchers have the luxury of access to large volumes

of freely available data, thanks to the OSS movement. However, taking advantage of

these data is not easy: OSS projects use various combinations of tools for managing

SCM repositories, mailing lists and issue databases and consequently raw data are of

varying formats. The size of the data sources is another obstacle; a lot of projects have

amassed several gigabytes worth of data in their repositories during their lifecycles.

Collecting and preprocessing data, calculating metrics, and synthesizing composite res-

ults from a large corpus of project artifacts is a tedious and error prone task lacking

direct scientific value. Moreover, experience shows that researchers do not share tools

and keep re-inventing the wheel. For example, there are several individually developed

implementations of the CK metrics suite, that work in various languages and produce

varying results, mainly due to liberal interpratation of what the original metric descrip-

tions meant. This segmentation of e↵ort not only a↵ects developers, but also makes

experiments non-reproducible. An overview of the situation described above can be

obtained by studying Robles’s PhD thesis [Rob05].

We believe that this situation can change. What we suggest is an open platform

specifically designed to facilitate experimentation with large software engineering data-

sets derived from diverse data sources, named Software Engineering Research Platform

— serp.1 Our idea revolves around 4 basic principles (Figure 3.1):

• Rigorous testing of software engineering research artefacts (theories, models,

tools) with empirical data should be a prerequisite for research results to be

made public.

• Large volumes of empirical data do exist and are available for free.

1Throughout this thesis, we use serp interchangeably as both the name of the platform and as an
acronym.

46 CHAPTER 3. PROBLEM STATEMENT AND PROPOSED SOLUTION

R
ig

o
ro

u
s
 E

v
a
lu

a
ti

o
n

F
re

e
ly

 A
v
a
il
a
b

le
 E

m
p

ir
ic

a
l
D

a
ta

T
o

o
ls

 a
n

d
 R

e
s
u

lt
s
 S

h
a
ri

n
g

S
o

ft
w

a
re

 E
n

g
in

e
e
ri

n
g

 P
la

tf
o

rm

Better Empirical Studies

Figure 3.1: The four pillars of better empirical studies

• Sharing of research tools and results accelerates research innovation.

• User ecosystems are formed around software platforms.

Ideally, we would like to build a freely distributable, OSS platform that includes

implementations of all known software product and process artefacts analysis and eval-

uation algorithms and allows the researcher to perform experiments by composing a

series of tools programmaticaly. Moreover, it would scale to fully utilise the available

computing resources and could provide mechanisms to allow processing results to be

shared. If the platform proves successful and is adopted by the research community,

then an ecosystem will form around the platform that will share tools, results and

methods.

3.3 Hypotheses

The research we propose has the following characteristics:

• It describes a novel system that synthesizes various existing ideas along with new

algorithms and purpose-specific representation formats in a coherent framework.

Several parts of this work have been described by other researchers, but this is the

first time an integrated system of this magnitude is being introduced. Therefore,

our working hypotheses only concern the feasibility and the results of the tool we

are building and not the methods and techniques that were described by others.

• We introduce new, e�cient models for storing and new methods of preprocessing

3.4. RELATION TO OTHER APPROACHES 47

and analysing data. In these cases, we provide in depth analyses of the algorithms

and storage formats developed.

• Our main research outcome is a system that is generic enough to be applied on a

variety of research scenarios and which has already proved its value in processing

very large datasets. Therefore its success is to be determined not by the out-

come of experimental evaluations we describe is this thesis, but rather through

performance (space and time) benchmarking and feature comparison with similar

tools.

Given the above, this work attempts to validate the following hypotheses, by ana-

lysing the design and implementation of a platform targeted to facilitate software en-

gineering research. The hypotheses are:

H1 All major software engineering data sources can be unified under in a common

storage and metadata format.

H2 Such a system can provide combined access to the incorporated process and

product data sources faster than accessing the data sources with standard op-

erating system tools or with their respective client programs.

H3 Using such a system, case studies can be performed on large datasets more ef-

fectively (in terms of ease of setting up and time spend in execution) than by

constructing custom tools.

H4 Using such a system, experiments can be replicated equally e↵ectively by re-

searchers other than the ones that initiated the experiment.

3.4 Relation to Other Approaches

Experience has shown that as a research field matures, standardised experimentation

environments emerge. By standardised experimentation environments, we mean either

shared experimentation infrastructures, shared datasets, reference benchmarks or com-

binations thereof. This is especially true in software intensive research fields, as software

tends to be expensive to produce but cheap to reproduce and share. In this sense, the

proposed solution draws ideas from experiences in several other empirical fields: physics

researchers and astronomers share laboratory infrastructures (the International Space

Station or cern) and equipment (for example, the Hubble telescope), bio-engineers

share large databases of gene information for various species (for example, the Human

Genome Project database), while econometrics researchers are usually required to pay

in order to be granted access to stock exchange data. In computer science related fields,

48 CHAPTER 3. PROBLEM STATEMENT AND PROPOSED SOLUTION

Project 1

bugssvn mails

List 2List 1

curtmp new

PV

PV

PV

PV

SQO-OSSSQO-OSS SQO-OSS

Web

services

DB

Service

Logging
Job

Schedul

er

Metric

Activator

Metric

Plug-inMetric

Plug-inMetric

Plug-in

Messagi

ng
Security

Cluster

Service

Plug-in

Admin

Metadata

Updater

Parser

Servic

e

Web

Admin

Data

Access

Metadata Storage

Project

Mirror

Figure 3.2: The serp platform architecture with our specific contributions highlighted.

datasets are being shared in the fields of data mining [ACM], bioinformatics while sys-

tems such as Jikesrvm [AAB00] and Scummvm and benchmarks such as the DaCapo

suite [BGH+06] serve virtual machine researchers as testbeds for quickly developing

research ideas.

In the software engineering research field, several tools and datasets have been pro-

posed, as we have seen in Sections 2.2.3 and 2.2.2.5. Therefore, one might argue that

the proposed approach is neither new nor has any additional value. Such generic state-

ments can be oversimplifying, and as we show, they do not stand. The most important

counter argument is that our proposal is first to provide a platform for experiment-

ation instead of a purpose-specific tool. As a platform, we consider both an easily

extensible tool and an accompanying dataset. The tool itself is unique as it can auto-

mate experiment execution by facilitating the development of analysis tools through

powerful abstractions and taking advantage of available hardware. The described data-

set is first to combine metadata from three project datasources, by abstracting the

underlying data source in a way that allows data from various project management

tools to be incorporated, thereby enabling cross-project analysis with no changes in

the analysis tools. The platform we propose can (and has) been used for mass scale

experimentation, with available hardware being the current bottleneck towards scaling

our processed dataset.

3.5. LIMITS OF RESEARCH SCOPE 49

SERP is implemented on top of the SQO-OSS tool. Figure 3.2 illustrates the archi-

tecture of the SERP platform with a specific focus on how we extended SQO-OSS to

implement the proposed functionality. Starting from the data layer, we designed the

project mirroring schema (Section 4.2.1) and refactored the metadata database schema

(Section 4.2.2) to suit SERP’s scaling requirements. Within the SQO-OSS tool, we im-

plemented all metadata updaters (the scientifically important ones are described in

Sections 4.4.1 and 4.4.2), we designed the extension interface (Section 4.3) and imple-

mented several platform extensions (for example, the plug-ins described in Chapter 5)

along with the extension activation service. Finally, we modified SQO-OSS to run on

clusters of machines (Section 4.4.3), and implemented a monitoring service and a load

distribution algorithm.

3.5 Limits of Research Scope

In this dissertation we present the design, architecture, and bits of the implementa-

tion of a research platform. Even though our work has been based on several existing

components, implementing a platform of the scale we propose has been a serious un-

dertaking. For practical reasons, it was decided to leave some aspects of the platform’s

validation outside the scope of this work and leave the implementation of the corres-

ponding studies as future work. Specifically, we validate the platform’s ability to host

and process large datasets and to facilitate research through two case studies. However,

as it is true with all empirical validations, we only prove that the solution we propose

works and is practical; we do not prove whether it is optimal or su�cient for all studies

with empirical data. The real limitations of our approach can only be discovered by

using the proposed platform in various research scenarios.

A more specific list of limits to this dissertation’s research scope is the following:

• We do not provide any means of automatic validation for the metadata and

plug-in results. This would entail the construction of a test suite that would

automatically compare the data produced by our tools against the data in the

project’s repository (for metadata) or against data from other well known tools

(for metric results).

• In section 4.4.1, we present an algorithm that maps semi-structured SCM data on

a fully structured relational schema. As we show, the schema can handle data

from both centralised and distributed SCM systems. However, at the time of this

writing, there is no implementation of a component to access data in a distributed

SCM system programmatically. Implementing such a component would have been

very resource intensive for the limited time frame of our research, and therefore

50 CHAPTER 3. PROBLEM STATEMENT AND PROPOSED SOLUTION

we decided to leave it as future work. As a result, we have only validated the

algorithm implementation in centralised repository processing scenarios.

• Even though we have worked to make our platform as generic as possible, we do

not provide any validation of the platform’s ease of use. We foresee that ease

of use will be a major factor for the platform’s adoption. We expect this to be

reflected in the number of studies that will use our platform.

Chapter 4

Research Platform Design and

Implementation

It is a capital mistake to theorize before one has data. Insensibly one begins to twist

facts to suit theories, instead of theories to suit facts.

— Sir Arthur Conan Doyle

Platform architectures, as opposed to concrete software implementations, have the

following distinctive characteristics:

• They o↵er extensible data representations to accommodate changes and varying

requirements.

• They feature extensibility points for all subsystems.

• They automate tool chain invocations and regulate access to data and to other

platform subsystems.

Platform applications is currently a common architectural pattern, that is found

in applications ranging from desktop applications (for example, the gnu Emacs and

Eclipse) to server applications serving large data volumes, such as the Apache web

server and the FaceBook application hosting platform [?]. Platform architectures invite

sharing of components and code re-use, while they also enable users to modify and

extend them to fit their particular needs.

In this chapter, we present a detailed analysis of SERP, a platform specifically tar-

geted to large scale software engineering studies. Specifically, we go through the high

level requirements, we present the alternative approaches to meet them and then we

analyse the platform’s basic components, namely the data it works with and the ana-

lysis tools and methods it features.

51

52 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

4.1 Requirements

The requirements for the described platform can be summarised in the following sen-

tence:

A software engineering research platform must facilitate researchers in applying analysis

tools on large data volumes originating from diverse data sources while also enabling

results sharing.

We analyse each requirement in the following sections.

4.1.1 Integrate Data Sources

An integrated software analysis platform must support the execution of analysis tools

on all projects, independent of the product and process data sources in use by the

project.

Requirements

• Integrate various data source formats.

• Support multiple process data sources per analysed project.

• Be extensible to new data formats.

• Integrate common data across data sources.

Challenges

• There is a large number of di↵erent systems used to manage the development

of software. An overview can be seen in Table 4.1. Semantic and operational

di↵erences exist even between systems managing the same data source.

• Semantic integration of data across data sources usually depends on project-

specific information [MFH02, CC05, CMSB05, CC06, RSG08].

• An integrated software platform must reconcile semantic di↵erences between dif-

ferent systems managing the same data sources, in order to enable cross-project

examination and comparisons. For example, while both distributed and central-

ised SCM systems support the same basic operations there is no notion of project

history in distributed SCM systems; in those cases, the platform must devise ways

to approximate project history by aggregating commits in various branches on a

single timeline.

4.1. REQUIREMENTS 53

Table 4.1: Non-exhaustive list of software process support systems
Data Source Systems

SCM CVS, SVN, SourceSafe, Perforce, git, Mercur-
ial, Bazaar, Arch, Monotone

Issue Tracking Bugzilla, Mantis, Jira, gnats
Mailing Lists Mailman, Nabble, SourceForge (SF).net mail

Documentation Javadoc, Doxygen, Docbook
Collaboration MediaWiki, MoinMoin, Xwiki

Instant Communication ircd, SupyBot

• Each system uses its own data storage and data exchange formats. A research

platform must be able to abstract the di↵erences while also enabling direct access

to the underlying data for analysis tools that request so.

Alternatives

1. Directly use the data from each data source, by means of purpose-specific pro-

grams.

2. Build ad hoc, text based intermediate result and raw data formats.

3. Pre-process the data, store intermediate results in a custom database, extract

required information for the task at hand.

4. Design a relational format that abstracts the least subset of features for each

data source, pre-process data, construct links to the original data and perform

the analysis by selecting the appropriate data representation for the occasion.

5. Store all data in an all-inclusive relational schema, and use this schema for pro-

cessing.

Approach We chose to meet the requirements by designing an intermediate data

abstracting, relational format. This choice is driven by two factors: (1) Analysis tools

should not know about the underlying repository formats, and (2) it should be easier

for platform users to learn one standardized intermediate data format than to delve

into the intricacies of each project’s data sources.

4.1.2 Manage Computing Resources E�ciently

A software engineering research platform must exploit the available computing resources

on a single computer in full, with minimal overhead to the user.

54 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Requirements

• E�cient use of available computing resources.

• Scaling to occupy all available resources.

• Automatic resource management, hidden from the platform user.

Challenges

• Making e�cient use of multiple processors is a di�cult proposition, as it usually

entails converting serial algorithms to parallel. The easiest way of achieving par-

allelism is to run multiple instances of a serial program on independent data, in

which case the problem to be solved is deemed as trivially parallelisable. For-

tunately, most experiments in software engineering research are indeed trivially

parallelisable, as they usually apply a tool on independent states of a project’s

data and aggregate selected measurements. Therefore, a platform should optim-

ise for the general case, where the unit of work is an analysis tool applied on a

project resource state, and provide mechanisms to parallelize this scenario.

• There exist analysis methods whose results depend on the results of the applica-

tion of the method on a previous resource state, and therefore the analysis must

be executed serially. A typical example is the calculation of the number of de-

velopers that are active in a project within a specified time frame; as any project

state is the result of the actions of a single developer (for example the one that

committed a changeset to a project’s SCM system), we must be able to retrieve

the developers that were active in the timeframe up to the specified point. This

computation cannot be performed in parallel without guarantees on the execution

order, or else the results will be incorrect. In that case, the platform must sup-

port the expression of dependencies between elements of the computation, and

the ordering of elements according to the dependencies.

• Incorporating external tools can a↵ect a platform’s ability to manage computing

resources. Currently, several analysis tools have the ability to split the load

in multiple processors. The platform cannot control the resource management

mechanisms of tools that are not written to utilise the platform’s internal facilities.

Alternatives

1. Don’t manage resources at all; expect researchers to write tools that parallelize

the workload as appropriate and trust resource management to be carried out

e↵ectively by the operating system.

4.1. REQUIREMENTS 55

Metric Evolution GVFS KDE
Years of RCS history 10y11m 9y4m 11y8m
Number of revisions 36835 5522 893049
Number of live files 52931 16712 > 5 ⇤ 105
Repository size 1.4GB 103MB 48GB
Community size 389 653 > 3 ⇤ 103
Number of emails (total) 1303 20 36696
Number of emails (Nov08 only) 240 5 6252
Number of Bugs (collected) 2070 292 15902

Table 4.2: Key size metrics for selected projects as of November 2008.

2. Use process abstractions provided by the operating system in order to schedule

units of work on available processors. Implement data ordering policies and data

slicing mechanisms and automatically run analysis tools using the appropriate

ordering policy and data size.

3. Provide a work unit abstraction mechanism that analysis tools use in order to

assign slices of the data to analysis algorithms. Assign each work unit a data

slice and schedule the work units on available processors. Allow analysis tools to

specify priorities on work units.

Approach We chose the work unit abstraction pattern to abstract analysis tool runs;

this pattern e↵ectively separates resource management from process initiation tasks,

delegating each task to the part of the system that has the most information and can

make the best decisions. The platform core knows the number of available processors

and has direct access to the data to be processed while each analysis tool knows the

correct ordering of the input data in order to run e↵ectively.

4.1.3 Working with Large Data Volumes

Given the appropriate hardware, a software engineering research platform must support

the application of analysis algorithms on arbitrarily large volumes of data.

Requirements

• Work on clusters of machines.

• Scale gracefully to large data sizes and distribute computations.

Challenges

• The majority of free data for empirical studies are available online in the form

of OSS projects. Several OSS projects have a history spanning multiple decades

56 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Raw Data Server DB Server

Cluster Master
Job Submission

Results

Raw Data

DB Server Cluster Master

Raw Data Server Raw Data

ResultsJob Submission

Figure 4.1: Program (left) vs data (right) clustering.

and extremely large software repositories. Table 4.2 presents three such projects.

The sizes of the datasets involved are comparable to other empirical datasets

in other sciences which already use high performance computation techniques.

A software data analysis platform must therefore employ equivalent workload

processing schemes.

• Computational latency plays a significant role in performance scaling. A motiv-

ating example is the following: An average size for a small to medium project is

in the order of 5000 revisions. Each revision of the project can have thousands

of live files, a large number of which are source code files. A rough calculation

for an average 5kb file size and for an average 500 live files per revision indicates

that a system would read 12gb of data in order to load the processed file con-

tents into memory. This shows that the simplest of operations are prohibitively

expensive to do online as it introduces large latencies and could potentially hurt

the performance of the project hosting servers.

Alternatives

1. Construct purpose made programs that query on-line project resources for data,

run analysis algorithms on single computer, store the results in a database.

2. Program-based clustering: use a two tier architecture to split responsibilities for

computation and storage, split computational nodes on a cluster and have all

cluster nodes update the same database. A master node submits work items to

computational nodes, while raw data are shared via a network-oriented filesystem.

3. Data-based clustering: use cluster load distribution techniques, such as Map-

Reduce [DG04], to split the data in manageable work items per computational

node. All nodes can play the role of the load distributor, but only the load

distributor can update the result database with the results of the distributed

computation.

4.1. REQUIREMENTS 57

Approach We used the program-based clustering paradigm (see Figure 4.1). We

believe that program-based clustering is better suited to the computational needs of a

platform for analysing software engineering data for the following reasons:

1. It delegates input format abstraction and processing to each cluster node, thereby

reducing the load on the cluster master.

2. It delegates the task of result aggregation and calculation to each compute node,

which can accommodate better the way the average software analysis algorithm

works.

3. It allows the platform to work on a single host for faster development turnover.

4. It can e↵ectively work with analysis algorithms that require some form of seri-

alisation of the workload to process. In this case, parallelism is achieved from

running multiple projects on multiple parallel nodes.

4.1.4 Result Sharing and Experiment Replication

A software engineering research platform must enable researchers to share raw data,

results and experimental setups and automate the process of exchange.

Requirements

• Facilitate research tool exchange

• Exchange tool results and analysis metadata with minimal overhead.

Challenges

• Before being shared, the results must be stored in a local datastore.

• Programmatic access to the datastore must be implemented. It must enable

researchers to get data in an aggregated fashion with simple tools, for example

the Unix command line toolchain.

Alternatives

Tool Exchange

1. Share the tools in source code form via a shared SCM repository.

2. Share the tools in binary form, by integrating in the platform mechanisms that

automatically publish tools in a shared location and can discover and integrate

in the analysis process newly published tools.

58 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Results Exchange

1. Construct pre-computed sets of metadata and make them available over the web.

2. Develop programmatic interfaces to the platform’s internal data stores.

3. Develop mechanisms to connect various platform instances in a peer-to-peer or

centralised topology and develop protocols to synchronize data among them.

Approach In order to share the experimental results, researchers must exchange the

data (raw and metadata) and the tools used to produce them. For tool sharing, we

opted to follow a hybrid approach: we build a shared source code repository where

interested researchers can share their tools while also enabling our platform to install

custom tools from user provided locations. To share the data, we develop programmatic

interfaces to the platform’s database. Using the described combination of tool and data

sharing, experiments can be replicated at the cost of the appropriate hardware platform.

4.2 Data

In the following sections, we analyse the formats that are used as input to the SERP

and present our proposal for organising a data mirroring scheme for freely available

OSS data. We also elaborate on the intermediate metadata schema and examine its

implications on analysis tools.

4.2.1 Raw Data and Mirroring

SERP, can accommodate three types of raw data, namely SCM data, mailing list data

and BTS data. The analysis tools that work within SERP should be data format agnostic,

however the design of the metadata database schema is strongly influenced by the data

formats that SERP handles.

4.2.1.1 SCM Data

SERP utilises data originating from two distinctively di↵erent types of SCM data sources:

centralised systems, such as CVS and SVN, and decentralised systems, such as git and

Mercurial. While both types of repositories perform essentially the same function, the

philosophy that undermines their operation is vastly di↵erent. We will focus our ex-

planation on one representative system of each SCM type, namely SVN and git. Earlier,

works [Ger04b, ZW04, RKGB04] have examined the use of CVS for SCM analysis, but

most OSS projects have migrated their repositories to SVN since. Currently, there is a

tendency among the largest of projects to migrate their repositories to decentralised

repositories.

4.2. DATA 59

SVN treats the SCM repository as a filesystem tree. SVN strives to maintain con-

sistency in the repository; each commit is guaranteed to be atomic (two commits from

independent developers cannot a↵ect the same version of a file) while the repository is

globally versioned, with each commit increasing the version of the managed file tree.

Uniquely, SVN supports copying of versioned objects between locations and versions

of the repository while maintaining the object history. This feature enables creating

branches and tags by simply copying the main development file tree to other repository

locations, with minimal overhead. Recent versions of SVN also support the maintenance

of object history when the changes between two tree paths are merged. As a result of

the above, SVN is very good at maintaining the history of versioned objects; this makes

it an ideal target for software engineering studies, albeit a very sophisticated one for

that matter.

