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ABSTRACT
Background. Security bugs are critical programming er-
rors that can lead to serious vulnerabilities in software. Such
bugs may allow an attacker to take over an application, steal
data or prevent the application from working at all.
Aim. We used the projects stored in the Maven repository
to study the characteristics of security bugs individually and
in relation to other software bugs. Specifically, we studied
the evolution of security bugs through time. In addition,
we examined their persistence and their relationship with
a) the size of the corresponding version, and b) other bug
categories.
Method. We analyzed every project version of the Maven
repository by using FindBugs, a popular static analysis tool.
To see how security bugs evolve over time we took advantage
of the repository’s project history and dependency data.
Results. Our results indicate that there is no simple rule
governing the number of security bugs as a project evolves.
In particular, we cannot say that across projects security-
related defect counts increase or decrease significantly over
time. Furthermore, security bugs are not eliminated in a
way that is particularly different from the other bugs. In
addition, the relation of security bugs with a project’s size
appears to be different from the relation of the bugs coming
from other categories. Finally, even if bugs seem to have
similar behaviour, severe security bugs seem to be unassoci-
ated with other bug categories.
Conclusions. Our findings indicate that further research
should be done to analyze the evolution of security bugs.
Given the fact that our experiment included only Java projects,
similar research could be done for another ecosystem. Fi-
nally, the fact that projects have their own idiosyncrasies
concerning security bugs, could help us find the common
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characteristics of the projects where security bugs increase
over time.

Keywords
Security Bugs, Static Analysis, Software Evolution, Software
Security, Maven, FindBugs.

1. INTRODUCTION
A security bug is a programming error that introduces a

potentially exploitable weakness into a computer system [34].
This weakness could lead to a security breach with unfortu-
nate consequences in different layers, like databases, native
code, applications, libraries and others. Despite the signifi-
cant effort to detect and eliminate such bugs, little attention
has been paid to study them in relation to software evolu-
tion [26]. One of the most common approaches to identify
security bugs is static analysis [6]. This kind of analysis in-
volves the inspection of the program’s source or object code
without executing it.

In this paper we present how we used a large software
ecosystem to analyse the relationship of different types of
security vulnerabilities to evolving software packages. For
our research we used FindBugs,1 a static analysis tool that
examines bytecode to detect software bugs and has already
been used in research [1, 19, 36]. Specifically, we ran Find-
Bugs on all the project versions of all the projects that exist
in the Maven Central Repository2 (approximately 265GB of
data—see Section 3.2). Then we observed the changes that
involved the security bugs and their characteristics.

We chose to focus our study on security bugs rather than
other types of software defects. This is because compared to
other bug categories, failures due to security bugs have two
distinct features: they can severely affect an organization’s
infrastructure [33], and they can cause significant financial
damage to an organization [39, 2]. Specifically, whereas a
software bug can cause a software artifact to fail, a security
bug can allow a malicious user to alter the execution of the
entire application for his or her own gain. In this case, such
bugs could give rise to a wide range of security and privacy

1http://findbugs.sourceforge.net/
2http://mvnrepository.com/



issues, like the access of sensitive information, the destruc-
tion or modification of data, and denial of service. Moreover,
security bug disclosures lead to a negative and significant
change in market value for a software vendor [38]. Hence,
one of the basic pursuits in every new software release should
be to mitigate such bugs.

The motivation behind our work was to validate whether
programmers care for the risk posed by security bugs when
they release a new version of their software. In addition,
we wanted to investigate other critical features associated
with such vulnerabilities like the persistence of a bug; in
essence, to see whether critical bugs stay unresolved for a
long time. Also, we wanted to elaborate more on the relation
of security bugs with other bug categories. In the same
manner, we tried to examine the relationship between the
size of a project release and the number of security bugs
that it contains, knowing the that research has produced
contradictory results on this issue [35, 28, 13]. Finally, we
examined the Maven ecosystem as a whole from a security
perspective. Its structure gave us the opportunity to see if
a project version that is a dependency of a large number of
others contains a low rate of security bugs.

In this work we:

• Analyze how security bugs found through static anal-
ysis evolve over time. To achieve this, we inspected all
releases of every project. Our hypothesis is that secu-
rity bugs should decrease as a project evolves, for they
form critical issues, which developers should eliminate.

• Examine security bug persistence across releases. We
expect that security bugs should be eliminated earlier
than other bugs.

• Study the relation between security bugs and a project
release’s size. Our hypothesis is that security bugs
are proportional to a project release’s size (defined in
terms of bytecode size).

• Examine the correlation of security bugs with other
bug categories. Our hypothesis is that security bugs
appear together with bugs that are related with per-
formance, coding practices, and product stability.

In the rest of this paper we outline related work (Section
2), describe the processing of our data and our experiment
(Section 3), present and discuss the results we obtained (Sec-
tion 4), and end up with a conclusion and directions for
future work (Section 5).