On the other hand, git is essentially a sophisticated patch management system. The

minimal change set in git is a patch that has been applied to a branch, and moreover

patches can be moved freely among branches. git di↵ers from SVN on how it handles

branches: branches are created locally and can maintain the full history of patches

after the branch is merged with another branch, while it can also use multiple branches

as sources for a merge operation. git’s distributed nature means that development

information in non-published branches is lost. More importantly, git can also be

ordered to cascade several individual changes into a single change, a feature actively

used in projects. This means that a commit to a branch might not entirely reflect the

actual history of code changes; in practice though, developers use git to commit very

often and consequently aggregated patches are usually of the same size as an SVN patch.

Most projects using git have a central repository where all branches are aggregated.

In a nutshell, SVN is a versioned filesystem while git is an advanced patch sub-

mission and management system. In typical analysis scenarios, they o↵er the same

information. git improves over SVN in what concerns branching and authorship track-

ing. On the other hand, SVN o↵ers simpler abstractions and stronger guarantees of

project history maintenance, even though navigating history backwards may result in

loss of information at merge points. With git, similar results can be obtained by re-

trieving contents of all branches and ordering them by their timestamp. Tools exist

to support the conversion between both formats, even though the conversion from git

to SVN will involve loss of merge and authorship information. An examination of the

capabilities of git for MSR analyses is provided by [BRB+09].

Mirroring both SCM repository types is simple. In the case of SVN, the svnsync tool

can be used. The tool will create a read-only mirror of a remote project repository;

after the synchronisation is completed the mirror repository can be accessed with the

standard SCM toolset. Repository synchronisation of git repositories is even simpler;

60 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

git will automatically download the full history of a branch when a branch is pulled

from the main project repository. However, a researcher interested in the full project

history should also consider alternative branches, as described earlier.

4.2.1.2 Mailing List Data

Mailing lists are used by projects for information exchange. The importance of mailing

list in software analysis is described in Sections 2.2.2.3 and 2.2.4.2. Mailing lists work by

aliasing a group of developer emails with a single email address. Posts to the mailing list

address are distributed to all people in the group. Advanced mailing list management

software is usually employed to automate management tasks, such as subscription and

message archiving. Most open source projects o↵er their mailing list archives over

the web, through custom web interfaces, while online services exist that archive email

exchanges for subscribed lists.

The minimal change entity in a mailing list an email. Emails are ascii-text encoded

files that follow the RFC-822 [Cro82] and RFC-2045 [FB96] formats. RFC-822 defines

emails as a key-value pair formated header and a freely formated payload and specifies

that email payloads should be encoded using the ascii plain text encoding. This

specification restricted the use of email in non-English languages, so it was superseded

by the RFC-2035 standard, which converted the email payload section in a container

format. The type of the objects which exist in each MIME-encoded container section is

defined in a custom header. An extract of an RFC-822 encoded email is presented in

Listing 1.

Mail processing tools are free to append custom headers to emails, which is common

practice for tools managing mailing lists. Therefore not all email headers are useful for

analysis purposes. The most important email headers are the following:

• From: The email address, usually accompanied by a real name, of the person that

has sent the email. This field is the only source of raw data in that directly links

a name with an email address. It is also useful to identify developers (uniquely

or heuristically), whose email has changed during the course of the project.

• Date: The date the email was sent. Mainly used for statistical purposes, in order

to assess the rate of information exchange taking place within specific days of the

week or hours in a day. Its value refers to the time on the sender’s workstation

when the email was sent and can therefore be inaccurate very often.

• Message-ID: A string uniquely identifying each email. Can be used to build

inverted indices in order to speed up access to a large volume of emails.

• In-Reply-To and References: Both equal to the Message-ID of the email that

this email is a reply to. In some cases (e.g. Usenet groups) the References

4.2. DATA 61

(Standard Headers)

Return-Path: <kenny@stanford.edu>
Delivered-To: gnome-vfs-list@gnome.org
Received: from webmail.Stanford.EDU (webmail.Stanford.EDU 171.64.14.230)

by mail.gnome.org (Postfix) with ESMTP id 133A51811B
for <gnome-vfs-list@gnome.org>; Fri, 19 Jul 2002 15:28:11 -0400 (EDT)

To: Eric Cartman<ec@southpark.com>
Subject: Re: Patch: fix openssl include
Date: Fri, 19 Jul 2002 12:28:01 -0700
From: Kenny McCormick <kenny@stanford.edu>
Cc: gnome-vfs-list@gnome.org
Message-ID: <1027106881.3d3868420451a@webmail.stanford.edu>
References: <1027067952.32690.173.camel@trinidad.mandrakesoft.com>
In-Reply-To: <1027067952.32690.173.camel@trinidad.mandrakesoft.com>
MIME-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Sender: gnome-vfs-list-admin@gnome.org

(Custom Headers)
X-Mailer: Stanford Webmail v1.1.6 17-June-2002
Errors-To: gnome-vfs-list-admin@gnome.org
X-BeenThere: gnome-vfs-list@gnome.org
X-Loop: gnome-vfs-list@gnome.org
X-Mailman-Version: 2.0.8
Precedence: bulk
List-Help: <mailto:gnome-vfs-list-request@gnome.org?subject=help>
List-Post: <mailto:gnome-vfs-list@gnome.org>
List-Subscribe: <http://mail.gnome.org/mailman/listinfo/gnome-vfs-list>,

<mailto:gnome-vfs-list-request@gnome.org?subject=subscribe>
List-Id: <gnome-vfs-list.gnome.org>
List-Unsubscribe: <http://mail.gnome.org/mailman/listinfo/gnome-vfs-list>,

<mailto:gnome-vfs-list-request@gnome.org?subject=unsubscribe>
List-Archive: <http://mail.gnome.org/archives/gnome-vfs-list/>

(Actual content omitted for brevity)

Listing 1: Example email headers

field refers to the top-level message in the thread that the examined message

participates to. Both fields are used to reconstruct parent-child relationships

among messages in a mailing list.

• Content-* and MIME-*: Specify the content type and encoding of the message

payload. For analysis purposes, plain text is the preferable format, which the

exception of MIME messages with plain text content disposition sections, where

plain text can be extracted easily. On the other hand, HyperText Markup Lan-

guage (HTML)-formated emails are particularly di�cult to process. Email at-

tachments are also useful for analysis as attachments usually contain patches or

debugging information. Techniques have been developed to identify those in plain

text or email sources.

Despite the fact that mailing list data are relatively simple to store and process,

they are very di�cult to obtain. The majority of OSS projects maintain custom web

62 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

<bug>
<!--Generic fields-->
<bug_id>317632</bug_id>
<creation_ts>2005-09-30 18:52 UTC</creation_ts>
<short_desc> A new bug </short_desc>
<delta_ts>2008-09-06 19:07:54 UTC</delta_ts>
<product>gnome-vfs</product>
<component>Module: http</component>
<version>2.12.x</version>
<rep_platform>Other</rep_platform>
<op_sys>All</op_sys>
<bug_status>RESOLVED</bug_status>
<resolution>WONTFIX</resolution>
<priority>Normal</priority>
<bug_severity>normal</bug_severity>
<reporter>elanthis@awesomeplay.com</reporter>
<assigned_to>gnome-vfs-maint@gnome.bugs</assigned_to>
<cc>a9016009@gmx.de</cc>
<long_desc>

<who>elanthis@awesomeplay.com</who>
<bug_when>2005-09-30 18:52 UTC</bug_when>
<thetext>Please describe the problem:

</long_desc>

<!--Project-specific fields -->
<target_milestone>---</target_milestone>
<reporter_accessible>1</reporter_accessible>
<gnome_version>2.11/2.12</gnome_version>
<gnome_target>Unspecified</gnome_target>
<initialowner_id>14140</initialowner_id>
<qa_contact>gnome-vfs-maint@gnome.bugs</qa_contact>
<cclist_accessible>1</cclist_accessible>
<classification_id>3</classification_id>
<classification>Platform</classification>

</bug>

Listing 2: XML-encoded bug report.

interfaces to their mailing list archives, while no mailing list archive service o↵ers pro-

grammatic interfaces to the stored data. This means that data have to be retrieved by

means of custom tools per project. After the archives have been retrieved, synchronisa-

tion of local archives with project mailing list can be simply configured by subscribing

to the corresponding mailing lists and redirecting incoming emails to the local mirror

for the specific mailing list.

4.2.1.3 Bug Tracking Systems

BTS are used to manage incoming issues and enhancement requests. Currently,

there are two widely used systems in oss, namely Bugzilla and the Tracker system

o↵ered by the SourceForge.net project hosting site. Both o↵er roughly the same

functionality to end users, however Bugzilla is more customizable as its bug reporting

forms can be extended with project-specific fields. Consequently, most large, self-hosted

projects prefer Bugzilla over alternatives. Moreover, Bugzilla o↵ers a programmatic

interface, which can be used instead of the standard HTML-based interface to retrieve

SourceForge.net

4.2. DATA 63

bug descriptions in XML format. For those reasons, Bugzilla is the de facto source of

bug-related data in related studies.

An XML version of a Bugzilla bug report can be seen in Listing 2. The most

important fields are the following:

BugId A unique identification number for each bug in the project’s BTS. Several pro-

jects maintain the convention to include this number in SCM commit messages

that a↵ect code the bug report refers to, which in turn is important for identify-

ing the e↵ort spent per bug report or the developer expertise in certain system

components.

Severity, Priority and Status Classification fields for bugs. Used in analyses meth-

ods to group similar bugs together and to correlate with other code metrics.

Reporter, or Who in bug comments. The person that reported or commented on

the bug. Used to link a bug report with the rest of the developer’s activity in the

project.

Product, Version and Component. Identifies the part of the system that the bug

report a↵ects. Used in conjunction with pattern matching techniques to relate a

bug report with specific code changes.

Timestamp fields are, among others, used to assess how fast the development team

responds to incoming reports to fix or to triage them.

Due to the o↵ered programmatic interface, collecting Bugzilla bugs for a project is

straightforward, and can be automated with minimal tooling. Moreover, Bugzilla o↵ers

a full suite of database querying facilities, which makes it easy both to synchronise

bugs in regular intervals, by querying for the bugs that have changed since the last

synchronization and to download the bugs that a↵ect only a specific project part. For

SERP, we chose to store each bug in its own file on the local project mirror and have

created scripts to automate the mirroring of bugs.

4.2.1.4 The Mirroring Schema

The SERP itself is not concerned with mirroring data from projects; it expects data

to be mirrored externally. This choice was made at the beginning of the project to

compensate for the large number of di↵erent data sources that the system should work

with. Several of those already provide the means for synchronizing data across sites.

For example, SVN o↵ers the svnsync tool for mirroring repositories while distributed

scm systems already copy the full repository history on checkout. Mailing lists can

be mirrored by configuring the mail delivery subsystem on the mirroring host to store

64 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

bug<id>

.xml

Mirroring Root
/

Project 3Project 1 Project 2

bugssvn mails

List 2List 1

curtmp new

Standard

SVN

format

project.
properties

git

Standard

GIT

format

messageid.eml

Figure 4.2: The project mirror schema

incoming messages to a specified directory and then subscribing to each mailing list.

Mailing lists archive mirroring requires custom scripts per project site, although various

mailing list archiving web sites (e.g. marc) o↵er a unified view over thousands of mail-

ing lists for common projects. Finally, bug tracking tools usually o↵er programmatic

interfaces to retrieve individual bug histories through programmatic interfaces.

In Figure 4.2, we present an outline of the data mirroring schema we propose. All

projects directories are stored under a single directory, the mirroring root. Each project

directory contains three subdirectories, one for each mirrored data resource. Since a

project can either be hosted in a git or an SVN repository only one of the git and

svn directories can be present. All bug reports for a project are stored in a single

directory; to speed up access, an alternative format would entail storing bug reports in

subdirectories of the top level directory, with a fixed amount of files per sub directory.

Finally, email messages are stored in a directory per mailing list; each mailing list

directory is formatted according to the Maildir standard. Incoming emails are stored

in the new sub-directory while processed emails are stored under cur.

To minimize configuration when processing the project and to automate the process

of importing projects, each project is assigned a configuration file when it is added to

the mirroring infrastructure. An example properties file is presented in Table 4.2.1.4.

4.2. DATA 65

Table 4.3: The project.properties file format
Field Description

eu.sqooss.project.bts.source The Universal Resource Locator (URL)
of the project’s Bugzilla

eu.sqooss.project.bts.url The URL of the local bug mirror
eu.sqooss.project.ml.url The URL of the local mail mirror

eu.sqooss.project.scm.path.excl Paths to exclude when processing the
project’s SCM data.

eu.sqooss.project.scm.path.incl Paths to include when processing the
project’s SCM data.

eu.sqooss.project.scm.source The URL of the project’s remote
eu.sqooss.project.scm.type The type of SCM updater to use.

eu.sqooss.project.scm.svn.tag Configure the SVN updater to mark
subdirectories of this directory as SVN

tags.
eu.sqooss.project.scm.svn.trunk Configure the SVN updater to mark the

provided directory as the main devel-
opment tree

eu.sqooss.project.scm.svn.branch Configure the SVN updater to mark
subdirectories of this directory as de-
velopment tags.

eu.sqooss.project.scm.url A URL pointing to the project’s SCM

repository
eu.sqooss.project.website The project’s website (for reference)

The properties file is used by the updater service (see Section 2.2.3.1) to drive the

metadata update process.

4.2.2 Structured Metadata

The SERP system uses a database to store metadata about the processed projects. The

role of the metadata is not to create replicas of the raw data in the database, but

rather to provide a set of entities against which analysis tools work with, while also

enabling e�cient storage and fast retrieval of the project state at any point of the

project’s lifetime. Moreover, the storage schema is designed to include the minimum

amount of data required in order to abstract the di↵erences between di↵erent raw data

management systems. The database schema is shown in Figure 4.3. The schema is

composed of four sub-schemata, one for each processed data source and one that deals

with metric configuration and measurements. The basic entities stored in the database

schema are described below:

StoredProject The top-level entity of the SERP platform schema. It represents a

project that can have multiple project versions, multiple mailing lists and multiple

bug reports.

Developer A developer is a person that has contributed to the project. In the context

66 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

�����

������	
��	�����
�����	�

�����	
��	�����

������	
��
���	��������
�����	�����
��
������	��
��
��������
������	���	�
��	��	�
	�

�

�

�����	�����	
��	���	�	���

�����	�����	
��

�����	�����	
��������

��
�������
������	
��
������	�

�����	�����	
��

�����	�

�

�

�

�

�

�

������������

��������
�����	�����	
��
���	��	�
�����	���

�

�

� ������������!�

���	���
�
�����	�����	
��
��"�	�#���
���	�����

�

�

�$	�	���	��

�����	�
���	����	�
������	�
�����	�����	
��

�

�

�����	�%��	����	
��

�����	�
������	
��
����
!	��

�

�

�&���

������	
��
�������	#���
��'���$�
�������
��
�	��������
���	������
���	����	��
���	��������
���������(�
��	�	���(�
������$	
�

�

�

�����	
��	�����	���	�	���

������	
��	�����

�

�

�����	
�)��	�

�����	�
������	
��	�����
�����	�
���$��	
���(�
������
�������)����
�������*�����
��
��()����

�

�

�����	
�)��	����	�

�������
�����	�

�

�

�����	
�)��	�	���	�	���

������	
�)��	�

�

�

���������������������

�����	�
������	�
���(�	�
�����
���������

��������

�����	�
�����������	�
���	�����
���	
��������
���
���	�
�����
��	�

�

�

��	���
�

���������
���	���
�(�	�
����	����
�
���	
��������

�

�

��	���
�(�	�

���(�	�
���	���
�

�

�

��	���
�	���	�	���

���	���
�
���	����

������	��	�	���	�	���

�������

��������������	���	���	�	���

�����	���

�

�

�

�

������	��	�

��	��	��
������
���	��	���
���'�	
��
��	��$��	�
�����	%��	�
�����	���
���	����
�����	���

�

�

��������������	���

������
���)���	+���
�����*����	��
���	��	�

�

�

�

�

�

�

�

�

�$��	
���(�

�������
�����	�

�

�

�$	�	���	�,����

��	�����
���	�	���	��

�

�

�

�

�

�

�&��#	�����	��	�

��'���
���	����	��
�����	�����
���	-��

�

�

�

�

���������������������

��!	(�
���	
��������
������	
��

�

�

�����	�%��	�

�����	�

�

�

�

�

�&���
��

��'���
��	�����
���	��	�	�����
�����	�

�

�

Figure 4.3: The data storage schema

of a single project, developers can be uniquely identified by the email they use to

post to mailing lists and submit bug reports or by the user name they use in the

project repository. However, in the lifetime of the project, a single developer may

have multiple identities, for example because he switched email addresses. In the

cases where an email address can be traced to an existing developer, an entry

is added to the DeveloperAlias table. Later in this chapter (Section 4.4.2), we

present an algorithm to resolve developer identities across data sources.

ProjectVersion Represents a state in the project’s source code history, as recorded by

the SCM system. A new project version is initiated by a Developer and contains

new instances of one or more ProjectFiles. Along with a new ProjectVersion

a developer can assign a Tag to the code or create a new Branch; in both cases,

an entry is recorded in the corresponding table.

ProjectFile A state in a file’s development history. An entry in the ProjectFile table

represents either a regular file or a directory. For directories, SERP records their

path relative to the project top level directory in the Directory table. A file can

be generated by the user or copied by another location of the project’s file tree;

in that case the copyFrom field contains a link to the source file. The lifetime

of the specific instance of a file is recorded in the validFrom and validUntil

4.2. DATA 67

fields. Using those fields, the system can retrieve a full list of files that are live in

a ProjectVersion, which is equivalent to checking out the project directly from

the SCM system.

MailMessage Represents and individual message sent by a Developer, to a MailingList

and belonging to a MailingListThread. Several email header fields, but not the

content, are kept for each email to simplify processing and to speed up searching.

MailingList A mailing list represents a collection of MailMessages that are sent to

(or carbon-copied to) a common email address.

MailingListThread A thread is another way to organise MailMessages. A thread is

a collection of emails that have the same In-Reply-To or References headers

or their In-Reply-To or References headers point to emails that belong to a

thread. By convention, a thread can only belong to a single MailingList.

Bug Represents an entry in the project’s BTS. Important information such as severity,

priority and status that appear in several bug tracking systems are recorded in

the schema. A Bug can have several BugReportMessages attached to it.

Plugin Represents and holds information about a metric plug-in. A Plugin can define

several Metrics, which are uniquely identified by a mnemonic.

MetricMeasurement is the entity that encapsulates all metric results. In SERP, all

metric results are bound to one metadata entity, based on the notion that a meas-

urement is the application of a metric on a project resource state. Consequently,

for each project entity, there exists a results entity that links it with a metric that

represents a measurement.

The role of the metadata schema is pivotal in disengaging analysis tool implement-

ation from raw data formats. Using the metadata schema, analysis tools can process

SCM system version logs, project files, mailing list threads and other entities without

dealing with the intricacies of each particular system. This enables analysis tools to

be written faster and to be compact while also broadening their applicability. The

intermediate data approach may not be novel (the RHDB [FPG03], Kenyon [BWKG05]

and Hipikat [CMSB05] systems used it at various granularity levels), however this is

the first time that an intermediate schema can integrate data from various raw data

formats, in a minimal, yet extensible, manner. Later in this chapter (Section 4.4.1) we

show how two relatively di↵erent SCM systems, namely SVN and git, can be used to

populate the intermediate schema.

68 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

public interface AlitheiaPlugin {
String getVersion();
String getAuthor();
Date getDateInstalled();
String getName();
String getDescription();
List<Metric> getSupportedMetrics();
Result getResultIfAlreadyCalculated(DAObject o,

List<Metric> l);

Result getResult(DAObject o, List<Metric> l);

void run(DAObject o);

boolean install();

boolean update();
boolean remove();
boolean cleanup(DAObject sp);
String getUniqueKey();
List<Class<? extends DAObject>>

getActivationTypes();
Class<? extends DAObject>

getMetricActivationType(Metric m);
Set<PluginConfiguration>

getConfigurationSchema();
List<String> getDependencies();

}

Listing 3: The SERP plugin interface. Boxed are the methods that each plug-in must
implement.

4.3 Tools

Our work on the SERP, is based on the SQO-OSS tool, described in section 2.2.3.1. We

selected the SQO-OSS tool as the basis for our work as it already implemented much of

the required functionality and we were familiar with its internals. Our platform and

SQO-OSS are closely bound together; in order to benefit from our platform a researcher

must first become familiar with SQO-OSS and its internals. SQO-OSS is described in

detail in references [GKS+07, ?, GS09]. Here, we describe how our platform can be

extended through plug-ins to SQO-OSS.

The SERP platform can be extended by plug-ins that perform software analysis op-

erations. Metric plug-ins are osgi services that implement a common interface and are

discoverable using the plug-in administrator service. In practice, all metric plug-ins in-

herit from an abstract implementation of the plug-in interface and only have to provide

implementations of 2 methods for each binding datatype (run() and getResult())

and the install() method to register the plug-in to the system.

Each plug-in is associated with a set of activation types. An activation type indicates

that a plug-in must be activated in response to a change to the corresponding project

asset; this is the name of the database schema entity that models the asset and therefore

the metric is activated each time a new entry is added to the database table. A metric

plug-in can define several metrics, which are identified by a unique name (mnemonic).

4.3. TOOLS 69

Table 4.4: List of metrics included in the serp default dataset

Data
Plug-in Description Activator Metrics
Size Calculates various project size meas-

urements, such as number of files,
lines and documentation for various
types of source files.

ProjectFile

ProjectVersion

11

Module Aggregates size metrics per source
code directory and calculates the av-
erage source module size per version.

ProjectFile

ProjectVersion

4

Structural Calculates McCabe’s and Halstead’s
metrics for c/c++ and Java.

ProjectFile 13

Maintainability Calculates the Maintainability index,
as defined in [CALO94] per source
code module. It also produces an av-
erage per project.

ProjectFile

ProjectVersion

2

Discussion
Heat

Identifies heated email discussions
and evaluates their e↵ect on source
code intake.

ProjectVersion

MailingListThread

3

Developer
Statistics

Calculates the number of developers
that worked on a file (“eyeball” met-
ric) and the number of those that
are active in the project at any given
time.

ProjectFile

ProjectVersion

5

Each metric is associated with a scope that specifies the set of resources this metric is

calculated against: for example files, namespaces, mailing lists or directories. Metrics

can also declare dependencies on other metrics, the system will use this information

to adjust the plug-in execution order accordingly through the metric activator service.

Metric results are stored in the system database either in predefined tables or in plug-in

specific tables. The retrieval of results is also bound to the resource state the metric

was calculated upon.

To account for the fact that each plug-in might need to store intermediate results

or other data in structured format, the extension mechanism was designed to take

advantage of the object oriented nature of the database. SERP plug-ins can create and

install custom entities that extend the basic metadata schema. The stored data will be

persisted to the database, appropriately linked with basic system entities. The custom

tables are isolated from the rest of the database, as the runtime types required to access

them are restricted to the plug-in.

The SERP platform comes with a default set of 38 metrics, which are described in

Table 4.4.

70 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

4.4 Operation

The SERP research platform is built by importing projects into the metadata database

and running analysis tools on the imported projects. The processing is split in two

phases:

Import phase: The system converts raw data from the project’s data stores in metadata

entities which it stores in the database. The system only performs this operation

once for each imported project and can then synchronise the metadata state with

the raw data state when the raw data have been updated.

Analysis phase: The analysis tool plug-ins operate on project data and extract meas-

urements, which they store in the database.

One of the key properties that SERP was designed to maintain is data consistency.

In a high data volume, heterogeneous multi-processing environment, errors should be

treated as a fact of the platform’s operation, not as exceptional cases. Errors can come

from various sources:

• Non-handled corner cases: When an analysis plug-in is developed, it is usually

tested against a small dataset in order to keep testing time low. This type of

testing usually cannot account for all cases which appear in data originating from

heterogeneous sources.

• Race conditions: Analysis plug-ins that were not designed for multiprocessing

might starve the system resources or stale the system when waiting requests that

cannot be satisfied.

• Failures in external components: SERP depends of various external software and

hardware components that might fail.

The design principle employed was the atomicity of operations. Specifically, all

operations that a↵ect the metadata schema are modelled as atomic executable units,

which in practice are scheduler jobs (see Section 2.2.3.1) with an attached open data-

base transaction. The database plays an important role, as it is employed by SERP to

notify it when a transaction remains active for an excessive amount of time and also to

revert to a previous safe point when processing fails. The required database character-

istics imply that SERP can only run on databases with acid (Atomicity, Consistency,

Isolation, Durability) [RH83] guarantees and transaction resource management facilit-

ies. Moreover, all jobs are required to fail fast; when an error occurs, by convention the

job must not attempt to provide a work around. A job failure will be automatically

cascaded to all dependent jobs.

4.4. OPERATION 71

As a result of the above, the processing phases are completely independent and

isolated. This means that the metadata updater and the various analysis tools can

operate on the same project simultaneously as the metadata updates are hidden from

the analysis tools until the metadata are in a consistent state.

4.4.1 Representing scm Data in Relational Format

The import phase is a two stage process. In the first stage, the system extracts metadata

from the raw data and inserts them in the database. The depth of data analysis

required for storing metadata from each data source varies significantly; BTS metadata

are copied verbatim in the database, while SCM metadata must be processed in order

to extract a virtual file tree representation from a very poor source of information,

the SCM log. In the second phase, the system creates links between di↵erent types of

metadata or creates di↵erent organisations between metadata of a single type. In this

section, we describe the algorithms we have contributed to the SQO-OSS tool updater

service (Section 2.2.3.1).

The SERP enables applications to access the full SCM repository for a large number

of software projects. However, the majority of analysis algorithms and tools do not

work directly with SCM logs; they work with file contents and directory structures.

Moreover, several analysis methods only work with specific file types (i.e. source code

files); acquiring filtered lists of files directly from the SCM for a specific version is not

a supported operation in most SCMs. To provide such services to analysis tools, SERP

maintains detailed metadata for each project version in the SCM system.

The SCM metadata updater is used to convert SCM data to a relational format.

Specifically, it parses and extracts information from the SCM revision log and will

convert it to a schema that enables the SERP to retrieve portions of the file tree structure

for a specific version instantly. This is an operation equivalent to checking out a specific

version from the repository and retrieving a recursive list of the files and directories

that comprise it. Converting SCM data from semi-structured to fully structured format

has several advantages, in addition to providing the appropriate input to analysis tools:

• A carefully designed schema can accommodate both distributed and centralized

SCM metadata, e↵ectively abstracting their semantic di↵erences. Tools that do

not rely on SCM-specific data can therefore be applied on any project, independ-

ently of its SCM system.

• A Database Management System (DBMS) allows the attachment of other data,

such as measurements, to the stored metadata in a cross-SCM manner, while there

is currently no SCM system that can do that. Therefore, SERP can support the

storage and retrieval of measurements for each file and project version state.

72 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Table 4.5: Description of the input to the scmmap algorithm

Field Type Description
Rev String The SCM’s unique revision identifier.

Auth String The SCM user name for person that performed the
commit.

Date Long The timestamp of the commit. The resolution de-
pends on the underlying SCM, although most sup-
port millisecond accurate timestamps.

Branch String The branch this commit a↵ects (if any).
Tag String The tag this commit defines (if any).
Msg String The commit message, as entered by the commiter.

NormalOps Map{Path->ChType} A structure that maps the paths a↵ected by the
commit to the type of operation that was per-
formed on the path.

Path String The a↵ected path.
ChType enum{A,M,D} The type of operation that was performed on a

path, A for additon, M for modification, D for dele-
tion.

CopyOps List{CopyOp} A list of copy operation descriptors, whose format
is described below.

From String The copy operation originating path.
FromRev String The version the copy operation originates from.

To String The destination of the copy operation.
ToRev String The destination revision of the copy operation.

• Amodern DBMS will use multilevel indexes to speed up search and manipulation of

records. Most SCM systems currently scan all project versions up to the requested

one to retrieve a versioned resource (except from git which uses indexed access

to objects). By using a relational mapping, most SCM metadata operations (e.g.

log retrieval, version of 3rd modification for a file) can be reduced from O(n)-class

problems to O(log n) or O(1) class, thereby accelerating analysis tool execution.

• Filtering and selecting the specific files to retrieve from the SCM system is faster if

it is done outside it. For example, if an analysis tool requires a listing of all source

code files in a revision, a DBMS will search through the file metadata at least an

order of magnitude faster than it would take for an SCM system to checkout the

project and then produce the listing.

For the reasons outlined above, in SERP we used an intermediate database schema

for storing SCM metadata. The schema has been described in Section 4.2.2. The

initial design target for the metadata schema was to support the full set of operations

supported by the SVN repository format, and, to the best of our knowledge, this is the

first description of the algorithms that can be used to populate it. However, as we

show, the schema can also support the git repository format with minor modifications.

For brevity, we refer to the mapping algorithm as scmmap .

4.4. OPERATION 73

svn log -v -r4589
--
r4589 | gousiosg | 2009-02-26 18:07:47 +0200 (Fri, 26 Feb 2009) | 2 lines
Changed paths:

M /trunk/metrics/Makefile
A /trunk/metrics/discussionheat (from /trunk/metrics/skeleton:4579)
M /trunk/metrics/discussionheat/pom.xml
D /trunk/metrics/discussionheat/src/eu/sqooss/impl/metrics/skeleton
A /trunk/metrics/discussionheat/src/eu/sqooss/metrics/discussionheat
A /trunk/metrics/discussionheat/[...]//discussionheat/DiscussionHeat.java
A /trunk/metrics/discussionheat/[...]/discussionheat/DiscussionHeatActivator.java
D /trunk/metrics/discussionheat/src/eu/sqooss/metrics/skeleton
M /trunk/metrics/pom.xml

Calculates the "heat" of a discussion by classifying email threads according to
number of emails and max depth

git log --find-copies-harder --pretty=fuller --stat --summary 5553ec7c657

commit 5553ec7c657f45cc4c76a9d6172fa687b1db5aee
Author: gousiosg <gousiosg@gmail.com>
AuthorDate: Thu Feb 26 16:07:47 2009 +0000
Commit: gousiosg <gousiosg@gmail.com>
CommitDate: Thu Feb 26 16:07:47 2009 +0000

Calculates the "heat" of a discussion by classifying email threads according to
number of emails and max depth

git-svn-id: http://anonsvn.sqo-oss.org/trunk@4589 3fa48db9-4f4b-0410-a8e8-[...]

metrics/Makefile | 2 +-
metrics/{skeleton => discussionheat}/Makefile | 0
.../manifest/manifest.mf | 0
.../manifest/manifest.mf.example | 0
metrics/{skeleton => discussionheat}/pom.xml | 16 ++--
.../metrics/discussionheat/DiscussionHeat.java | 89 ++++++++++++++++++++
.../discussionheat/DiscussionHeatActivator.java} | 22 ++----
metrics/pom.xml | 1 +

8 files changed, 105 insertions(+), 25 deletions(-)
copy metrics/{skeleton => discussionheat}/Makefile (100%)
copy metrics/{skeleton => discussionheat}/manifest/manifest.mf (100%)
copy metrics/{skeleton => discussionheat}/manifest/manifest.mf.example (100%)
copy metrics/{skeleton => discussionheat}/pom.xml (89%)
create mode 100644 .../eu/sqooss/metrics/discussionheat/DiscussionHeat.java

Listing 4: SVN and git logs for the same revision of the same repository. The repository
format was initially SVN and was converted to git without loss of information, using
the git-svn tool.

74 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Input At its input, the scmmap algorithm expects a full revision log for the whole

repository, sorted in ascending revision order (older version first). The algorithm makes

three assumptions about the revision log data that might not stand for all SCM systems:

• The repository must be globally versioned and each commit must report all af-

fected files. This assumption excludes repository formats (such as CVS) that ver-

sion resources at the file level, even though algorithms exist to convert file-level

version data to globally versioned data.

• The repository must be able to sort its revision log in an “older first” fashion,

even across branches or tags. The definition of “older” is left to the repository.

• If the repository supports inter-repository resource copying, then the repository

must be able to maintain and report information about the copy operations.

The scmmap expects at its input an ordered list of tuples, whose format is presented

in Table 4.5. Since the main purpose of the algorithm is to convert information about

changes in file paths to a relational format, the algorithm input mostly comprises of

descriptions of the changes to file paths.

To demonstrate how data from both SVN and git can be used as input to the

algorithm, we converted the SCM repository we used for the development of SERP from

SVN to git. We then used each tool to extract the log for the same changeset, which

can be seen in Listing 4. We then used extracts of the log files to populate the fields of

Table 4.6. The selected commit performs several complicated operations, for example it

copies a directory and modifies several files, while also deleting others. The conversion

to git was performed without loss of information. As we can see, both SVN and git can

provide adequate information to be used as input to the scmmap algorithm. Di↵erences

do exist; for example, a file path in git can belong in multiple branches at the same time,

as git does not attach versions to paths as SVN does. Furthermore, in real deployments,

such as the ones the system processes, git attaches cryptographic signatures to each

changeset, which hold information about the people that have approved the specific

changeset before it is committed to the repository. This additional information is not

yet used by the scmmap algorithm.

Output The SERP metadata schema is described in Section 4.2.2. The scmmap al-

gorithm primarily fills in the appropriate values in the tables ProjectVersion (PV)

and ProjectFile (PF). It also a↵ects values in tables Directory (DIR), Tag (TAG)

and Branch (BRN). The original SERP schema allows the co-existence of data from

various projects. In order to simplify the algorithm description, in the following sec-

tions we assume that only one project is stored in the schema. This simplification does

not a↵ect the algorithm design.

4.4. OPERATION 75

Relational Algebra Notation

The relational algebra we use in algorithm descriptions was introduced by Codd
in his classic work on relational databases [Cod70]. In relational algebra, data
are organised in tuples, or ordered sets, whose fields (f

1

, · · · fn) are called attrib-
utes. Relations are sets of similar tuples. Relational algebra defines six primitive
operations while also borrowing from set theory. In our text, we use the following
notation:

Projection ⇡f1,f2(R) Returns tuples with the values of attributes f
1

, and f
2

from R.

Selection �{R.f1>val1^R.f3=val2}(R). A selection returns those tuples from a re-
lation that satisfy the selection constraints.

Aggregation R.f1Gmax(R.f2)(R) Applies an aggregate function (one of max, min,
avg, count, sum) on attribute f

2

of R in tuples grouped by each di↵erent
value of f

1

. If the group by part is ommited, then the value of the applic-
ation of the aggregate function on all tuples is returned as a single result.

Join

0

@
R on S

R.f
2

> value
S.f

2

= R.f
4

1

A. A natural join between two relations will return a re-

lation with all columns from both tables populated with tuples which are
equal on their common attributes and in addition satisfy the join constraints
(expressed below the join specification). Apart from natural joins, we also
use semijoins (R n S or R o S), which are similar to natural joins, except
that the returned relation only contains attributes from the first (n) or the
second (o) relation.

Set Di↵erence R R � {↵,�, . . . ,!} A set di↵erence operation will return a
relation with all tuples in R, excluding the one specified at the right hand
side of the operation.

76 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Table 4.6: Correspondence of the fields for the svn and git scm systems to the input
fields for the scmmap algorithm. Values correspond to the log messages shown in
Listing 4.

SCM Entry Field SVN GIT
Rev r4589 commit 5553ec7c657f[...]5aee

Auth gousiosg gousiosg <gousiosg@gmail.com>

Date 2009-01-13 13:54:11 Thu Feb 26 16:07:47 2009 +0000
Branch Depends on committed path git show 5553ec7c6[...]5aee

Tag Depends on committed path git show 5553ec7c6[...]5aee

Msg The commit message The commit message
Normal Operations
Path /trunk/metrics/Makefile metrics/Makefile | 2 +-

ChangeType M, attached to path M, inferred as path is not reported as
created or deleted

Copy Operations
From from

/trunk/metrics/skeleton

metrics/skeleton/Makefile

FromRev 4579 (implied) immediately previous in
branch

To /trunk/metrics/discussionheat metrics/discussionheat/Makefile

ToRev 4589 (implied) current

Basic operations In addition to the relational algebra operations described in the

sidebox titled “Relational Algebra Notation” and in order to make the algorithm de-

scriptions simpler, we describe below a set of simple relational algebra operations. The

majority of those operate on relations and hence are described using relational algebra

notation.

Copy a relation S (R) Creates a new relation S whose tuples are 1 : 1 copies

of the tuples in relation R.

Set attribute values "
(f1,··· ,fn val),···(R) Sets the value of fields f

1

, · · · , fn to val

for all tuples in R. Multiple operations can be combined.

Update attribute values �U"(R): Executes the set attribute value set oper-

ations defined by " on all tuples that match the criteria specified by �. The update

operation is semantically equivalent to removing the tuples that match from R, perform

the attribute value set operation on the resulting relation and then up performing a

union operation between the result of the attribute update and the original relation.

�U"(R) ⌘ S (R� ��(R)),

"(S),

R ((R� ��(R)) [S)

4.4. OPERATION 77

Relation rename R as D Temporarily changes the name of a relationship. Used

for distinguishing multiple uses of a relationships in a single operation, for example in

case of self-joins.

File path functions For a given path, dirname(path) will return the directory

portion while basename(path) will return the file name or the directory name portion

of path depending on whether path points to a file or a directory.

Get files in directory getF iles(D,V): A relational operation, semantically equi-

valent to checking out the directory D in version V and retrieving the (non-recursive)

list of files. It is defined as:

getF iles(D,V) =

0

BBBBBBBBBBBBBB@

DIRo

0

BBBBBBBBBBB@

PF n

0

BBBB@

PV on (PV asPV
2

) on (PV asPV
3

)

PV 2.seq <= PV.seq

PV 3.seq >= PV.seq

PV.id = V.id

1

CCCCA

PF.validFrom = PV 2.id

PF.validUntil = PV 3.id

PF.state 6= D

1

CCCCCCCCCCCA

DIR.path = D.path

1

CCCCCCCCCCCCCCA

The returned relation comprises of tuples representing all files that are live in the

provided directory in the given version. The result may be an empty set.

The scmmap algorithm The algorithm operates on a list of SCM log entries (Entries).

For each entry, it applies a set of data extraction (processCommit, processCopyOps,

processOps) and data refinement (addModifiedDirEntries, replayLog, updateValid-

Until) operations. It maintains two state variables, a relation for storing the list of

entries to the ProjectFile table (V F) before they are merged into the database and

one to store the currently processed version (V er). The state variables can be freely

manipulated by each algorithm step, but they are cleared after each revision step. We

now analyse each algorithm step in detail.

78 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Function scmmap(Entries)

Data: Entries : An ordered set of SCM log entries

Result: A relational representation of project file metadata

foreach logentry 2 Entries do

V F ; ;
V er = processCommit(logentry) ;

processCopyOps(logentry) ;

processNormalOps(logentry) ;

addModifiedDirEntries() ;

replayLog() ;

PF PF [V F ;

updateValidUntil() ;

end

The processCommit operation extracts data from the commit log and stores them

in the ProjectVersion (PV) table. It first determines the correct sequence number

for the revision by selecting the maximum sequence number already in the database.

It then creates a new entry in the ProjectVersion table which also stores in the V er

state variable, to make it available to the steps that follow. If the log entry specifies a

tag or a branch, entries are added to the corresponding tables.

Function processCommit(E)

Seq = G
max(seq)(PV)

V er {E.Rev,E.Date, E.Msg, Seq + 1} ;

PV PV [V er

if E.Tag 6= null then

T {V er,E.tag} ;

TAG TAG [T
end

if E.Branch 6= null then

B {V er,E.branch} ;

BRN BRN [B
end

return V er
The next step deals with file copies. Copy operations must be processed before

normal operations, as some SCM systems allow multiple actions to be recorded in a

single commit after a resource has been copied. For example, in SVN a user can copy

a directory (e↵ectively duplicating its entries in another repository path) and then

proceed to delete a few files in the copied location while also modifying others. All

those actions will be recorded in a single changeset. Processing of the copy operations

consists simply of calling the copyPath function for each individual copy operation.

4.4. OPERATION 79

Function processCopyOps(E)

foreach Op 2 E.CopyOps do

Dirname dirname{Op.FromPath} ;

Filename basename{Op.FromPath}

FromFile �{PF.name=Filename}

0

B@
PF nDIR

PF.dirid = DIR.id

DIR.path = Dirname

1

CA

FromV er �{PV.revisionid=Op.Rev}(PV)

copyPath(FromV er, FromFile, V er,Op.to)

end

The copyPath function duplicates the file or files (depending on whether Fp is a

file or a directory) residing under path Fp in version Fv and changes their version to

Tv and their path of residence to Tp. If the Fp argument denotes a directory, then

the copy operation is cascaded to all files and subdirectories included in Fp. All input

variables denote tuples in the PF (Fp) and PV (Fv, Tv) relations respectively, except

for Tp which is a string representation of a file path. The copyPath function creates

tuples that appends to the V F state variable, to make them available to the remaining

algorithm steps. To keep track of the history of the file, the copyFrom field is set equal

to the id field of the source of the copy.

Function copyPath(Fv, Fp, Tv, Tp) ;

Dirpath dirname{Tp} ;

D �{DIR.path=Dirpath}(DIR) ;

R (�{PF.id=Fp.id}(PF)) ;

UR.dirid D.id,R.verid Tv .id,R.copyFrom Fp.id,R.status=A(R);

V F V F [R ;

if ¬Fp.isdir then
return

end

R getF iles(Fp, Fv) ;

foreach F 2 R do

copyPath(Fv, F, Tv, "{F.dirid Fp.dirid}(F)) ;

end

Next, the algorithm proceeds to process normal (non-copying) operations. Normal

operations are di↵erent from copy operations in that a normal operation can define a

file or directory delete. In SVN, when the user deletes a directory then the log will not

contain delete entries for the files included in the deleted directory (git will include

this information in the revision log). Therefore the algorithm must infer all files in

the deleted directory in order to mark them as deleted. This task is performed by the

80 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

deleteDir function. A special case of directory deletion happens when a directory is

deleted in the same version that the directory has been copied. This special case can

be easily distinguished from the normal directory deletion case as there is no entry for

the current path in the database already. The deleteCopiedDir function handles the

copied directory deletion task.

Function processNormalOps(E)

foreach Op 2 E.NormalOps do

F {V er,E.dir, E.name,E.nodetype,Op.ChType, null, V er, V er} ;

V F V F [F ;

if Op.ChType = D ^ E.isDir then

Prev �{PF.dir=E.dir^PF.name=E.name}

PF n PV

PV.seq < V er.seq

!
;

if Prev = ; then
Prev �{V F.status=A^V F.name=Op.name^V F.isDir}(V F)

deleteCopiedDir(Prev, V er)

else

deleteDir(Prev, V er) ;

end

end

end

The deleteDir function recursively retrieves all files in a directory that is marked

for deletion and in turn marks them as deleted.

Function deleteDir(DF, V)

Prev G{max(PV1.seq)}

PV asPV

1

o PV asPV
2

PV 1.seq < PV 2.seq

!

Files getF iles(DF,Prev)

foreach F 2 Files do

if F.isdir then
deleteDir(F, V)

end

TD (F) ;

U{V er.id V.id^TD.status=D}(TD) ;

V F V F [TD
end

Furthermore, SCM changesets can group together both copying and non-copying

operations. If a user first copies a directory and then deletes directory entries within

the copied path, the deleteDir will not be able to infer the deleted files, as those

where not recorded yet in the database. For this reason, the deleteCopiedDir function

4.4. OPERATION 81

searches for deleted file entries within the files recorded in the currently processed

revision, and marks them appropriately.