2. RELATED WORK
There are numerous methods for mining software reposito-

ries in the context of software evolution [20]. In this section
we focus on the ones that highlight the relationship between
software bugs and evolution and try to extract useful con-
clusions.

Refactoring identification through software evolution is
an approach used to relate refactorings with software bugs.
Weißgerber et al. found that a high ratio of refactorings is
usually followed by an increasing ratio of bug reports [40].
In addition, they indicated that software bugs are sometimes
introduced after an incomplete refactoring [12]. Ratzinger
et al. [31] showed that the number of bugs decreases, when
the number of refactorings increases. Finally, Kim M. et
al. [22] indicated that api-level refactorings aid bug fixes.

Micro patterns, proposed by Kim et al. [24] detect bug-
prone patterns among source code. Micro patterns describe
programming idioms like inheritance, data management, im-
mutability and others. The approach involved the examina-
tion of all revisions of three open-source projects to extract
bug introduction rates for each pattern. Gil et al. [11] anal-
ysed the prevalence of micro patterns across five Sun jdk
versions to conclude that pattern prevalence tends to be the
same in software collections.

Querying techniques are used to answer a broad range of
questions regarding the evolution history of a project [17].
Bhattacharya et al. [4, 3] proposed a framework that is based
on recursively enumerable languages. The framework can
correlate software bugs with developers in various ways. For
instance, return the list of bugs fixed by a specific developer.
Fischer et al. [10] proposed an approach for populating a re-
lease history database that combines code information with
bug tracking data. In this way, a developer can couple files
that contain common bugs, estimate code maturity with re-
spect to the bugs, etc. The “Ultimate Debian Database” [29]
is an sql-based framework that integrates information about
the Debian project from various sources to answer queries
related to software bugs and source code.

D’Ambros et al. have used bug history analysis to detect
the critical components of a project [7]. This is done by
using an evolutionary meta-model [8]. The same approach
was also used by Zimmermann et al. [42] to check the corre-
lation of bugs with software properties like code complexity,
process quality and others and to predict future properties.

The evolution of software artifacts has also been anal-
ysed to reduce the false alarms of the various static analysis
tools. To achieve this, Spacco et al. [36] introduced pair-
ing and warning signatures. In the former, they tried to
pair sets of bugs between versions in order to find similar
patterns. In the latter, they computed a signature for ev-
ery bug. This signature contained elements like the name
of the class where the bug was found, the method and oth-
ers. Then they searched for similar signatures between ver-
sions. In their research they studied the evolution of 116
sequential builds of the Sun Java Sevelopment Kit (jdk).
Their findings indicated that high priority bugs are fixed
over time. To improve the precision of bug detection, Kim
et al. [23] proposed a history-based warning prioritization al-
gorithm by mining the history of bug-fixes of three different
projects. Working towards the same direction, Heckman et
al. [15, 14] have introduced benchmarks that use specific cor-
relation algorithms and classification techniques to evaluate
alert prioritization approaches.

Lu et al. [25] studied the evolution of file-system code.
Specifically, they analysed the changes of Linux file-system
patches to extract bug patterns and categorize bugs based
on their impact. Their findings indicated that the number
of file-system bugs does not die down over time. By catego-
rizing bugs they also showed the frequency of specific bugs
in specific components.

Completing the above approaches, our work focuses on the
subset of security bugs. Focusing on such bugs is not a new
idea. Ozment and Schechter [30] examined the code base of
the Openbsd operating system to determine whether its se-
curity is increasing over time. In particular, they measured
the rate at which new code has been introduced and the rate
at which defects have been reported over a 7.5 year period
and fifteen releases. Even though the authors present statis-



tical evidence of a decrease in the rate at which vulnerabili-
ties are being reported, defects seem to appear persistent for
a period of at least 2.6 years. Massacci et al. [27] observed
the evolution of software defects by examining six major
versions of Firefox. To achieve this they created a database
schema that contained information coming from the“Mozilla
Firefox-related Security Advisories” (mfsa) list,3 Bugzilla
entries and others. Their findings indicated that security
bugs are persistent over time. They also showed that there
are many web users that use old versions of Firefox, meaning
that old attacks will continue to work. Zaman et al. [41] fo-
cused again on Firefox to study the relation of security bugs
with performance bugs. This was also done by analysing
the project’s Bugzilla. Their research presented evidence
that security bugs require more experienced developers to
be fixed. In addition, they suggested that security bug fixes
are more complex than the fixes of performance and other
bugs. Shahzad et al. [34] analysed large sets of vulnerabil-
ity data-sets to observe various features of the vulnerabil-
ities that they considered critical. Such features were the
functionality and the criticality of the defects. Their analy-
sis included the observation of vulnerability disclosures, the
behavior of hackers in releasing exploits for vulnerabilities,
patching and others. In their findings they highlighted the
most exploited defects and showed that the percentage of
remotely exploitable vulnerabilities has gradually increased
over the years. Finally, Edwards et al. [9] have recently con-
ducted a study similar to ours in which they have considered
only four projects. Their results demonstrate that the num-
ber of exploitable bugs does not always improve with each
new release and that the rate of discovery of exploitable bugs
begins to drop three to five years after the initial release.