Function deleteCopiedDir(DF, V)

Files �{V F.dirid=DF.dirid}(V F)

foreach F 2 Files do

if F.isdir then
deleteCopiedDir(F, V)

end

TD (F) ;

U{V er.id V.id^TD.status=D}(TD) ;

V F V F [TD
end

After the end of the processNormalOps function, the algorithm has finished pro-

cessing all information that the SCM system has provided to it. The next steps involve

resolving semantic relationships between the processed entries. The first such operation

creates fake entries for directory paths whose contents have been modified in the current

revision. In this step, the algorithm mimics the behaviour of a real file system; when a

file is inserted or updated in a directory, most file systems will update the directory’s

access time, thereby creating a new state for it. The scmmap algorithm does the same

for the virtual file tree it creates. This enables measurements to be attached to direct-

ories using exactly the same storage type (the ProjectFileMeasurement entity) as in

the case of normal files, thereby simplifying plug-in design.

Function addModifiedDirEntries()

Files �{¬V F.isdir}(V F)

foreach F 2 Files do

D DIRn F ;

Dpath dirname{ D.path};
Dname basename{ D.path} ;

D �{DIR.path=Dpath}(DIR);

DF �{PF.name=Dname^PF.dirid=D.id}(PF) ;

MD U{DF.state=M}((DF)) ;

V F V F [MD
end

At this stage, the scmmap algorithm has created all required entries for project file

changes in the temporary V F relation. A diligent reader might have already noticed

that the V F table might contain duplicate entries; for example the addModifiedDir-

Entries method will create duplicate entries for the same directory when two files have

been modified in this directory. A more subtle situation occurs when a directory has

82 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

been copied to a new location and a file has been removed from the new location; the

same file will appear initially as added and then as deleted. To resolve such inconsist-

encies, the scmmap algorithm must work out the prevailing state for each file, and it

does so by looping over all instances of the file and applying a point system.

Function replayLog() ;

foreach F 2 V F do

oldpoints = 0; PREV ; ;
foreach P 2 V F do

if F.name 6= P.name _ F.dirid 6= P.dirid then
next P

end

switch P.chType do

case A
points 2

endsw

case M
points 4

endsw

case D
points 8

endsw

endsw

if points >= oldpoints then

oldpoints points ;

if PREV 6= ; then
V F V F � PREV

end

PREV P
end

end

end

After the log replay step, all entries that modify the virtual file tree maintained by

SERP have been appended to the appropriate relations. In the final step, the algorithm

updates the validUntil fields for the entries in the ProjectFile relation. To do so, it

retrieves all files that are live in the immediately previous (as recorded by the version

sequence field) version and updates the appropriate field with the id of the current

version, for those files for which there is no new version that has been processed in

the current project version. A new file version existence is determined by searching for

each old version file for a corresponding file in the current version set that resides in

4.4. OPERATION 83

the same directory and has the same name.

Function updateValidUntil()

Prev G{max(PV1.seq)}

PV asPV

1

o PV asPV
2

PV 1.seq < PV 2.seq

!

PrevF iles

0

BBBBBBBBBBB@

PF n

0

BBBB@

PV on PV asPV
2

on PV asPV
3

PV 2.seq <= PV.seq

PV 3.seq >= PV.seq

PV.id = Prev.id

1

CCCCA

PF.validFrom = PV 2.id

PF.validUntil = PV 3.id

PF.state 6= D

1

CCCCCCCCCCCA

foreach F 2 PrevF iles do

N �{V F.name=F.name^V F.dirid=F.dirid}(V F);

if N = ; then
{F.id=PF.id}U{F.validUntil V er.id}(F) ;

end

end

After the end of the update process, the SERP system is fully equipped with the

appropriate metadata to respond to metadata queries much faster than comparable

approaches that involve access to the raw data. The relative volume of the stored

metadata is comparable to that of raw data. The metadata enable complex metrics

that need to read the contents of project artifacts to benefit from the database’s ability

to filter out unwanted items before they reach for the data retrieval subsystem; for

example a metric interested in a subset of the project files (e.g. all source code files)

can request just those and the system will automatically filter out irrelevant entries,

thereby saving the time to fully checkout and then clean up a full project revision.

The time savings are significant: on our system, a query to retrieve all source code

files for version 135332 of the Freebsd project executes in two seconds. A comparable

approach would entail checking out all files from the repository and then selecting the

required ones: on our system it takes 14 minutes for the same version. Furthermore,

the metadata entities are also used by metrics to store and calculate results in an

incremental fashion; for example, when the source code updater encounters a new

revision, it will notify all metrics that calculate their results on whole project checkouts

and, after the result is calculated, it can be stored against the same database object.

Implementation The algorithm has been implemented as an extension to the SERP

metadata update service. The current implementation only supports the SVN reposit-

ory format as at the time of this writing there is no library in Java that implements

84 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

the required set of git repository functionality. The implementation itself posed a sig-

nificant challenge, and the design of the algorithm went through various iterations (the

corresponding file received 132 commits, more than any other in the SERP repository)

until the storage schema was satisfactory.

In the form presented above, the algorithm will maintain a virtual file tree of all

files that are live in each project revision, which also includes files copied in directories

denoting branches and tags. As the representation of the file tree in SERP closely

resembles the one in SVN, all files will remain live until they are marked as deleted, and

this also includes the files marked as branches or tags. As both branches and, especially,

tags usually receive a very limited number of updates, maintaining the liveness of

files (the last step of the algorithm) can be problematic for large projects. In the

implementation of the scmmap algorithm, we give the user the option to exclude certain

paths from the processing loop. This complicates the implementation significantly, as

there are several cases where a file is copied from a non-processed path to a path that

can be processed. In such cases, we resort to the repository to retrieve the missing

information about the source file of the copy action.

4.4.2 Resolving Developer Identities Across Data Sources

One of the goals of the SERP platform is to integrate data from various data sources

and to enable analysis across those data sources.

Direct links are links across data sources based on items that are common (or similar)

across the data sources. This kind of links exists in all projects. An example of

common objects is developer identities.

Indirect links result from tagging items in a data source with information specific to

other data sources. An example of indirect linking is the inclusion of a bug report

number in a commit message that a↵ects this bug report.

Developer identities are almost direct links among project data sources. In Table 4.7,

we present all di↵erent types of identities a developer can have in the data sources that

the SERP platform processes, in the ideal case. As all systems managing the processed

data sources have been developed independently, there is no guarantee that a single

identity will be used across them. Robles [RGB05] categorises the identities in two

categories: primary, which are mandatory for accessing the data stores, and secondary,

which may not be present, but if they are they provide additional information about

the developer. Even though developer identities do exist in all data sources that the

SERP processes, these cannot be used without preprocessing. As opposed to the ideal

case presented in Table 4.7, in datasets stemming from real OSS projects, developer

identities are problematic to process because:

4.4. OPERATION 85

Table 4.7: Examples of identities for the same developer in various data sources.

Source Identity
SCM (SVN) username

SCM (git) usename@domain.org

Name Surname <username@domain.org>

Mailing list Name Surname <username@domain.org>

username@domain.org

BTS usename@domain.org

• A person might have several identities in the course of a project. For example, it

is common for developers of long running projects to change their email addresses,

for example due to changes in their employment status.

• For most projects, there is no direct mapping between the identity of a developer

in the SCM system (which in most cases it is stored as a user name) to the email

address used for posting to mailing lists or to submit bugs. Even for projects that

maintain central databases of users, this data is usually not available.

• The legal status of developer related data is dubious; although developers sending

an email or submitting a patch to a project provide a de facto consent to the

project to publish their identities, this consent does not automatically extend

to processing the identity or linking it to the other identities the developer may

have.

For the purpose of resolving identities across data sources, we designed and imple-

mented the idmap algorithm, a heuristic-based method to identify and group together

developer identities for the SERP.

Input The algorithm operates directly on SERP database entities and, more specific-

ally, on entries to the Developer and DeveloperAlias tables. To account for the

average case, we consider a fully resolved, unique identity as a record consisting of a

real name, a user name and several emails. We acknowledge that a developer might

also have several SCM user names in the lifetime of the project, but based on what is

reported by [RGB05], this possibility is very thin.

The Developer and DeveloperAlias tables are populated with unprocessed data

during the metadata update phase. When processing updated raw data versions,

metadata updaters link the metadata entity representing the raw data change to an

entry in the Developer table to mark a change as performed by a certain developer.

Depending on the updated raw data, the developer information can be a username or

an email possibly followed by the developer’s real name. The raw data updaters do not

86 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

process the developer data more than checking for duplicate values before appending

them in the Developer and DeveloperAlias table.

To enhance the resolution process, we downloaded the Ohloh developer database

through its web Application Programming Interface (API). Ohloh1 is a web site that

analyses the source code evolution of a large number of OSS projects. Similarly to SERP,

it uses each project’s SCM repository for that purpose; in addition, it allows developers

to submit additional information to their profile page, which is what makes the Ohloh

dataset particularly useful for our purpose. Several developers have submitted their

email and attached it to the user name they use in the SCM they work. Ohloh only

distributes emails cryptographically hashed; however, given any email, we can produce

its hash and then search Ohloh’s database for the user name this email is attached

to, thereby providing us with an additional source of information. As the submitted

email is what Ohloh users use to register with the service (so it needs to be a real email

address), the Ohloh dataset is a premium source of data for the idmap algorithm.

Output The idmap algorithm operates directly on the Developer and Developer-

Alias tables and reduces the number of identities that the metadata updaters have

inserted in those tables, after resolving multiple identity instances into a single one.

The idmap algorithm also updates the corresponding raw data metadata to point to

the appropriate developer identities after the resolution has been performed. We do

not cover this step in the algorithm description.

The idmap algorithm The idmap algorithm is derived from the algorithm presented

by Robles in [RGB05]. Robles’s approach involved a set of heuristics that were used

to fill in a match table, that was later inspected manually for correctness. In our case,

the whole process is automated and therefore we had to design the idmap algorithm

conservatively, otherwise our sample would be polluted with false positive matches.

Additionally, idmap introduces approximate string matching techniques [Nav01] and

external datasets (Ohloh) as an additional step to validate the quality of heuristic

based matching, which is common between Robles’s algorithm and idmap .

The idmap algorithm iterates over a given set of developer identities and for each one

it attempts to find a developer whose user name matches exactly or approximatively the

real name or the email name of the examined developer. The algorithm uses a scoring

system to evaluate the quality of the match; as the name to be matched is tested against

various heuristics, a score is updated based on how strong the heuristic is. A match is

only considered successful if it scored above a certain threshold and matched against

more than one criteria. The criteria being used are analysed in Table 4.8.

1http://www.ohloh.net

http://www.ohloh.net

4.4. OPERATION 87

Function idmap() ;
M ;;
foreach {D 2 DEV |DEV.name 6= null } do

if OD �
sha1{D.email}=OHLOH.email(OHLOH) then

if Uname �{DEV.uname=od.uname}(DEV) then
M M [{D,Uname, 12}
next

end

end

if Dev

0

@
DEV nDEV AL

DEV.uname = extrufe(D.email)
DEV.id = DEV AL.devid

1

A then

M M [{D,Dev, 12}
next

end
namePerms nameperm(D.name)
foreach uname 2 namePerms do

if Dev �{DEV.uname=uname}(DEV) then
M M [{D,Dev, 9}

end

if Dev

0

@
DEV nDEV AL

DEV.uname = extrufe(D.email)
DEV.id = DEV AL.devid

1

A then

M M [{D,Dev, 9}
end
distMatch �{strdist(D.uname,uname)<3}(DEV)

foreach Dev 2 distMatch do
M M [{D,Dev, 3� strdist(Dev.uname, uname)}

end
phonMatch �{strdist(phon(D.uname), phon(uname))<5}(DEV)

foreach Dev 2 phonMatch do
M M [
{D,Dev, 5� strdist(phon(Dev.uname), phon(uname))}

end

end
Results �{R.sum(M.score)>=12}(({M.left,M.right}Gsum(M.score)(M)) as R) ;

end
return Results

Algorithm 1: Resolving developer identities — the idmap algorithm

88 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Table 4.8: List of heuristics used by the idmap algorithm

Heuristic Function Score Description
Ohloh — 12 The examined entry’s email is in the Ohloh data-

set. As Ohloh distributes emails cryptographically
hashed, the sha1 digest function must be applied
to the original email before comparison.

Email username extrufe 12 Use the examined entry’s email username (the part
of the email before the @ symbol) to match against
entries with the same username.

Name Permutations nameperm 9 Use letters from the examined entry’s real name
to produce a set of ten possible usernames, then
match those against other entries’ usernames. For
example for the name John M. Doe, the heuristic
will match entries with usernames like jdoe, doej

and jmd.
String distance strdist 3 - dist Calculate the Levensthein distance [Lev66]

between the examined developer’s username and
other user names.

Phonetic phon 5 - dist Produce a phonetic code (with the double Meta-
phone algorithm [Phi00]) for each name permuta-
tion for the examined developer, calculate string
distance from phonetic codes of other developer
user names.

The idmap algorithm is shown in Algorithm 1. We use relational algebra notation

to describe operations performed on database entities, namely DEV (for Developer),

DEV ALS (for DeveloperAliases) and OHLOH (for OhlohDeveloper). All entities

correspond to the SERP database schema described in Section 4.2.2. The algorithm

description makes use of several shortcut functions that denote the heuristic in use.

They are described in Table 4.8. When a match is found, the idmap algorithm creates

an entry holding the two matched identities and the match score into the M temporary

relation.

The idmap algorithm operates on developer identities which already have a real

name attached, as according to our experiments, the real name provides the best heur-

istic matches. Moreover, if the real name is set for an identity, then the email field will

also be set, as they are both filled in by the mailing list updater, which in turn reduces

the comparisons that must be made in order to derive a full identity. The algorithm

starts by querying the OHLOH database using the identity’s email to retrieve a user

name from the OHLOH data source. It then proceeds to extract the user name part

from the identity’s email and search for that user name in the identities table. This

heuristic matches identities with consistently used user names across all data sources,

which is often the case for long time project contributors.

The algorithm then creates a list of possible user names by mingling initial letters

with parts of the identity’s real name, as it is a common pattern (especially in envir-

onments that follow the Unix tradition) to use parts of a person’s real name or her

4.4. OPERATION 89

initials as a user name. For each of the potential usernames, 4 checks are performed;

first, the candidate user name is checked against other user names of those extracted

from emails for potential full matches. It is then again checked against all user names

using partial string matching algorithms like string distance and phonetic matching.

At the end of the process, the algorithm has aggregated in relation M all matches

along with their scores. All the algorithm has to do then is to aggregate the score

for duplicate pairs and return those pairs whose aggregate score surpasses a certain

threshold. Using the scores we presented in Table 4.8, we set the threshold to 12, as we

wanted to ensure that either a full match or a partial match with more than 2 matching

criteria was applied before a pair of identities were identified as matching. Obvisouly,

the lower the threshold, the more false positive matches the algorithm will return.

Implementation The core idmap algorithm is implemented as a second stage updater

in the SERP. Tha algorithmic complexity of idmap is O(n2). For each identity that

is examined, there are at least 6 database queries that must be performed. For a

large number of identities, the idmap algorithm can be very slow, if the implementation

matches exactly the description provided here. For this reason, the implementation

is split; the full match step is performed when the identities are initially stored in

the database, during metadata updates. The second phase (approximate matching) is

initiated after the metadata import process. That way, a number of identities that can

be resolved using the full matching step are not examined by the approximate matching

step. Also, the implementation is careful not to perform database queries more than

once, by caching intermediate results in memory. This way, the algorithm can examine

ten thousand identities in less than 10 minutes.

4.4.3 Clustering

To cope with large data volumes, large SERP installations must use more than one

processing nodes. However, running SERP on a cluster is not simple: each cluster node

must have access to both the raw data mirrors and the metadata database, while the

system should implement mutual exclusion mechanisms to prevent two cluster nodes

from processing the same data. On the other hand, the system should automatically

manage cluster resources in order to be able to load each cluster node according to its

processing capabilities.

Most analysis methods in software engineering evaluate data within the scope of a

single project. Typically, analysis methods calculate a result by applying an analysis

algorithm on a project state; for example, this is the case with most source code metrics.

In other analysis methods however, analysis results for a specific project state can be the

result of combining the analysis results of former project states or those of combining

90 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

the results of other analysis methods applied on the same project state. To cope with

these scenaria, a cluster must be able to manage the analysis dependencies across

cluster nodes, which can lead to significant design and implementation complications.

Fortunately, the cluster design can be made significantly simpler by noticing that the

tasks to be processed by an SERP cluster are embarrassingly parallel if a project is

constrained on a single processing node. This means that if a cluster needs to process

data originating from more than one projects, which is indeed the typical case when

building a cluster, then adequate isolation can be achieved by enforcing a mechanism

that constrains the processing of all project data on a single node. This way distributed

dependency resolution is not necessary and cluster e�ciency only depends on load

balancing techniques.

SERP is designed to work in heterogeneous cluster environments, where nodes can

have di↵erent processing capabilities. All cluster nodes share the metadata database

and the raw data mirror, the later over a network filesystem. The cluster is headed by

the cluster master, a special node whose job is to maintain information about the cluster

nodes and to distribute the processing load on them, according to their capabilities.

Processing nodes run a special service which is used by the cluster master to schedule

work items and to discover the node’s status. The functions o↵ered by the cluster

service are described in Table 4.9.

During cluster initialisation, the cluster master discovers the nodes through their

entries in the shared database. It then proceeds to retrieve the configuration parameters

for all nodes and builds a cache for those. In regular intervals, the master will query each

cluster node for runtime parameters. The nodes are split in metric job processing nodes

and metadata update nodes, the later being the most powerful. The master decides

which node to assign a set of jobs, which are instantiated by the metadata updater

(raw data) or on user request (metric plug-ins), based on a scheduling algorithm.

The proposed cluster scheduling algorithm is presented in Algorithm 2. Initially,

the algorithm attempts to build a set of scheduling candidate nodes, by excluding

those nodes that are already under load. From the list of suitable nodes, the algorithm

will return the one that will flush its work queue the fastest, based on the rate of

job processing and the remaining queue length variables. If no job processing node is

available, then it will search for suitable idle nodes among those that are marked for

metadata updates. Metadata update jobs have higher priority over metric run jobs so

the job scheduler will execute them first should they appear on the work queue. From

the metadata update nodes, the algorithm will select the one with the least system

load. In case there is no processing node available for running the update job, the

system will save the update request and will reprocess it later.

In its current implementation, the SERP cluster service is much simpler than the

4.4. OPERATION 91

Table 4.9: Cluster services supported commands, results and scheduling implications
Command Acro Result

Configurable Parameters
getMaxQueueLength MQL The maximum work queue length. Depends on avail-

able memory on the node.
getNumProcessors NP Number of processor equivalents. Not the real num-

ber of processors, but an approximation of how many
times faster a node is in comparison with a 2Ghz pro-
cessor.

getSupMDUpdates SMD Whether or not the current node supports metadata
updates. As metadata synchronisations are very re-
source intensive, only the fastest of nodes should run
those.

Runtime Parameters
getCurQueueLength CQL The number of jobs on the queue. If more than 75%

full, or if the number of jobs to be scheduled exceeds
the max length, the master will not schedule new
jobs.

getSysLoad SL The load, as reported by the operating system. If
more than the reported processor equivalents, the
cluster master will not schedule jobs on this node.

rate R Number of jobs finished per second. Only calculated
when jobs are queued.

Operations
run RUN Accepts XML descriptions of jobs to be scheduled.

The job id is returned if the job was enqueued suc-
cessfully.

getFinishedItems FNS Retrieves the job id’s for finished jobs.

92 CHAPTER 4. RESEARCH PLATFORM DESIGN AND IMPLEMENTATION

Function schedule(N,L)
Data: N : Set of cluster nodes, L : Number of jobs to schedule
Result: A node to schedule a list of jobs on.
C = ; ;
foreach n 2 �¬SMD(N) do

if NPn > SLn then
next n

end
if CQLn > 0, 75 ⇤MQLn then

next n
end
if L > (MQLn � CQLn) then

next n
end
C C [n

end
if C = ; then

C �SMD^((MQL�CQL)<L)(N) ;

if C = ; then
sleep ;
return schedule(N,L)

end
return �min(SL)(C)

else
return �min(R⇤CQL)^¬SMD(C) ;

end
Algorithm 2: Cluster Job Scheduling Function

design presented here. Currently, it will not assign projects to cluster nodes automatic-

ally, nor will it delegate metric runs to the appropriate node. However, it does restrict

projects on specific cluster nodes and di↵erentiates jobs between metric updates, which

occur on cluster nodes, and metadata updates which run on the cluster master node.

4.5 Summary

In this chapter, we introduced the SERP and described its basic constituents. We also

described in depth our contributions to the sqo-oss tool. We have formally described

the first, to the best of our knoweledge, algorithm that can map distributed and cent-

ralised SCM repository information on a relational schema and also presented novel

solutions to the problems of identifying developer identities across data sources and

scheduling jobs on an SERP cluster.

Chapter 5

Empirical Validation

The true worth of an experimenter consists in his pursuing not only what he seeks in

his experiment, but also what he did not seek.

— Claude Bernard

In the previous chapter, we described the design and analysed the novel aspects of

the implementation of a platform that facilitates software engineering research on very

large datasets. In this chapter, we validate our design by presenting the excecution of

two large case studies that use it. Apart from exemplifying the value of the platform, the

case studies produce interesting results, as they provide evidence against two popular

conjectures in OSS development: that heated discussions on mailing lists a↵ect the

project and that the more developers on a module or a project will make the module’s

quality better.

5.1 Intense Electronic Discussions and Software Evolu-

tion

A well known and well studied (both from a social [Der94] and technical [Coa04] per-

spective) phenomenon in electronic communications is heated discussions, usually ref-

ereed to as “flame wars”. Flame wars mainly happen on mailing lists but can also

occur on irc channels or other forms of instant electronic communications. During a

flame war the electronic communication etiquette collapses: the topic of discussion stirs

away from software development, the rate of message exchanges increases sharply, and

the exchanged messages rather than debating the technical aspects of the argument

often target directly other participants. Intense discussions do not necessarily signify

a flame war; a technical or managerial issue might also elevate the discussion’s rate of

93

94 CHAPTER 5. EMPIRICAL VALIDATION

exchanges. When the point being pondered is insignificant the discussion is often re-

ferred to as a “bikeshed argument” [Fog05], after Parkinson’s Law of Triviality [Par58].

Heated discussions are believed to a↵ect a community’s social structure; what we try

to investigate is whether they also a↵ect the project’s evolution in the short term.

5.1.1 Research Questions

Before proceeding to the formulation of the research questions, we must define what

can be considered as an intense discussion and how we measure short term evolution.

Let’s examine the typical mailing list communication scenario: a discussion starts

by a post to a mailing list. When a reply to the specific post arrives, then the discussion

is considered open: the first poster might come back with a new question or exit the

discussion, while a new poster might join the discussion with a reply to the original

message or to the previous reply. A thread might can have multiple branches, when

the discussion stirs away from the main topic, usually due to a provocative answer,

and consequently multiple exit points. Generally, identifying the message that closes a

discussion is very di�cult to do automatically for threaded discussions, as it requires

analysing the message contents. For this reason, the last email in order of arrival is

typically considered as the one that closes a thread.

The diagrams in Figure 5.1 present an overview of mailing list activity, with com-

bined data for all mailing lists in the SERP database. From observing Figure 5.1 we

can see that most mailing list threads are less than 5 levels deep and contain less than

seven messages. Moreover, most discussions last less than a day. These observations

tell us that in order to identify heated discussions without examining the discussion

content, we could search for single threads that last less than a day and whose depth

level and number of messages lay on the top of both scales. Therefore, if we obtain

a list of threads sorted by the number of messages and one sorted by the maximum

depth, we could assume that the threads that belong to the top quartile of both lists

could be classified as intense discussions. However, this assumption can only stand

in the context of a project; as Figure 5.2 shows, di↵erent projects, and even di↵erent

mailing lists in projects, exhibit di↵erent list usage patterns, and therefore they must

be analysed individually. Regarding mailing list activity, the hypotheses we test in this

case study are the following:

H1. The number of messages and the thread depth are dependent characteristics of

mailing list activity.

H2. Intense discussion threads can be identified by considering the threads that belong

to the top quartile of either the message number or the thread depth distributions for

each mailing list.

Once an intense discussion has started, according to popular conjecture, one should

5.1. INTENSE ELECTRONIC DISCUSSIONS AND SOFTWARE EVOLUTION 95

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 5 10 15 20 25

O
cc

u
re

n
ce

s

Number of messages per thread

Number of messages

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5 10 15 20 25

O
cc

u
re

n
ce

s

Thread depth

Levels of thread depth

(a) (b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25 30 35 40 45

O
c
c
u
re

n
c
e
s

Hours since thread start

Number of closed threads

(c)

Figure 5.1: Number of messages per thread (a), thread depth (b), and thread duration
distributions for all mailing list threads in the serp database

expect a fall in the average number of lines that are committed to the project’s repos-

itory, as the developers would be engaged in the discussion. Therefore, the formulated

hypothesis is:

H3. During and shortly after an intense discussion, the source code line intake rate

diminishes.

To measure the increase or decrease of source code line intake during an intense

discussion, we divide time in two periods: if t is the exact time of the first email that

provoked the discussion, then t � 30 days denotes the pre-heat time and t + 1 day

denotes the post-heat time. We can relatively easily retrieve the number of lines that

were committed to the repository for both periods and thus derive the number of lines

committed per hour. That way, we can assess the e↵ect of an intense discussion on a

project’s short term line intake by subtracting the two calculated rates.

96 CHAPTER 5. EMPIRICAL VALIDATION

 0

 20

 40

 60

 80

 100

 120

 140

B
a
lsa

B
a
n
sh

e
e

B
ra

se
ro

C
o
n

d
u

it

D
a
sh

b
o

a
rd

D
e
skb

a
r-A

p
p
le

t

D
ia

E
kig

a

E
p
ip

h
a
n

y

E
vin

ce

E
vo

lu
tio

n

F
-S

p
o
t

F
re

e
B

S
D

G
T

K
+

G
T

K
-D

o
c

G
T

ra
n

sla
to

r

G
a

rn
o
m

e

G
n

o
m

e
-D

e
skto

p

G
n

o
m

e
-D

o
c-U

tils

G
n

o
m

e
-G

a
m

e
s

G
n

o
m

e
-K

e
yrin

g

G
n

o
m

e
-M

u
d

G
n

o
m

e
-N

e
tw

o
rk

G
n

o
m

e
-P

ilo
t

G
n

o
m

e
-S

yste
m

-T
o

o
ls

G
n

o
m

e
-T

h
e
m

e
s

G
n

o
m

e
-U

tils

G
n

o
m

e
-V

F
S

G
n

o
m

e
-i1

8
n

G
n

u
m

e
ric

L
S

R

L
ib

G
n

o
m

e
D

B

L
ib

G
n

o
m

e
P

rin
t

L
ib

X
M

L
2

L
ib

X
S

L
T

M
lV

ie
w

M
u
in

e

N
a
u

tilu
s

N
e
tw

o
rkM

a
n
a

g
e

r

O
rb

it2

O
rca

P
la

n
n

e
r

R
h
yth

m
b
o

x

Figure 5.2: Distribution of the number of emails per thread in various projects

5.1.2 Method of Study

To create a plug-in for SERP, a researcher must first identify the potential experiment

variables and their relationships with the entities that SERP maintains in its database.

SERP calculates metrics incrementally; for each identified resource change, all metrics

that are bound to the resource type are calculated for the changed instances of the

resource. The analysis tool we describe will need to calculate the depth and the number

of emails of a thread, so naturally it will be bound to the MailingListThread entity.

Each time a MailingListThread is updated (i.e. when new emails arrive) the plug-in

will be called; to avoid recalculation of threads that have already been evaluated, we

will need to cache the result in the database. This can be done by defining a new

metric.

The calculation of the rate of line changes for the period before the start of the

heated discussion and immediately after it is trickier, as SERP does not currently have

any means to store the results of a measurement against a set of entity states. There

are two workarounds to this issue:

• store the result against all entity states in the required period, or

• synthesize the result on request, by incrementally combining individual state

5.1. INTENSE ELECTRONIC DISCUSSIONS AND SOFTWARE EVOLUTION 97

measurements.

It is usually cheaper, more precise and future-proof to follow the second route. SERP

plug-ins are designed for re-use; if a basic plug-in exports individual measurements

of small parts of each assessed resource state, then a high-level plug-in can combine

measurements from various other plug-ins to a greater e↵ect. In our case, we designed

the described plug-in to calculate the number of lines that have changed in each new

project version (and therefore be bound to the ProjectVersion entity) and then to

use those measurements to calculate the rate of changed lines when a heated discussion

is discovered. As expected, the measurement of the lines of code for the changed files is

not performed inside our plug-in, but instead we re-use the size plug-in to obtain them

for each changed file, as shown in the following code extract:

int getLOCResult(ProjectFile pf) {

AlitheiaPlugin plugin = AlitheiaCore

.getInstance()

.getPluginAdmin()

.getImplementingPlugin("Wc.loc");

List<Metric> metrics = new ArrayList<Metric>();

metrics.add(Metric.getMetricByMnemonic("Wc.loc"));

Result r = plugin.getResult(pf, metrics);

return r.getRow(0).getCol(0).getInteger();

}

Overall, the plug-in is bound to two entities (or activators) and defines three metrics:

verloc Stores the number of lines of all text based files that changed per revision.

hotness Attaches a score (ranging from 1 to 4) to a thread based on how “hot” it

is. The classification algorithm calculates the number of messages and the thread

depth of the message and compares them to the averages of the mailing list that

the thread belongs to. A score of 1 to 4 is assigned to each comparison based on

the quartile each thread property belongs to.

hoteffect Calculates the e↵ect of heated thread discussions by subtracting the rate

of lines of code committed to the repository the month before and the day after

start of the discussion.

After designing the plug-in outline and specifying the required metrics, the imple-

mentation itself is easy given the wealth of features o↵ered by the SERP api. Metric

declarations take a single line of code in the install() method:

98 CHAPTER 5. EMPIRICAL VALIDATION

super.addSupportedMetrics("Locs changed in version",

"VERLOC", MetricType.Type.PROJECT_WIDE);

Returning a result stored in the standard SERP schema is equally straightforward.

The following code is the actuall implementation of the getResult() method for the

ProjectVersion activator.

public List<ResultEntry> getResult(ProjectVersion pv,

Metric m) {

return getResult(pv, m,

ResultEntry.MIME_TYPE_TYPE_INTEGER);

}

The following extract is from the run()method implementation for the ProjectVersion

activator. It demonstrates how object relational mapping used in SERP simplifies access

to project entities. The code calculates the total number of lines changed in a specific

project version and then stores the result to the database.

for (ProjectFile pf : pv.getVersionFiles()) {

if (pf.isDeleted()) {

linesChanged += getLOCResult(pf.getPrevVer());

} else if (pf.isAdded()) {

linesChanged += getLOCResult(pf);

} else { // MODIFIED or REPLACED

linesChanged += Math.abs(

getLOCResult(pf)

- getLOCResult(pf.getPrevVer());

}

}

ProjectVersionMeasurement pvm =

new ProjectVersionMeasurement(m, pv,linesChanged);

dbs.addRecord(pvm);

The discussion heat plug-in implementation in total consists of 270 lines of Java

code.

We run the plug-in on 64 projects from the Gnome ecosystem and on the full

mailing list archives of the FreeBSD project. We did not use all the projects that exist

in our platform, as we do not currently have the full email archives for them. For each

project, we imported the full source code repository and mailing list archives (current

in January 2009) in our SERP installation. In total, the system’s metadata updaters

processed 409026 revisions (summing up to 2572014 file changes) and 206 mailing lists

5.1. INTENSE ELECTRONIC DISCUSSIONS AND SOFTWARE EVOLUTION 99

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

N
u
m

b
e
r

o
f
M

e
ss

a
g
e
s

Thread depth

Fit function (0.55 + 1.59x)

Figure 5.3: Scatter plot of the number of messages vs the thread depth. The two
variables are correlated (R2 = 0.70).

with 1134828 email messages organized around 679427 threads. The combined dataset

size was more than 40gb.

The discussion heat plug-in workload is mostly database bound; to evaluate its

scalability we run the plug-in on a machine featuring a 16-thread 1ghz sparc cpu

and 8gb of memory. The machine is underpowered by modern standards for sequen-

tial workloads but provides a very good benchmark for application scalability. We

configured SERP to run 24 parallel jobs to compensate for the extensive i/o caused

by frequent accesses to the database. During execution, the processor utilization was

steadily more than 80%. The database was run on our dedicated 8 core database

server on which the cpu load never exceeded 50%. The total execution time was about

6 hours.

5.1.3 Results

After importing the mailing lists to SERP, we calculated the correlation between the

number of messages per thread and the average thread depth. Figure 5.3 presents

a scatter plot for the two variables. The Pearson correlation coe�cient for a linear

regression model was calculated at 0.7, thereby indicating a strong correlation between

the variables. The corresponding best fit linear model was N = 0.55 + 1.59⇥D where

N is the number of messages per thread and D is the thread depth. The correlation

between the two variables allow us to validate our first hypothesis. However, since the

correlation is not definite, we cannot reject either variable when trying to characterise

mailing list behaviour. Thereby, our first hypothesis can be accepted in principle.

100 CHAPTER 5. EMPIRICAL VALIDATION

Table 5.1: Results from the discussion heat plugin.
Project Cases Avg. hoteffect
Avogadro 1 622
Balsa 1 31
Banshee 3 –1121
Deskbar-Applet 1 –103
Ekiga 2 124
Evince 1 770
Evolution 1 2921
EyeOfGNOME 1 457
FreeBSD 67 –34
Gnome-Desktop 2 2
Gnome-Network 1 106
Gnome-Pilot 1 164
Gnome-Power-Manager 2 –773
Gnome-Themes 1 –2
Gnome-Utils 1 –263
Gnome-VFS 2 33
Gnumeric 1 –230
GTK+ 3 183
GTranslator 3 –323
LibXML2 1 187
LSR 1 1150
Meld 1 27
Nautilus 1 1219
NetworkManager 2 124
Orca 3 8
Planner 1 0
Rhythmbox 1 262
Sabayon 1 –244
Sawfish 1 821
Tracker 2 65
Vala 3 –356

Based on the above findings, we define a heated discussion as a mailing list thread

that within 24 hours of the arrival time of the email that initiated it, the number of

replies are classified to the top quartile of the number of emails per thread variable for

the specific mailing list and at the same time the thread depth is above the mailing

list median or vice versa. More formally, if n is the maximum value of the number of

messages per thread variable and d is the maximum value of the thread depth variable

for a specific list, then a thread T is a heated discussion when the following heuristic is

true (NT and DT are the number of messages and depth for the examined thread T):

IsHeatedT = (NT > 0.75⇥ n ^DT > 0.5⇥ d) _ (DT > 0.75⇥ d ^NT > 0.5⇥ n)

The heuristic maps directly to the results of the hotness metric.

5.2. DEVELOPMENT TEAMS AND MAINTAINABILITY 101

The very strict cut-o↵ threshold employed by the heuristic allowed it to identify

just 99 threads (from a total 679427) as intense discussions. We examined 20 randomly

chosen threads from those labeled as intense discussions, to validate the heuristic’s ac-

curacy. All of them could indeed be classified as intense by a human examiner (pending

external validation) as the rate of incoming emails was indeed very high. However, we

were unable to find a discussion that could be classified as a flamewar, as most of them

were normal discussions around solving technical issues, making decisions or starting or

deleting new development branches. This finding suggests that our proposed heuristic

is accurate for identifying discussions that go in depth on technical issues but di↵er-

entiating between flamewars and intense discussions, it needs to be augmented with

additional information. Therefore, our second hypothesis is validated.

We then proceeded to examine the e↵ect of intense discussions on the short term

evolution of the projects. The results of the hoteffect metric for all identified intense

discussions are presented grouped by project in Table 5.1. Overall, we see that there is

no significant trend in the change of lines of code intake across projects. Consequently,

our third hypothesis must be rejected.

5.2 Development Teams and Maintainability

Software maintenance is a very important part of the software life cycle. It is widely

reported that maintenance operations can take up to 80% of the total costs of the

software. Consequently, maintainability is one of the top-level criteria in the iso soft-

ware quality model and its assessment has been the topic of study of numerous works.

Methods for evaluating the e↵ort required for software maintainance include post-e↵ort

approaches, such as the mean time to fix a bug, source code analysis techniques and

models based on software metrics, that can be used to predict the e↵ort.

As software development is primarily a human oriented task, one should expect

that development teams play a significant role in a↵ecting maintainability. Intuitively,

one might expect that teams sta↵ed with highly skilled individuals will produce higher

quality and, consequently, more maintainable code. A question that arises is whether

peer-pressure among colleagues can a↵ect maintainability. For example, it is believed

that the OSS development model leads to components of better quality, as the constant

monitoring of source code by peers motivates developers to be more careful. 1 Does the

same apply on software maintainability? Is the size of the team working on the same

project, and the consequent applied peer pressure, an enabling factor for producing

maintainable software?

In this case study, we explore the e↵ect of team size on maintainability, as it is

1As expressed by Linus Torvalds, creator of the Linux kernel, in the so-called “Linus’s Law”: Given

enough eyeballs, all bugs are shallow.

102 CHAPTER 5. EMPIRICAL VALIDATION

measured and reported by the widely adopted [OH94, WO95, SEI04], but also criti-

cised, MI metric (see Section 2.2.1.1), a composite metric that attempts to quantify

maintainability based on low level measurements.

5.2.1 Research Questions

The objective of this work is to study the e↵ects of team size on software maintainability.

As teams working on a project or a project module grow larger, one might expect that

maintainability will increase, as developers will more eagerly engage into corrective

maintenance operations on their code to help their colleagues work with it. The team

e↵ect on maintainability might also have a time dimension; to maintainability, it may

not be important whether the number of people working on a module increases, but

experience suggests that the rate of increase in team membership might play a role.

Sharp increases in team sizes can a↵ect project execution [Bro82]; do they play a role

in maintainability? We formulate our testable hypotheses as follows:

H1. Team size a↵ects maintainability at the project level.

H2. Team size a↵ects maintainability at the source module level.

5.2.2 Method of Study

To study our hypotheses, we used the SERP. As seen in the previous case study, SERP

enables the researcher to write metrics that combine the results of other metrics on

request. The MI being a composite metric, it was an ideal candidate for testing and

improving the sqo-oss tool composition and metric execution facilities. Moreover,

since SERP already parses and stores the full SCM log to the database, obtaining the

number of developers at any moment in the project’s lifetime is trivial.2

The MI uses several metrics in its formula, namely Halstead’s Volume, McCabe’s

Extended Cyclomatic Complexity, the number of lines of code and number of lines of

comments (Section 2.2.1.1). Additionally, the suggested method of calculation is on

source code directories [WO95]. Before implementing the maintainability index metric,

we implemented the structural metrics plug-in. It calculates an array of code structure

metrics, currently for c and Java, which work by partially parsing the source code

with a regular expression based parser. The structural metrics plug-in is calculated

on a per-file change basis, so its results are bound to the ProjectFile entity. The MI

plug-in itself is bound on both the ProjectFile and the ProjectVersion entities as it

is calculated both at the module and the version level. To distinguish normal modules

from source code modules, it obtains the corresponding information from the module

metrics plug-in, in the form of a boolean metric. Also, the MI plug-in uses the size

2We have already presented an overview of the technicalities of implementing SERP plug-ins in the
previous section, so we will skip detailed technical descriptions of the plug-in internals in this one.

5.2. DEVELOPMENT TEAMS AND MAINTAINABILITY 103

ISSRCMOD

LOC

LOC

LOCOM

HV, EMCC

MI

Structure

Metrics

Size Metrics

Module

Metrics

Figure 5.4: Maintainability index plug-in dependencies on other plug-ins.

metrics plug-in to obtain measurements for the lines of code and the lines of comments

in each file it processes. A schematic representation of the dependencies between the

MI and other plug-ins is presented in Figure 5.4. A sample output of the metric run at

the project level for the lifetime of three popular OSS projects can be seen in Figure 5.5.

To calculate the number of developers per resource, we also implemented a new

plug-in that queries the database for the number of developers that were active in a

time window of one, three and six months. As active, we considered all developers that

committed to the SCM repository at least once in each corresponding time window.

Constructing a new plug-in was not strictly required, as the measurement to be stored

is relatively simple, but since the number of developers per resource type is a common

metric for various analyses, implementing such a plug-in can save precious processing

and re-implementation time from future plug-ins. Moreover, the corresponding data-

base query proved to be non-trivial for very large projects; for example in the case of

Freebsd it took more than 20 seconds to calculate the measurements for each project

version.

All plug-ins were run against the full set of projects that are hosted in the SERP.

However, as the structure metrics plug-in was designed to extract measurements only

from Java and c files, the MI plug-in only produced results for projects and source

modules with more than one c or Java file. As c is commonly used as systems interface

language and employed for performance critical algorithm implementations by many

programs that are written in higher level languages, there were several cases where a

program’s primary language was neither c nor Java, but the MI metric had calculated

measurements. We filtered out projects whose primary language was not c or Java, by

retrieving a list of files from the program’s latest version sorted by file type frequency.

Most projects filtered were written in Perl, Python or Ruby. After cleaning up the

104 CHAPTER 5. EMPIRICAL VALIDATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

01/01/00 01/01/01 01/01/02 01/01/03 01/01/04 01/01/05 01/01/06 01/01/07 01/01/08 01/01/09 01/01/10

M
I

v
a

lu
e

Date

Maintainability Index

FFMpeg
FindBugs

Mplayer

Figure 5.5: Sample maintainability index plot for the whole lifetime of three popular
OSS projects.

Language Module Level Project Level
1 month 3 months 6 months

c 0.007 0.0040 0.0058 0.01264
Java 0.017 0.0472 0.0505 0.0485

Combined 0.02 0.0040 0.0093 0.0127

Table 5.2: MI - Developer count correlation coe�cients.

project sample, we were left with 213 projects.

We run all the described metrics on the full dataset on a four machine cluster

containing in total of 12 2ghz class cpus, 16 1ghz class cpus and a total of 34 gb

of memory. The database was run on the most powerful of the machines, but shared

cpu power with an instance of SERP running on the same host. Running the structural

metrics plug-in was very fast and proceeded at an average rate of 90 jobs per second.

Similarly, the MI plug-in whose performance mostly relies on database querying speed

and executes simple, index based queries calculated results at the rate of more than

120 jobs per second. The major performance bottleneck proved to be the what we

thought of as the simplest of all plug-ins, the developer counting metric. The metric

internally uses a series of range queries, which do not scale very well on large datasets.

For small projects, it would execute instantly; for larger projects, it could take up to 20

seconds per project revision or file revision. In retrospect, we think that it may have

been faster for the system as a whole if we moved the filtering and counting of entries

to each cluster node rather than requesting from the DBMS to do the filtering.

5.3. THE PERILS OF WORKING WITH SMALL DATASETS 105

Figure 5.6: MI vs Number of Developers at the project level, for all project versions.

5.2.3 Results

To validate our hypothesis, we extracted and correlated measurements from the MI and

developer statistics plug-ins and analysed them statistically. We analysed separately

results from Java and c programs at the module and project level to isolate any e↵ects

each programming language may have on the results. We also considered di↵erent

definitions of developer activity, measuring the number of developers that performed

a commit in time windows ranging from one to six months. The results can be seen

in Table 5.5. In Figures 5.6 and 5.7, we present scatter plots of the MI rating versus

the number of developers for module and project level measurements for the combined

Java and c results.

In a nutshell, we did not find any significant correlations, so both our hypotheses

must be rejected. This result suggests that the number of people working on a pro-

ject does not seem to a↵ect an important aspect of software quality, maintainability,

as measured by the MI metric. Consequently, maintainability may be driven by other

factors, such as developer competence or adherence to project development guidelines.

New studies need to be performed in order to evaluate the e↵ect of those on maintain-

ability.

5.3 The Perils of Working with Small Datasets

Throughout this dissertation, we stressed the importance of running experiments on

very large data samples and in fact this was one of the driving factors that motivated

106 CHAPTER 5. EMPIRICAL VALIDATION

Figure 5.7: MI vs Number of Developers at the module level, for all directories.

our work on SERP. Our experimentation with both case studies revealed interesting side

results that, in our opinion, strengthens our expressed thesis by providing motivating

examples.

In the first case study, we have rejected our third hypothesis, on the e↵ects of intense

discussions on source code line intake, based on the findings presented in Table 5.1.

However, a second reading of the same table reveals that we might have equally accepted

the hypothesis. If we chose, by random or biased selection, to include in our study

just a few very big projects, for example Freebsd, Banshee and Sabayon, then the

evidence would force us to validate our hypothesis. Choosing a few big projects to run

experiments on appears to be standard practice, as we have shown in Section 2.3. How

can we ensure that the quality of a study is reflectd by the size of the projects it is

executed upon?

Moreover, Figure 5.8 presents the distribution of the Pearson correlation co-e�cient,

as derived by correlating the number of developers per module to the MI for this module

on a per project basis. As we can see, there are projects were the two variables are

fairly strongly correlated. However, if we examine the sample more carefully, we see

that projects that feature a high correlation between the examined variables are small

in size or short in history or both, i.e. their data may not be representative of the

properties we would like to study. Outliers include projects from the Gnome ecosystem

such as Gnome-vfs, Gftp, Metacity and others such as the Exuberant ctags project.

In our case, we could have used the above mentioned projects and this would still be a

valid, scientifically correct, research e↵ort but with completely di↵erent results.

There are several issues regarding experimentation methods that emerge from such

5.4. HYPOTHESES VALIDATION 107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C
o
rr

e
la

ti
o
n
 C

o
-e

ff
ic

ie
n
t

R
2

Figure 5.8: Correlation co-e�cient distribution for linear regression between module
MI and developers that worked on the module.

counter proofs, the most important of which, in our opinion, are the following three:

• How can researchers be confident that their theories are fit by validating them on

such limited datasets?

• How can other researchers be sure that there was no bias in the experimental set

selection so as to drive to research results?

• Is it possible to draw conclusions by exposing theories to very large datasets or the

inherent complexity of software engineering data blurs the results and therefore

all empirical research in software engineering has to be project specific?

We believe that software engineering researchers should work towards disproving

their theories rather than work towards proving them. After all, the results of a study

that states that a given hypothesis stands even if it has been exposed to the scrutiny of

very large sets of data are more likely to become accepted than the results of a study

that provides traces of the same hypothesis validity on very small datasets. SERP

provides us with the opportunity to use data that more closely approximate the reality

by being voluminous, diverse and presented in an analysis friendly format.

5.4 Hypotheses Validation

In this section, we examine the hypothesis we have put forward in Section 3 with respect

to the results we have achieved in our work.

108 CHAPTER 5. EMPIRICAL VALIDATION

H1 - Software data and metadata unification We have introduced two data

storage schemata, one for storing raw project data mirrors and one for storing metadata.

Using the raw data schema, we were able to setup a mirroring infrastructure for more

than 700 oss projects with various sizes. The cumulative size of the data is more than

230 gb and it is constantly increasing, as the raw data are being updated daily.

More importantly, the metadata schema proved very e↵ective in storing and retriev-

ing metadata and linking them to raw data. As most research in software engineering

is concerned with process metadata (see Section 2.3) rather than raw data, we have

put particular emphasis on designing an e↵ective intermediate storage format along

with e�cient algorithms to populate it. Currently, the metadata schema holds data

for 530 projects, 2 million project versions, 16 million file state changes, 1.5 million

emails, and 130 million measurements on all resources. It is arguably the largest col-

lection of preprocessed software engineering data, with the possible exception of the

data provided by the FlossMetrics project [GSy]. Despite being very large, it remains

e�cient: simple operations such as retrieving the developer that performed a commit

executes instantly, while very complex operations such as retrieving the list of live files

for a specific revision take time according to the project size.

Therefore, our first hypothesis can be accepted.

H2 - E↵ective access to metadata We have conducted two case studies that per-

form complex data analysis on large data sizes. In the first study, we implemented a

plug-in that examines data across projects and across repositories. The rich abstrac-

tions o↵ered by SERP coupled with the metadata schema enables the plug-in to access

the processed data by means of method calls without having to perform any type of raw

data parsing. The pre-computed relationships between metadata entities (for example,

mailing lists threads) and the mechanism of invoking the plug-in on metadata changes,

save the researcher the trouble to parse or recompute results each time the dataset

is updated. Moreover, in the second case study, the implemented MI plug-in retrieves

results from several other plug-ins per evaluated resource in order to calculate its value.

Again this process is performed programmatically, with very minimal interaction with

the metadata store.

The resulting lines of code metric for both plug-ins is indicative of the convenience

that the platform provides to the researcher. To prove this claim, we compare the sizes

of the code structure metrics plug-in to that of the cmetrics tool suite,3 which per-

forms exactly the same operation, namely calculates the Halstead metrics and McCabe

complexity. Even though the code structure plug-in stores results in a database, can

run on clusters of machines without modification and supports an extra language, the

3http://tools.libresoft.es/cmetrics

http://tools.libresoft.es/cmetrics

5.5. SUMMARY 109

total lines of code are exactly the same. Moreover, the plug-in used by the first case

study is only 270 lines of code, which is indicative of the size of a simple Alitheia Core

plug-in. All sizes include comments and license headers.

Therefore, our second hypothesis can be accepted.

H3 - E�cient experimentation For both case studies we have conducted, we

presented quantitative data of the performance of the developed analysis tools. The

data show that the system can process large volumes of data fast, while being frugal with

resources. Moreover, the system fully automates the execution of large experiments and,

after the initial setup, distributes the processing load on cluster nodes. To validate the

third hypothesis in full, it would be necessary to construct tools that implement exactly

the same functionality as the plug-ins we implemented for each case study and run those

on the same datasets. We left this part of the hypothesis validation as future work.

Therefore, our third hypothesis can be tentatively accepted.

H4 - Experiment replication So far, there was no independent replication of ex-

periments we have performed using SERP. We believe that given the wealth of data and

services SERP provides, it will be easy for other researches to replicate our experiments.

However, due to the lack of available data, we are forced to leave validation of our last

hypothesis an open research question.

5.5 Summary

In this section we provided an empirical validation of the usefulness of the SERP platform

by conducting two exploratory case studies on real world datasets. In the first case

study, we provided evidence that intense discussions do not have a significant impact

on the development e↵ort. With the second case study we correlated a process metric

(developer number) with a product metric (the maintainability index) on more than

two hundred projects, including some specifically large ones. We did not identify any

significant correlation between the two variables, a result that might suggest that it is

the developer skill or project policies and not their number that drive maintainability.

We also provided evidence of why executing experiments on small data sets should be

considered harmful.

110 CHAPTER 5. EMPIRICAL VALIDATION

Chapter 6

Conclusions and Future Work

In this dissertation, we have introduced a platform for large scale software engineering

studies. We presented the components of the platform and demonstrated with two

case studies that it can be used e�ciently for conducting research with heterogeneous

process and product data originating from diverse data sources. In this chapter, we

summarize our experience and findings and describe some potential directions for future

research.

6.1 Summary of Results

As with any other empirical science, research in software engineering deals with the

understanding of the behaviour of existing systems, in order to extract models and

best practices that can be generalised and applied to similar occasions. Currently,

most research e↵orts in software engineering are using data from OSS projects, on a

very limited scale. This fact leads to conclusions that cannot be generalised and to

very limited cross-validation of the published research results.

In this context, the goals of our work were:

• to analyse the related work, in order to classify the research that has been done

and identify potential weakness in the current approaches.

• to design and implement tools and methods that would allow researchers to ex-

periment with large, heterogeneous datasets.

• to validate our proposed approach on real world scenarios.

The following sections describe how far we have reached with respect to each one

of the goals set.

111

112 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.1 Systematic Analysis of Related Work

Empirical software engineering is a very active field of study, with the number of works

being published in related conferences and journals exhibiting an increasing frequency

over the last few years. This fact could be attributed to the availability of large quant-

ities of high quality process and product data from the OSS movement.

By systematically analysing 70 works, and studying several more, we have seen that

most empirical studies in software engineering are case studies that either test hypo-

theses on empirical data (confirmatory) or analyse the behaviour of data sets in order

to extract insights, in the form of models or observations, from them (exploratory).

Perhaps as a testament to the scientific method, most studies follow a certain recipe

in their execution, which entails the phases of hypothesis formulation, model building

and validation on real data.

What we have found from our analysis is that hypothesis validation is the weakest

aspect of current studies. The problem is not that researchers do not validate their

hypotheses; it lays mostly in the fact they do not do it rigorously, despite the availability

of datasets. Moreover, we have also failed to see any study that validates external work.

We conjecture that these shortcomings can be attributed to three important factors:

the data format disparity in the OSS datasets, the fact that datasets are very large, and

the lack of standardised tool chains for conducting the experiments. As a result, large

experiments are expensive resource-wise to setup and time consuming to conduct.

6.1.2 Building the Platform

The bulk of our work has been devoted to the development of tools, algorithms and data

formats required for storing, linking and processing very large volumes of heterogeneous

OSS data. We designed a compact database schema that can integrate metadata from

SCM, mailing lists and BTS databases. We designed and implemented algorithms that

extract metadata from the raw data stores and populate the designed schema and

also infer relationships between entities residing in the di↵erent repository types. Our

intermediate schema plays a pivotal role in disengaging the design of analysis tools from

the processed data formats, thereby allowing tools to be written once. This way, an

important obstacle to conducting large scale studies, namely raw data format disparity,

is lifted.

One of the most important contributions of our work has been the design, partially

implementation and validation, of the first algorithm that converts semi-structured data

from both distributed and centralised SCM repositories to a fully structured relational

format. The scmmap algorithm has proven its e�ciency to incorporate data from very

large projects by processing the full data set from projects with hundreds of thousands

of revisions featuring thousands of live files per revision.

6.1. SUMMARY OF RESULTS 113

In the process of building the platform, we have learned several lessons, the most

important one is that when dealing with such large volumes of diverse data, naive

and brute force approaches to data analysis do not work. No matter how simple a

problem might initially seem to a developer, it is almost certain that corner cases in

the processed datasets will uncover any algorithmic or data structure ine�ciency. We

attempt to summarise the experience we have gained from building tools and algorithms

for processing over 250gb of data, while remaining scalable and extensible, in the

following recommendation list:

• Understand the data. Before processing large quantities of data the researcher

must fully understand their format and, especially, their interactions. This know-

ledge is required for designing e�cient storage schemata, extracting parallelism

from common operations on data or for computing the execution order of calcu-

lations. Knowledge of the data can be acquired by building prototypes or using

similar tools.

• Scaling comes from architecture, not optimisation. A common misconception in

engineering large systems is that performance can only be extracted by optimising

algorithms or data storage. While optimisation is required for processing large

data volumes, to scale to more than one machine, a system must be designed on

sound architectural principles, in order to model work items, data and interactions

between the machines for load distribution.

• The database does not always contain the answer. The database layer in a three

tier architecture is usually the most di�cult and most expensive resource to scale,

and its performance profile is typically a black box for the developer. It is there-

fore important to limit the load that the database is exposed to. For example,

complex queries can be replaced by range queries and data filtering at the re-

questing node cite, while appropriate indexes and data types can provide tenfold

improvements in query execution speed. From our experience, a query that re-

quires more than one second to execute should be considered as a target for

optimisation. The database layer should be used only for storing and retrieving

data, not for processing them.

• Fail fast, isolate failures. A high volume application should be designed to isolate

and recover from errors, not to anticipate and correct them. It is usually not

possible to estimate all possible system states when designing the system, and

moreover not economical (in terms of development time or system performance)

to develop workarounds within the system. If an unexpected error occurs, the

system must be able to stop processing before errors reach persistent data stores

and to resume processing from known good states.

114 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Manage resources internally: Large applications run on a variety of software

and hardware platforms featuring di↵erent configurations and processing capa-

city. Our experience with SERP has shown that large scale applications exhibit

more predictable behavioural patterns if they manage computing and memory

resources internally. Moreover, as applications have better knowledge of the data

they process, they can arrange the order of data processing without relying on

expensive synchronisation mechanisms.

6.1.3 Conducting Large Scale Experiments

SERP was designed from the ground up to enable researchers to design and conduct

large scale research. The platform can readily process hundreds of projects, with avail-

able hardware being currently the only obstacle towards scaling it to the order of

thousands. The case studies we have presented in this thesis have evaluated an order,

perhaps two, more data (both in terms of raw data sizes and in terms of project counts)

than the case studies that are currently being published, and they have done so in a

time constrained manner. In addition to validating our approach, this result indicates

that large scale experimentation is feasible, given the appropriate hardware and data

abstractions. Consequently, software engineering researchers should concentrate their

e↵orts towards evaluating their ideas on large, real world datasets.

Apart from proving the feasibility of large scale experimentation, we have also shown

the importance of such an approach. A side result of both our case studies has been

the discovery of several cases where the hypotheses we rejected in the overall study

could be accepted. In fact, we have found more hypothesis-validating case for each

case study that the average number of projects evaluated per case study in currently

published studies; we derived this number from the systematic literature review study

we conducted in Chapter 2. Based on this result and acknowledging the risk of over-

simplification, we conjecture that for a large number of currently published works there

exists a dataset that invalidates them. We plan to work on making this finding more

concrete in the future.

6.2 Future work

SERP is the first large scale, integrated software and data platform that was specifically

designed for software engineering studies. While it can already process significantly

large data volumes, it remains a prototype implementation and not a full blown system.

In previous chapters, we provided hints on where SERP can be improved. Here, we

provide a comprehensive list of future work on the platform and outline possible future

research directions.

6.2. FUTURE WORK 115

6.2.1 Data Validation

SERP integrates data from various sources and also implements a suite of metrics. How

can we ensure that the data SERP produces are accurate? So far, we did not implement

any validation methods in SERP. However, given our experience with various existing

metric tools, we strongly believe that SERP must incorporate a validation service. The

validation service can be automated for stage 1 metadata updates; we are not confident

that stage 2 metadata updates (relationship inference) or metric results can be validated

without human intervention. For these two cases, we advocate “crowdsourcing” 1 the

validation e↵ort. For product metrics, a web site could be set up that displays random

files and corresponding metric values while for stage 2 updaters, the same web site could

display the original raw data and the extracted relationship. In both cases, invited

experts could examine the processing result and validate them or propose alternative

values, while also enabling them to discuss with others on the same web page.

6.2.2 Results Distribution

In this work, we have discussed how SERP incorporates data into its database. Even

though the system is scalable and can work with very large volumes of data, we be-

lieve that it will be very unlikely for a single installation to be able to process the

full set of OSS projects, which spans to more than 300.000 projects. An alternative

approach would entail the sharing of data and metadata from various smaller installa-

tions. The sqo-oss tool, which SERP is based on, includes a programmatic interface to

the metadata and results database. Unfortunately, this interface is based on the web

services stack and was not designed for en-masse data retrieval. For this reason, we

recommend a lightweight Representational State Transfer (REST)-based [Fie00] inter-

face to the SERP internal database, in addition to a metadata updater that retrieves

data from external SERP installations. This would create a decentralised network of

peers, where data synchronisations could be performed on grounds of mutual agree-

ments between the involved parties.

6.2.3 Repositories for Tools and Results

In this work, we have provided hints on the importance of sharing experimentation

tools and data. We believe that this is a very important step towards improving the

quality of software engineering studies, as it enables independent replication, avoidance

of duplication of e↵ort in re-implementing analysis tools and saves data processing

time for large datasets. SERP already o↵ers the required infrastructure to run external

analysis tools, via plug-ins, and to share research results, in the form of database dumps.

1Distributing the processing load to interested parties over the internet

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Missing are a centralised website that will store SERP plug-ins and the appropriate

extentions to SERP to automate the communication with the central repository.

6.2.4 Validate Existing Work

In this thesis, we provided evidence on why doing research with small datasets, which

was the major finding of our system literature review, is detrimental for the quality of

the research e↵ort. By studying the literature, we have found several suspicious cases of

reported results that seem bound to the specific dataset or being extrapolated through

experimentation with very small datasets. With the wealth of data present in SERP in

our arsenal, we plan to perform replicated studies of published works and report our

findings.

6.3 Conclusions

In this dissertation, we investigated the problem of performing empirical software en-

gineering studies on realistic datasets from a pragmatic perspective. We analysed the

requirements, the design and the several bits of the implementation of SERP, a platform

that can process the SCM, mailing list and BTS data from hundreds of OSS projects,

while remaining scalable and extensible. We have shown that our approach can greatly

speed up the design and execution of analytical studies on large volumes of software

data, while also enabling experiment replication and tool sharing.

We provide the source code we have developed as OSS software and the dataset we

have produced free of charge to the community, with the ambition that both will be

used by third parties to do research with. We hope that SERP will provide the basis

for better empirical software engineering studies.

Bibliography

[AAB00] Bowen Alpern, C. R. Attanasio, and John J. Burton. The Jalapeño

virtual machine. IBM Systems Journal, 39(1), 2000.

[ACM] ACM-SIGKDD. The knoweledge discovery and data mining cup con-

test.

[ADG08] Omar Alonso, Premkumar T. Devanbu, and Michael Gertz. Expertise

identification and visualization from CVS. In MSR ’08: Proceedings

of the 2008 International working conference on Mining software re-

positories, pages 125–128, New York, NY, USA, 2008. ACM.

[AG83] A.J. Albrecht and Jr. Ga↵ney, J.E. Software function, source lines of

code, and development e↵ort prediction: A software science validation.

IEEE Transactions on Software Engineering, 9(6):639–648, 1983.

[AHM06] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this

bug? In ICSE ’06: Proceedings of the 28th international conference

on Software engineering, pages 361–370, New York, NY, USA, 2006.

ACM.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules

between sets of items in large databases. In Proceedings of the Inter-

national Conference on Management of Data, pages 207–216, 1993.

[Alb79] A. J. Albrecht. Measuring application development productivity. In

Proceedings of the Joint SHARE, GUIDE, and IBM Application De-

velopment Symposium, pages 83–92, 1979.

[AM07] John Anvik and Gail C. Murphy. Determining implementation expert-

ise from bug reports. In MSR ’07: Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, page 2, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

117

118 BIBLIOGRAPHY

[ARGB06] Juan Jose Amor, Gregorio Robles, and Jesus M. Gonzalez-Barahona.

E↵ort estimation by characterizing developer activity. In EDSER ’06:

Proceedings of the 2006 international workshop on Economics driven

software engineering research, pages 3–6, New York, NY, USA, 2006.

ACM.

[ARV05] Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi. Linear

predictive coding and cepstrum coe�cients for mining time variant

information from software repositories. InMSR ’05: Proceedings of the

2005 international workshop on Mining software repositories, pages 1–

5, New York, NY, USA, 2005. ACM.

[Bak95] Brenda S. Baker. On finding duplication and near-duplication in large

software systems;. In Second Working Conference on Reverse Engin-

eering, pages 86–95, Los Alamitos, CA, USA, 1995.

[Bas96] V.R. Basili. The role of experimentation in software engineering: past,

current, and future. In Proceedings of the 18th International Confer-

ence on Software Engineering, pages 442–449, Mar 1996.

[BAY03] J.M. Bieman, A.A. Andrews, and H.J. Yang. Understanding change-

proneness in OO software through visualization. pages 44–53, May

2003.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A valid-

ation of object-oriented design metrics as quality indicators. IEEE

Transactions on Software Engineering, 22(10):751–761, 1996.

[BCR94] V. Basili, C. Caldiera, and D. H. Rombach. Goal question metric

paradigm. In Encyclopedia of Software Engineering, volume 2, pages

528–532. John Wiley and Sons, New York, 1994.

[Bev06] Jennifer Bevan. Software Instability Analysis: Co-Change Analysis

Across Configuration-Based Dependence Relationships. PhD thesis,

University of California at Santa Cruz, 2006.

[BGD+06] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and

Anand Swaminathan. Mining email social networks. In MSR ’06:

Proceedings of the 2006 international workshop on Mining software

repositories, pages 137–143, New York, NY, USA, 2006. ACM.

[BGD+07] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan,

and Greta Hsu. Open borders? Immigration in open source projects.

BIBLIOGRAPHY 119

In MSR ’07: Proceedings of the Fourth International Workshop on

Mining Software Repositories, page 6, Washington, DC, USA, 2007.

IEEE Computer Society.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Ho↵mann, Asjad M.

Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony

Hosking, Maria Jump, Han Lee, J. Eliot, B. Moss, Aashish Phansalkar,

Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and

Ben Wiedermann. The DaCapo benchmarks: Java benchmarking de-

velopment and analysis. In OOPSLA ’06: Proceedings of the 21st

annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications, pages 169–190, New York, NY,

USA, 2006. ACM Press.

[BLR04] J. M. Barahona, L. Lopez, and G. Robles. Community structure of

modules in the Apache project. In Proceedings of the 4th Workshop

on Open Source Software Engineering, Edinburgh, Scotland, 2004.

[BM07] Olga Baysal and Andrew J. Malton. Correlating social interactions to

release history during software evolution. In MSR ’07: Proceedings of

the Fourth International Workshop on Mining Software Repositories,

page 7, Washington, DC, USA, 2007. IEEE Computer Society.

[BMB96] LC Briand, S. Morasca, and VR Basili. Property-based software en-

gineering measurement. IEEE Transactions on Software Engineering,

22(1):68–86, 1996.

[BN05] D. Beyer and A. Noack. Clustering software artifacts based on frequent

common changes. In Proceedings. 13th International Workshop on

Program Comprehension, pages 259–268, May 2005.

[BRB+09] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton,

Daniel M. German, and Prem Devanbu. The promises and perils

of mining Git. In M. W. Godfrey and J Whitehead, editors, MSR

’09: Proceedings of the 6th IEEE Intl. Working Conference on Mining

Software Repositories, pages 1–10, Vancouver, Canada, 2009.

[BRM04] J. Bowring, J. Rehg, and Harrold M.J. Active learning for automatic

classification of software behavior. International Symposium on Soft-

ware Testing and Analysis (ISSTA), 2004.

120 BIBLIOGRAPHY

[Bro82] Fred. P. Brooks. The Mythical Man-Month: Essays on Software En-

gineering. Addison Wesley, Reading, Mas, 1982.

[BSH86] Victor Basili, RW Selby, and DH Hutchens. Experimentation in soft-

ware engineering. IEEE Trans. Softw. Eng., 12(7):733–743, 1986.

[BvDTvE04] M. Bruntink, A. van Deursen, T. Tourwe, and R. van Engelen. An

evaluation of clone detection techniques for crosscutting concerns. In

Proceedings of the 20th IEEE International Conference on Software

Maintenance, pages 200–209, Sept. 2004.

[BWKG05] Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael

Godfrey. Facilitating software evolution research with Kenyon. In

ESEC/FSE-13: Proceedings of the 10th European software engineer-

ing conference held jointly with 13th ACM SIGSOFT international

symposium on Foundations of software engineering, pages 177–186,

New York, NY, USA, 2005. ACM.

[BYM+98] ID Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, S. Designs, and

TX Austin. Clone detection using abstract syntax trees. In Proceedings

of the International Conference on Software Maintenance, pages 368–

377, 1998.

[CALO94] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using met-

rics to evaluate software system maintainability. Computer, 27(8):44–

49, 1994.

[CC05] G. Canfora and L. Cerulo. Impact analysis by mining software and

change request repositories. pages 9 pp.–29, Sept. 2005.

[CC06] Gerardo Canfora and Luigi Cerulo. Fine grained indexing of software

repositories to support impact analysis. In MSR ’06: Proceedings

of the 2006 international workshop on Mining software repositories,

pages 105–111, New York, NY, USA, 2006. ACM.

[CCW+01] A. Chen, E. Chou, J. Wong, A.Y. Yao, Qing Zhang, Shao Zhang, and

A. Michail. CVSSearch: searching through source code using CVS

comments. In Proceedings of the IEEE International Conference on

Software Maintenance, 2001., pages 364–373, 2001.

[CG90] David N. Card and Robert L. Glass. Measuring software design quality.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

BIBLIOGRAPHY 121

[CH05] K. Crowston and J. Howison. The social structure of free and open

source software development. Firstmonday, 10(2), 2005.

[Cha95] Vernon V. Chatman. Change-points: A proposal for software pro-

ductivity measurement. Journal of Systems and Software, 31(1):71 –

91, 1995.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented

design. IEEE Transactions on Software Engineering, 20(6), Jun 1994.

[CM03] D. Cubranic and G.C. Murphy. Hipikat: recommending pertinent soft-

ware development artifacts. In Proceedings of the 25th International

Conference on Software Engineering, pages 408–418, May 2003.

[CMR04a] A. Capiluppi, M. Morisio, and J.F. Ramil. The evolution of source

folder structure in actively evolved open source systems. In Proceedings

of the 10th International Symposium on Software Metrics, Chicago,

USA, pages 2–13, 2004.

[CMR04b] A. Capiluppi, M. Morisio, and J.F. Ramil. Structural evolution of an

open source system: a case study. In Proceedings of the 12th IEEE

International Workshop on Program Comprehension, pages 172–182,

June 2004.

[CMSB05] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. Hipikat: a pro-

ject memory for software development. Software Engineering, IEEE

Transactions on, 31(6):446–465, June 2005.

[Coa04] Ken Coar. The sun never sits on distributed development. Queue,

1(9):32–39, 2004.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[Cro82] David H. Crocker. Standard for the format of arpa internet text mes-

sages. RFC 822, Internet Engineering Task Force, 1982.

[CSX+06] H. Chen, H. Shen, J. Xiong, S. Tan, and X. Cheng. Social network

structure behind the mailing lists: Ict-iiis at trec 2006 expert finding

track. In Proceeddings of the 15th Text Retrieval Conference, 2006.

[Der94] Mark Dery, editor. Flame Wars: The Discourse of Cyberculture. Duke

University Press, 1994.

122 BIBLIOGRAPHY

[DG04] Je↵rey Dean and Sanjay Ghemawat. MapReduce: Simplified data

processing on large clusters. In Proceedings of the 6th Symposium on

Operating Systems Design and Implementation, pages 137–150, 2004.

[DJ03] Melis Dagpinar and Jens H. Jahnke. Predicting maintainability with

object-oriented metrics - an empirical comparison. In WCRE ’03:

Proceedings of the 10th Working Conference on Reverse Engineering,

page 155, Washington, DC, USA, 2003. IEEE Computer Society.

[DLA01] W. Dickinson, D. Leon, and Podgurski A. Finding failures by cluster

analysis of execution profiles. International Conference on Software

Engineering (ICSE), 2001.

[DR08] Barthélémy Dagenais and Martin P. Robillard. Recommending adapt-

ive changes for framework evolution. In ICSE ’08: Proceedings of the

30th international conference on Software engineering, pages 481–490,

New York, NY, USA, 2008. ACM.

[DRD99] Stephane Ducasse, Matthias Rieger, and Serge Demeyer. A language

independent approach for detecting duplicated code. In Proceedings

of the International Conference on Software Maintenance, pages 109–

118, Sep 1999.

[ESSD08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela

Damian. Guide to Advanced Empirical Software Engineering, chapter

Selecting Empirical Methods for Software Engineering Research, pages

285–311. Springer London, 2008.

[FB96] N. Freed and N. Borenstein. RFC2045 - multipurpose internet mail ex-

tensions (MIME). Technical report, Internet Engineering Task Force,

Nov 1996.

[FCS+08] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Mon-

teiro, Uira Kulesza, Alessandro Garcia, Sergio Soares, Fabiano Ferrari,

Safoora Khan, Fernando Castor Filho, and Francisco Dantas. Evolving

software product lines with aspects: an empirical study on design sta-

bility. In ICSE ’08: Proceedings of the 30th international conference

on Software engineering, pages 261–270, New York, NY, USA, 2008.

ACM.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-

based Software Architectures. PhD thesis, University of California at

Irvine, 2000.

BIBLIOGRAPHY 123

[FL78] Ann Fitzsimmons and Tom Love. A review and evaluation of software

science. ACM Comput. Surv., 10(1):3–18, 1978.

[FLMP04] P. Francis, D. Leon, M. Minch, and A. Podguraki. Tree-based method

for classifying software failures. In Proceedings of the 15th Interna-

tional Symposium on Software Reliability Engineering, 2004.

[Fog99] Karl Franz Fogel. Open Source Development with CVS. Coriolis Group

Books, Scottsdale, AZ, USA, 1999.

[Fog05] Karl Fogel. Producing Open Source Software, pages 261–268. O’Reilly

Media, Inc, Sebastopol, 2005.

[FORG05] Michael Fischer, Johann Oberleitner, Jacek Ratzinger, and Harald

Gall. Mining evolution data of a product family. In MSR ’05: Pro-

ceedings of the 2005 international workshop on Mining software repos-

itories, pages 1–5, New York, NY, USA, 2005. ACM.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

[FP98] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A

Rigorous and Practical Approach, Revised. Course Technology, 1998.

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a re-

lease history database from version control and bug tracking systems.

In ICSM ’03: Proceedings of the International Conference on Software

Maintenance, page 23, Washington, DC, USA, 2003. IEEE Computer

Society.

[FPSS+96] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al. From data mining

to knowledge discovery in databases. Communications of the ACM,

39(11):24–26, 1996.

[FRLWC08] Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger, and An-

drea Capiluppi. Software Evolution, chapter Empirical Studies of Open

Source Evolution. Number 11. Springer Berlin Heidelberg, 2008.

[FSG04] R. Ferenc, I. Siket, and T. Gyimothy. Extracting facts from open

source software. In Proceedings of the 20th IEEE International Con-

ference on Software Maintenance, pages 60–69, Sept. 2004.

[FSGK06] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and

Sokratis Katsikas. E↵ective identification of source code authors using

124 BIBLIOGRAPHY

byte-level information. In Proceedings of the 28th International con-

ference on Software engineering, pages 893–896, New York, NY, USA,

2006. ACM.

[Ger04a] Daniel M. German. An empirical study of fine-grained software modi-

fications. In ICSM ’04: Proceedings of the 20th IEEE International

Conference on Software Maintenance, pages 316–325, Washington,

DC, USA, 2004. IEEE Computer Society.

[Ger04b] Daniel M. German. Mining CVS repositories, the Softchange experi-

ence. In Proceedings of the First International Workshop on Mining

Software Repositories, pages 17–21, Edinburg, Scotland, UK, 2004.

[Ger05] Daniel M. German. Using software trails to reconstruct the evolution

of software. Journal of Software Maintenance and Evolution: Research

and Practice, 16(6):367–384, 2005.

[Ger06] D. M German. A study of the contributors of PostgreSQL. InMSR ’06:

Proceedings of the 2006 international workshop on Mining Software

Repositories, pages 163–164, May 2006.

[GFS05] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE

Transactions on Software Engineering, 31(10):897–910, Oct. 2005.

[GH05] Daniel M. German and Abram Hindle. Measuring fine-grained change

in software: Towards modification-aware change metrics. IEEE Inter-

national Symposium on Software Metrics, 0:28, 2005.

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling

based on product release history. In Proceedings of the 14th IEEE

International Conference in Software Maintainance, pages 190–198,

1998.

[GJK03] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data

for detecting logical couplings. In Proceedings of the Sixth Interna-

tional Workshop on Principles of Software Evolution, pages 13–23,

Sept. 2003.

[GJR99] H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histor-

ies: the use of color and thirddimension. In Proceedings of the IEEE

International Conference on Software Maintenance, 1999, pages 99–

108, 1999.

BIBLIOGRAPHY 125

[GKS+07] Georgios Gousios, Vassilios Karakoidas, Konstantinos Stroggylos,

Panagiotis Louridas, Vasileios Vlachos, and Diomidis Spinellis. Soft-

ware quality assessment of open source software. In Proceedings of the

11th Panhellenic Conference on Informatics, May 2007.

[GM03] D. German and A. Mockus. Automating the measurement of open

source projects. In Proceedings of the 3rd Workshop on Open Source

Software Engineering, pages 63–67, 2003.

[GM07] Yongqin Gao and Greg Madey. Network Analysis of the Source-

Forge.net Community. Springer Boston, 2007.

[GPGA09] Daniel M. German, Massimiliano Di Penta, Yann-Gaël Gueheneuc,

and Giuliano Antoniol. Code siblings: Technical and legal implications

of copying code between applications. In Michael W. Godfrey and Jim

Whitehead, editors, MSR ’09: Proceedings of the 6th IEEE Intl. Work-

ing Conference on Mining Software Repositories, Vancouver, Canada,

2009. IEEE.

[GRW08] Thomas Goldschmidt, Ralf Reussner, and Jochen Winzen. A case

study evaluation of maintainability and performance of persistency

techniques. In ICSE ’08: Proceedings of the 30th international con-

ference on Software engineering, pages 401–410, New York, NY, USA,

2008. ACM.

[GS09] Georgios Gousios and Diomidis Spinellis. Alitheia core: An extensible

software quality monitoring platform. In ICSE ’09: Proceedings of

the 31st International Conference on Software Engineering – Formal

Research Demonstrations Track, pages 579–582. IEEE, May 2009.

[GSy] GSyC/LibreSoft. The FlossMetrics project.

[GT00] MW Godfrey and Q. Tu. Evolution in open source software: A case

study. In Proceedings of the International Conference on Software

Maintenance, pages 131–142, 2000.

[GVG04] J.F. Girard, M. Verlage, and D. Ganesan. Monitoring the evolution

of an OO system with metrics: an experience from the stock mar-

ket software domain. In Proceedings of the 20th IEEE International

Conference on Software Maintenance, pages 360–367, Sept. 2004.

[GVR02] R. L. Glass, I. Vessey, and V. Ramesh. Research in software engineer-

ing: an analysis of the literature. Information and Software Techno-

logy, 44(8):491 – 506, 2002.

126 BIBLIOGRAPHY

[GW05] C. Gorg and P. Weissgerber. Detecting and visualizing refactorings

from software archives. pages 205–214, May 2005.

[Hal77] M.H. Halstead. Elements of software science. Elsevier Publishing

Company, 1977.

[Hat98] L Hatton. Does OO sync with how we think? IEEE Software, 15:3,

1998.

[HCC06] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborat-

ive repository for FLOSS research data and analyses. International

Journal of Information Technology and Web Engineering, 1(3):17–26,

2006.

[Her08] Israel Herraiz. A statistical examination of the properties and evolution

of libre software. PhD thesis, Universidad Rey Juan Carlos, 2008.

[HH04] A.E. Hassan and R.C. Holt. Predicting change propagation in software

systems. In Proceedings of the 20th IEEE International Conference on

Software Maintenance, pages 284–293, Sept. 2004.

[HK81] S. Henry and D. Kafura. Software structure metrics based on inform-

ation flow. IEEE Trans. Softw. Eng., 7(5):510–518, 1981.

[HM03] J.D. Herbsleb and A. Mockus. An empirical study of speed and com-

munication in globally distributed software development. Software

Engineering, IEEE Transactions on, 29(6):481–494, June 2003.

[HRA+06] Israel Herraiz, Gregorio Robles, Juan JosÉ Amor, Teófilo Romera,

and Jesús M. González Barahona. The processes of joining in global

distributed software projects. In GSD ’06: Proceedings of the 2006

international workshop on Global software development for the prac-

titioner, pages 27–33, New York, NY, USA, 2006. ACM.

[HT02] A. Hunt and D. Thomas. Software archaeology. Software, IEEE,

19(2):20–22, Mar/Apr 2002.

[IEE90] IEEE. IEEE standard glossary of software engineering terminology.

IEEE std 610.12, IEEE, Dec 1990.

[ISO04] ISO/IEC. 9126:2004 Software engineering – Product quality – Quality

model. Technical report, International Organization for Standardiza-

tion, Geneva, Switzerland, 2004.

BIBLIOGRAPHY 127

[JKP+05] P.M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and

T. Yamashita. Improving software development management through

software project telemetry. Software, IEEE, 22(4):76–85, July-Aug.

2005.

[Joh93] J.H. Johnson. Identifying redundancy in source code using finger-

prints. In Proceedings of the IBM Centre from Advanced Studies Con-

ference, pages 171–183, 1993.

[Jon91] T. C. Jones. Applied Software Measurement. McGraw-Hill, New York,

1991.

[Kan03] Stephen H. Kan. Metrics and Models in Software Quality Engineering.

Addison Wesley Professional, 2003.

[KCM07a] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. Com-

paring approaches to mining source code for call-usage patterns. In

MSR ’07: Proceedings of the Fourth International Workshop on Min-

ing Software Repositories, page 20, Washington, DC, USA, 2007. IEEE

Computer Society.

[KCM07b] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey

and taxonomy of approaches for mining software repositories in the

context of software evolution. Journal of Software Maintenance and

Evolution, 19(2):77–131, Mar 2007.

[KDTM06] Y. Kanellopoulos, T. Dimopulos, C. Tjortjis, and C. Makris. Mining

source code elements for comprehending object-oriented systems and

evaluating their maintainability. ACM SIGKDD Explorations News-

letter, 8(1):33–40, 2006.

[Kee94] S. J. Keene. Comparing hardware and software reliability. Reliability

Review, 14(4):5–7, Dec 1994.

[KH01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify

duplication in source code. In Proceedings of the 8th International

Symposium on Static Analysis,, pages 40–56, 2001.

[KHM08] H. Kagdi, M. Hammad, and J.I. Maletic. Who can help me with this

source code change? In IEEE International Conference on Software

Maintenance, pages 157–166, 28 2008-Oct. 4 2008.

[Kit04] B Kitchenham. Procedures for performing systematic reviews. Tech-

nical report, Software Engineering Group, Keele University, United

128 BIBLIOGRAPHY

Kingdom and Empirical Software Engineering, National ICT Australia

Ltd, Australia, 2004.

[KKI02] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic

token-based code clone detection system for large scale source code.

IEEE Transactions on Software Engineering, 28(7):654–670, Jul 2002.

[KN05] Miryung Kim and David Notkin. Using a clone genealogy extractor for

understanding and supporting evolution of code clones. In MSR ’05:

Proceedings of the 2005 international workshop on Mining software

repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[KPP+02] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.

Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines

for empirical research in software engineering. Software Engineering,

IEEE Transactions on, 28(8):721–734, Aug 2002.

[KPW06] Sunghun Kim, Kai Pan, and E. James Whitehead, Jr. Micro pattern

evolution. InMSR ’06: Proceedings of the 2006 international workshop

on Mining software repositories, pages 40–46, New York, NY, USA,

2006. ACM.

[Kri01] Jens Krinke. Identifying similar code with program dependence

graphs. In Proceedings of the Eight Working Conference On Reverse

Engineering, pages 101–109, Oct 2001.

[KWB05] Sunghun Kim, E. James Whitehead, and Jennifer Bevan. Analysis

of signature change patterns. In MSR ’05: Proceedings of the 2005

international workshop on Mining software repositories, pages 1–5,

New York, NY, USA, 2005. ACM.

[kwW97] Marvin V. Zel ko witz and Dolores Wallace. Experimental valida-

tion in software engineering. Information and Software Technology,

39(11):735 – 743, 1997. Evaluation and Assessment in Software En-

gineering.

[KYM06] Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining se-

quences of changed-files from version histories. In MSR ’06: Proceed-

ings of the 2006 international workshop on Mining software repositor-

ies, pages 47–53, New York, NY, USA, 2006. ACM.

[KZPW06] S. Kim, T. Zimmermann, K. Pan, and EJ Whitehead. Automatic

BIBLIOGRAPHY 129

identification of bug-introducing changes. In 21st IEEE/ACM Interna-

tional Conference on Automated Software Engineering, 2006. ASE’06,

pages 81–90, 2006.

[Lai06] Linda Laird. Softare Measurement and Estimation: A Practical Ap-

proach. John Wiley & Sons, Inc, 2006.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-

tions, and reversals. Soviet Physics Doklady, 10:707–710, 1966.

[LFK05] M. Last, M. Friedman, and A. Kandel. The data mining approach to

automated software testing. In Proceeding of the SIGKDD Conference,

2005.

[LM03] Giovani F. Lanzara and Michäle Morner. The knowledge ecology of

open-source software projects. In Proceedings the 19th European Group

of Organizational Studies Colloquium. European Group of Organiza-

tional Studies, 2003.

[LRB06] F. Lopez, G. Robles, and J. Barahona. Applying social network ana-

lysis techniques to community-driven libre software projects. Inter-

national Journal of Information Technology and Web Engineering,

1(3):27–48, 2006.

[LRW+97] M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, and W.M.

Turski. Metrics and laws of software evolution-the nineties view. pages

20–32, Nov 1997.

[LSS05] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Study-

ing software engineers: Data collection techniques for software field

studies. Empirical Software Engineering, 10(3):311–341, 2005.

[LYY+05] C. Liu, X. Yan, H. Yu, J. Han, and P. Yu. Mining behavior graphs from

’backtrace’ of non-crasing bugs. In SIAM Data Mining Conference

(SDM), 2005.

[LZ05] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding

common error patterns by mining software revision histories. SIG-

SOFT Softw. Eng. Notes, 30(5):296–305, 2005.

[Mas05] Bart Massey. Longitudinal analysis of long-timescale open source re-

pository data. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

130 BIBLIOGRAPHY

[McC76] TJ McCabe. A complexity measure. IEEE Transactions on Software

Engineering, pages 308–320, 1976.

[MFH02] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case

studies of open source software development: Apache and Mozilla.

ACM Trans. Softw. Eng. Methodol., 11(3):309–346, 2002.

[MFT02] G. Madey, V. Freeh, and R. Tynan. The open source software devel-

opment phenomenon: An analysis based on social network theory. In

Americas Conference on Information Systems, pages 1806–1813, 2002.

[MINK07] Osamu Mizuno, Shiro Ikami, Shuya Nakaichi, and Tohru Kikuno.

Spam filter based approach for finding fault-prone software modules.

In MSR ’07: Proceedings of the Fourth International Workshop on

Mining Software Repositories, page 4, Washington, DC, USA, 2007.

IEEE Computer Society.

[Mis05] Subhas Chandra Misra. Modeling design/coding factors that drive

maintainability of software systems. Software Quality Control,

13(3):297–320, 2005.

[MLM96] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic

detection of function clones in a software system using metrics. In

Proceedings of the International Conference on Software Maintenance,

1996.

[MM07] Shawn Minto and Gail C. Murphy. Recommending emergent teams.

In MSR ’07: Proceedings of the Fourth International Workshop on

Mining Software Repositories, page 5, Washington, DC, USA, 2007.

IEEE Computer Society.

[MMM+07] Shuji Morisaki, Akito Monden, Tomoko Matsumura, Haruaki Tamada,

and Ken-ichi Matsumoto. Defect data analysis based on extended as-

sociation rule mining. In MSR ’07: Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, page 3, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[Moc07] A. Mockus. Large-scale code reuse in open source software. First

International Workshop on Emerging Trends in FLOSS Research and

Development, pages 7–7, May 2007.

[Moc09] Audris Mockus. Amassing and indexing a large sample of version con-

trol systems: Towards the census of public source code history. In

BIBLIOGRAPHY 131

M. W. Godfrey and J. Whitehead, editors, MSR ’09: Proceedings of

the 6th IEEE Intl. Working Conference on Mining Software Reposit-

ories, pages 11–20, 2009.

[MPS08] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative

analysis of the e�ciency of change metrics and static code attributes

for defect prediction. In ICSE ’08: Proceedings of the 30th interna-

tional conference on Software engineering, pages 181–190, New York,

NY, USA, 2008. ACM.

[MRRGBOP08] Juan Martinez-Romo, Gregorio Robles, Jesus M. Gonzalez-Barahona,

and Miguel Ortuño-Perez. Open Source Development, Communities

and Quality, volume 275 of IFIP International Federation for Informa-

tion Processing, chapter Using Social Network Analysis Techniques to

Study Collaboration between a FLOSS Community and a Company,

pages 143–158. Springer Boston, Jul 2008.

[MSCC04] Tim Menzies, Justin S. Di Stefano, Chris Cunanan, and Robert (Mike)

Chapman. Mining repositories to assist in project planning and re-

source allocation. In Proceedings of the 1rst Workshop on Mining

Software Repositories, 2004.

[Mut04] Paul Mutton. Inferring and visualizing social networks on internet

relay chat. Information Visualisation, International Conference on,

0:35–43, 2004.

[MV00] A. Mockus and L.G. Votta. Identifying reasons for software changes

using historic databases. In Proceedings. International Conference on

Software Maintenance, pages 120–130, 2000.

[MVL03] M. Mantyla, J. Vanhanen, and C. Lassenius. A taxonomy and an

initial empirical study of bad smells in code. In Proceedings of the

International Conference on Software Maintenance, pages 381–384,

Sept. 2003.

[MVL04] M.V. Mantyla, J. Vanhanen, and C. Lassenius. Bad smells - humans as

code critics. In Proceedings of the 20th IEEE International Conference

on Software Maintenance, pages 399–408, Sept. 2004.

[MWZ03] A. Mockus, D.M. Weiss, and Ping Zhang. Understanding and predict-

ing e↵ort in software projects. Software Engineering, 2003. Proceed-

ings. 25th International Conference on, pages 274–284, May 2003.

132 BIBLIOGRAPHY

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching.

ACM Computing Surveys, 33(1):31–88, 2001.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining

metrics to predict component failures. In ICSE ’06: Proceedings of

the 28th international conference on Software engineering, pages 452–

461, New York, NY, USA, 2006. ACM.

[NM03] A.P. Nikora and J.C. Munson. Understanding the nature of software

evolution. In Proceedings of the International Conference on Software

Maintenance, pages 83–93, Sept. 2003.

[OH94] P. Oman and J. Hagemeister. Construction and testing of polynomials

predicting software maintainability. Journal of Systems and Software,

24(251–266), 1994.

[O’N08] Elizabeth J. O’Neil. Object/relational mapping 2008: Hibernate

and the entity data model (edm). In SIGMOD ’08: Proceedings of

the 2008 ACM SIGMOD international conference on Management of

data, pages 1351–1356, New York, NY, USA, 2008. ACM.

[OOOM05] Masao Ohira, Naoki Ohsugi, Tetsuya Ohoka, and Ken-ichi Mat-

sumoto. Accelerating cross-project knowledge collaboration using col-

laborative filtering and social networks. In Proceedings of the 2005

international workshop on Mining software repositories, pages 1–5,

New York, NY, USA, 2005. ACM.

[OSG07] OSGi Service Platform, Core Specification. OSGi Alliance, 2007.

[OW04] Thomas J. Ostrand and Elaine J. Weyuker. A tool for mining defect-

tracking systems to predict fault-prone files. In Proceedings of the 2nd

ICSE Workshop on Remote Analysis and Measurement of Software

Systems (RAMSS), Edinburg, Scotland, UK, 2004.

[Par58] C. Northcote Parkinson. Parkinson’s Law: The Pursuit of Progress.

John Murray, 1958.

[Par92] Robert E. Park. Software size measurement: a framework for counting

source statements. Technical Report CMU/SEI-92-TR-020, Software

Engineering Institute, 1992.

[Par94] D.L. Parnas. Software aging. In Proceedings of the 16th International

Conference on Software Engineering, pages 279–287, May 1994.

BIBLIOGRAPHY 133

[PCSF08] C Pilato, Ben Collins-Sussman, and Brian Fitzpatrick. Version Con-

trol with Subversion. O’Reilly Media, Inc., 2nd edition, 2008.

[Pel01] Doron A. Peled. Software Reliability Methods. Springer-Verlag, 2001.

[PG08] Chris Parnin and Carsten Görg. Improving change descriptions with

change contexts. In MSR ’08: Proceedings of the 2008 international

working conference on Mining software repositories, pages 51–60, New

York, NY, USA, 2008. ACM.

[Phi00] Lawrence Phillips. The double metaphone search algorithm. C/C++

Users Journal, 2000.

[PMM+03] A. Podgurski, W. Masri, Y. McCleese, M. Minch, J. Sun, B. Wang,

and W. Masri. Automated support for classifying software failure re-

ports. In Proceedings of the 25th International Conference on Software

Engineering, 2003.

[Pop35] Karl Popper. The Logic Of Scientific Discovery. 1935.

[PP05] R. Purushothaman and D.E. Perry. Toward understanding the rhet-

oric of small source code changes. IEEE Transactions on Software

Engineering, 31(6):511–526, June 2005.

[PPV00] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical

studies of software engineering: a roadmap. In ICSE ’00: Proceedings

of the Conference on The Future of Software Engineering, pages 345–

355, New York, NY, USA, 2000. ACM.

[PSE04] J.W. Paulson, G. Succi, and A. Eberlein. An empirical study of open-

source and closed-source software products. Software Engineering,

IEEE Transactions on, 30(4):246–256, April 2004.

[RGB05] Gregorio Robles and Jesus M. Gonzalez-Barahona. Developer iden-

tification methods for integrated data from various sources. In MSR

’05: Proceedings of the 2005 international workshop on Mining soft-

ware repositories, pages 1–5, New York, NY, USA, 2005. ACM.

[RGBH05] G. Robles, J.M. Gonzalez-Barahona, and I. Herraiz. An empirical

approach to Software Archaeology. In Proceedings of the International

Conference on Software Maintenance (Poster Session), 2005.

[RGBM06] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan Julian

Merelo. Beyond source code: The importance of other artifacts in

134 BIBLIOGRAPHY

software development (a case study). Journal of Systems and Soft-

ware, 79(9):1233 – 1248, 2006. Selected papers from the fourth Source

Code Analysis and Manipulation (SCAM 2004) Workshop.

[RGBMA06] Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr,

and Juan Jose Amor. Mining large software compilations over time:

another perspective of software evolution. In MSR ’06: Proceedings

of the 2006 international workshop on Mining software repositories,

pages 3–9, New York, NY, USA, 2006. ACM.

[RH83] Andreas Reuter and Theo Haerder. Principles of transaction-oriented

database recovery. ACM Computing Surveys, 15(4):287–317, Dec

1983.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and report-

ing case study research in software engineering. Empirical Software

Engineering, 14(2):131–164, March 2009.

[RKGB04] Gregorio Robles, Stefan Koch, and Jesus M. Gonzalez-Barahona. Re-

mote analysis and measurement of libre software systems by means

of the CVSAnalY tool. In Proceedings of the 2nd ICSE Workshop on

Remote Analysis and Measurement of Software Systems (RAMSS),

Edinburg, Scotland, UK, 2004.

[Rob05] Gregorio Robles. Empirical Software Engineering Research on Libre

Software: Data Sources, Methodologies and Results. PhD thesis, Uni-

versidad Rey Juan Carlos, Madrid, 2005.

[Roc75] M. J. Rochkind. The source code control system. IEEE Transactions

on Software Engineering, 1(4):364–370, 1975.

[RRL+04] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine.

Dex: a semantic-graph di↵erencing tool for studying changes in large

code bases. In Proceedings of the 20th IEEE International Conference

on Software Maintenance, pages 188–197, Sept. 2004.

[RRM04] A.J. Rostkowycz, V. Rajlich, and A. Marcus. A case study on the

long-term e↵ects of software redocumentation. In Proceedings of the

20th IEEE International Conference on Software Maintenance, pages

92–101, Sept. 2004.

[RSG99] Linda H. Rosenberg, Ruth Stapko, and Al Gallo. Applying object-

oriented metrics. In Proceedings of the Sixth International Symposium

BIBLIOGRAPHY 135

on Software Metrics - Workshop on Measurement for Object-Oriented

Software, Boca, Raton, FL, 1999.

[RSG08] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. On the re-

lation of refactorings and software defect prediction. In MSR ’08:

Proceedings of the 2008 international working conference on Mining

software repositories, pages 35–38, New York, NY, USA, 2008. ACM.

[Sca04] W. Scacchi. Free and open source development practices in the game

community. Software, IEEE, 21(1):59–66, Jan-Feb 2004.

[SDJ07] Dag I.K Sjøberg, Tore Dyba, and Magne Jorgensen. The future of

empirical methods in software engineering research. In FOSE ’07:

2007 Future of Software Engineering, pages 358–378, Washington, DC,

USA, 2007. IEEE Computer Society.

[Sea99] C.B. Seaman. Qualitative methods in empirical studies of software

engineering. Software Engineering, IEEE Transactions on, 25(4):557–

572, Jul/Aug 1999.

[SEG68] H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory exper-

imental studies comparing online and o✏ine programming perform-

ance. Commun. ACM, 11(1):3–11, 1968.

[SEI04] Maintainability index technique for measuring program maintainabil-

ity. Online, 2004.

[Sha03] M. Shaw. Writing good software engineering research papers. In Pro-

ceedings of the 25th International Conference on Software Engineer-

ing, 2003., pages 726–736, May 2003.

[SHH+05] Dag I.K Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Kara-

hasanovic, N.-K. Liborg, and A.C. Rekdal. A survey of controlled

experiments in software engineering. IEEE Transactions on Software

Engineering, 31(9):733–753, Sept. 2005.

[SI94] M. Shepperd and D.C. Ince. A critique of three metrics. Journal of

Systems Software, 26:197–210, 1994.

[SJAH09] Weiyi Shang, Zhen Ming Jiang, Bram Adams, and Ahmed E. Hassan.

Mapreduce as a general framework to support research in mining soft-

ware repositories. In Michael W. Godfrey and Jim Whitehead, editors,

MSR ’09: Proceedings of the 6th IEEE Intl. Working Conference on

136 BIBLIOGRAPHY

Mining Software Repositories, pages 21–30, Vancouver, Canada, 2009

2009. IEEE.

[SJH09] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. On the use

of internet relay chat meetings by developers of the GNOME GTK+

project. In M. W. Godfrey and J. Whitehead, editors, MSR ’09: Pro-

ceedings of the 6th IEEE Intl. Working Conference on Mining Software

Repositories, pages 107–111, Vancouver, Canada, May 2009. IEEE.

[SJM08] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework

usage changes from instantiation code. In ICSE ’08: Proceedings of

the 30th international conference on Software engineering, pages 471–

480, New York, NY, USA, 2008. ACM.

[SJW+02] SR Schach, B. Jin, DR Wright, GZ Heller, and AJ O↵utt. Maintain-

ability of the Linux kernel. IEE Proceedings-Software, 149(1):18–23,

2002.

[SL01] Jelber Sayyad and C. Lethbridge. Supporting software maintenance

by mining software update records. In ICSM ’01: Proceedings of the

IEEE International Conference on Software Maintenance (ICSM’01),

page 22, Washington, DC, USA, 2001. IEEE Computer Society.

[Sow07] Sulayman K. Sowe. An Empirical Study of Knowledge Sharing in Free

and Open Source Software Projects. PhD thesis, Aristotle University

of Thessaloniki, 2007.

[Spi06a] Diomidis Spinelis. Global software development in the FreeBSD pro-

ject. In P. Kruchten, Y. Hsieh, E. MacGregor, D. Moitra, and W. Stri-

gel, editors, International Workshop on Global Software Development

for the Practitioner, pages 73–79. ACM Press, May 2006.

[Spi06b] Diomidis Spinellis. Code Quality: The Open Source Perspective.

Addison-Wesley, Boston, MA, 2006.

[Spi08] Diomidis Spinellis. A tale of four kernels. In ICSE ’08: Proceedings

of the 30th international conference on Software engineering, pages

381–390, New York, NY, USA, 2008. ACM.

[SRB+08] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice

Singer. Todo or to bug: exploring how task annotations play a role in

the work practices of software developers. In ICSE ’08: Proceedings

BIBLIOGRAPHY 137

of the 30th international conference on Software engineering, pages

251–260, New York, NY, USA, 2008. ACM.

[SSA06] Sulayman Sowe, Ioannis Stamelos, and Lefteris Angelis. Identifying

knowledge brokers that yield software engineering knowledge in oss

projects. Information and Software Technology, 48(11):1025–1033,

November 2006.

[SSAO04] Ioannis Samoladas, Ioannis Stamelos, Lefteris Angelis, and Apostolos

Oikonomou. Open source software development should strive for even

greater code maintainability. Commun. ACM, 47(10):83–87, 2004.

[SZ08] David Schuler and Thomas Zimmermann. Mining usage expertise from

version archives. In MSR ’08: Proceedings of the 2008 international

working conference on Mining software repositories, pages 121–124,

New York, NY, USA, 2008. ACM.

[SZZ05] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do

changes induce fixes? In MSR ’05: Proceedings of the 2005 inter-

national workshop on Mining software repositories, pages 1–5, New

York, NY, USA, 2005. ACM.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz.

Experimental evaluation in computer science: A quantitative study.

Journal of Systems and Software, 28(1):9 – 18, 1995.

[TMK+06] M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K Matsumoto.

Analyzing OSS developers’ working time using mailing lists archives.

In MSR ’06: Proceedings of the 2006 International workshop on Min-

ing software repositories, pages 181–182. ACM, 2006.

[Ven06] Gina Venolia. Textual alusions to artifacts in software-related repos-

itories. In MSR ’06: Proceedings of the 2006 international workshop

on Mining software repositories, pages 151–154, New York, NY, USA,

2006. ACM.

[VRD04] F. Van Rysselberghe and S. Demeyer. Studying software evolution

information by visualizing the change history. pages 328–337, Sept.

2004.

[VTG+06] S. Valverde, G. Theraulaz, J. Gautrais, V. Fourcassie, and R.V. Sole.

Self-organization patterns in wasp and open source communities. In-

telligent Systems, IEEE, 21(2):36–40, March-April 2006.

138 BIBLIOGRAPHY

[WCN08] Gursimran Singh Walia, Je↵rey C. Carver, and Nachiappan Nagap-

pan. The e↵ect of the number of inspectors on the defect estimates

produced by capture-recapture models. In ICSE ’08: Proceedings of

the 30th international conference on Software engineering, pages 331–

340, New York, NY, USA, 2008. ACM.

[Wey88] E.J. Weyuker. Evaluating software complexity measures. IEEE Trans-

actions on Software Engineering, 14(9):1357–1365, 1988.

[WF94] Stanley Wasserman and Kathrine Faust. Social Network Analysis:

Methods and Applications. Cambridge University Press, 1994.

[WH05a] C.C. Williams and J.K. Hollingsworth. Automatic mining of source

code repositories to improve bug finding techniques. IEEE Transac-

tions on Software Engineering, 31(6):466–480, June 2005.

[WH05b] Chadd C. Williams and Je↵rey K. Hollingsworth. Recovering system

specific rules from software repositories. In MSR ’05: Proceedings

of the 2005 international workshop on Mining software repositories,

pages 1–5, New York, NY, USA, 2005. ACM.

[WM07] Michael Weiss and Gabriella Moroiu. Emerging Free and Open Source

Software Practices, chapter Ecology and Dynamics of Open Source

Communities. IGI Global, 2007.

[WND08] Peter Weissgerber, Daniel Neu, and Stephan Diehl. Small patches

get in! In MSR ’08: Proceedings of the 2008 international working

conference on Mining software repositories, pages 67–76, New York,

NY, USA, 2008. ACM.

[WO95] K.D. Welker and P.W Oman. Software maintainability metrics models

in practice. Journal of Defence Software Engineering, 8(19–23), 1995.

[WPZZ07] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas

Zeller. How long will it take to fix this bug? In MSR ’07: Proceedings

of the Fourth International Workshop on Mining Software Repositor-

ies, Washington, DC, USA, 2007. IEEE Computer Society.

[WW00] C. Wohlin and A. Wesslen. Experimentation in software engineering

– An introduction. Kluwer Academic Publishers, 2000.

[WZX+08] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An

approach to detecting duplicate bug reports using natural language

BIBLIOGRAPHY 139

and execution information. In ICSE ’08: Proceedings of the 30th in-

ternational conference on Software engineering, pages 461–470, New

York, NY, USA, 2008. ACM.

[XGCM05] Jin Xu, Yongqin Gao, S. Christley, and G. Madey. A topological ana-

lysis of the open souce software development community. In Proceed-

ings of the 38th Annual Hawaii International Conference on System

Sciences, Jan. 2005.

[YMNCC04] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predicting

source code changes by mining change history. IEEE Transactions on

Software Engineering, 30(9):574–586, Sept. 2004.

[ZMM06] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success

of empirical studies in the international conference on software engin-

eering. In ICSE ’06: Proceedings of the 28th international conference

on Software engineering, pages 341–350, New York, NY, USA, 2006.

ACM.

[ZW04] T. Zimmerman and P Weissgerber. Preprocessing cvs data for fine-

grained analysis. In Proceeding of the 1rst Workshop on Mining Soft-

ware Repositories, pages 2–6, 2004.

[ZZWD05] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining

version histories to guide software changes. IEEE Transactions on

Software Engineering, 31(6):429–445, June 2005.

140 BIBLIOGRAPHY

Acronyms

ACM Association for Computing Machinery

AST Abstract Syntax Tree

API Application Programming Interface

BMI Backlog Management Index

BTS Bug Tracking Systems

CBO Coupling Between Objects

CVS Concurrent Version System

CK Chidamber and Kemerer

DBMS Database Management System

DIT Depth of Inheritance Tree

DRE Defect Removal E↵ectiveness

EMCC Extended McCabe Cyclomatic Complexity

ECT Electronic Communication Trail

FSF Free Software Foundation

GQM Goal Question Metric

HV Halstead Volume

HTML HyperText Markup Language

IEEE Institute of Electical and Elecronic Engineering

IF Information Flow

IM Instant Messaging

141

142 BIBLIOGRAPHY

IRC Instant Relay Chat

KDD Knoweledge Discovery in Databases

LCOM Lack of Cohesion in Methods

LOC Lines of Code

MI Maintainability Index

MIME Multipurpose Internet Mail Extensions

MCC McCabe Cyclomatic Complexity

MSR Mining Software Repositories

MTTR Mean Time To Repear

MARC Mail Archive

NOC Number of Children

ORM Object Relational Mapping

OSS Open Source Software

REST Representational State Transfer

RFC Response For Class

RHDB Release History DataBase

SCM Software Configuration Management

SCCS Source Code Control System

SERP Software Engineering Research Platform

SF SourceForge

SNA Social Network Analysis

SQO-OSS Software Quality Observatory for Open Source Software

SVN Subversion

URL Universal Resource Locator

WMC Weighted Methods per Class

XML eXtensible Markcup Language

	Abstract
	Acknowledgements
	Introduction
	Context
	Contributions
	Thesis Outline
	Work Performed in Collaboration

	Related Work
	Empirical Methods in Software Engineering
	Ingredients of Empirical Studies
	Metrics
	Data
	Metric Tools and Measurement Automation
	Analysis Approaches

	Analysis of Related Work
	A Classification Framework for Empirical Studies
	Analysis
	Results

	Summary

	Problem Statement and Proposed Solution
	Performing Large Scale Studies with Empirical Data
	The Software Engineering Research Platform
	Hypotheses
	Relation to Other Approaches
	Limits of Research Scope

	Research Platform Design and Implementation
	Requirements
	Integrate Data Sources
	Manage Computing Resources Efficiently
	Working with Large Data Volumes
	Result Sharing and Experiment Replication

	Data
	Raw Data and Mirroring
	Structured Metadata

	Tools
	Operation
	Representing scm Data in Relational Format
	Resolving Developer Identities Across Data Sources
	Clustering

	Summary

	Empirical Validation
	Intense Electronic Discussions and Software Evolution
	Research Questions
	Method of Study
	Results

	Development Teams and Maintainability
	Research Questions
	Method of Study
	Results

	The Perils of Working with Small Datasets
	Hypotheses Validation
	Summary

	Conclusions and Future Work
	Summary of Results
	Systematic Analysis of Related Work
	Building the Platform
	Conducting Large Scale Experiments

	Future work
	Data Validation
	Results Distribution
	Repositories for Tools and Results
	Validate Existing Work

	Conclusions

	Bibliography