3. METHODOLOGY
Our experiment involved the collection of the metric re-

sults of the FindBugs tool. Before and during the experi-
ment, we performed a number of filters on the data coming
from the Maven repository, for reasons that we will describe
below.

3.1 Experiment
The goal of our experiment was to retrieve all the bugs

that FindBugs reports, from all the project versions exist-
ing on the Maven repository (in the Maven repository, ver-
sions are actual releases). The experiment involved four en-
tities: a number of workers (a custom Python script), a task
queue mechanism (Rabbitmq—version 3.0.1), a data reposi-
tory (Mongodb—version 2.2), and the code repository, which
in our case it was the public Maven repository.

Maven is a build automation tool used primarily for Java
projects and it is hosted by the Apache Software Foundation.
It uses xml to describe the software project being built, its
dependencies on other external modules, the build order,
and required plug-ins.

First, we scanned the Maven repository for appropriate
jars and created a list that included them. We discuss the
jar selection process in the next section. With the jar
list at hand, we created a series of processing tasks and
added them to the task queue. Then we executed twenty
five (Unix-based) workers that checked out tasks from the

3http://www.mozilla.org/projects/security/
known-vulnerabilities.html
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Figure 1: The Data Processing Architecture

queue, processed the data and stored the results to the data
repository.

A typical processing cycle of a worker included the fol-
lowing steps: after the worker spawned, it requested a task
from the queue. This task contained the jar name, which
was typically a project version that was downloaded locally.
First, specific jar metadata were calculated and stored.
Such metadata included its size, its dependencies, and a
number that represented the chronological order of the re-
lease. This order was derived from an xml file that accom-
panies every project in the Maven repository called maven-
metadata.xml. Then, FindBugs was invoked by the worker
and its results were also stored in the data repository. When
the task was completed the queue was notified and the next
task was requested. This process was executed for all the
available jars in the task queue. A schematic representation
of the data processing architecture can be seen in Figure 1.

3.2 Data Provenance
Initially, we obtained a snapshot (January 2012) of the

Maven repository and handled it locally to retrieve a list
of all the names of the project versions that existed in it.
A project version can be uniquely identified by the triplet:
group id, artifact id and version.

FindBugs works by examining the compiled Java virtual
machine bytecodes of the programs it checks, using the byte-
code engineering library (bcel). To detect a bug, FindBugs
uses various formal methods like control flow and data flow
analysis. It has also other detectors that employ visitor pat-
terns over classes and methods by using state machines to
reason about values stored in variables or on the stack. Since
FindBugs analyses applications written in the Java program-
ming language, and the Maven repository hosts projects
from languages other than Java such as Scala, Groovy, Clo-
jure, etc., we filtered out such projects by performing a series
of checks in the repository data and metadata.

In addition, we implemented a series of audits in the
worker scripts that checked if the jars are valid in terms
of implementation. For instance, for every jar the worker
checked if there were any .class files before invoking Find-
Bugs. After the project filtering, we narrowed down our
data set to 17,505 projects with 115,214 versions. Table 1
summarises the data set information and provides the ba-



Table 1: Descriptive Statistics Measurements for the
Maven Repository

Measurement Value
Projects 17,505
Versions (total) 115,214
Min (versions per project) 1
Max (versions per project) 338
Mean (versions per project) 6.58
Median (versions per project) 3
Range (over versions) 337
1st Quartile (over versions) 1
3rd Quartile (over versions) 8

3421 10 100

5500

1

10

100

1000

Number of Versions

N
um

be
r 

of
 P

ro
je

ct
s

Figure 2: Distribution of Version Count Among
Project Population

sic descriptive statistic measurements. The distribution of
version count among the selected projects is presented in
Figure 2.

The statistical measurements presented in Table 1 indi-
cate that we have 17,505 projects and the data set’s me-
dian is 3, which means that almost 50% (8,753 projects)
of the project population have 1 to 3 versions. In general,
most projects have a few number of versions, there are some
projects with ten versions and only a few with hundreds of
versions. The maximum number of versions for a project is
338. The 3rd quartile measurement also indicated that 75%
(13,129) of the projects have a maximum of 8 versions.

3.3 Threats to Validity
A threat to the internal validity of our experiment could

be the false alarms of the FindBugs tool [1, 18]. False pos-
itives and negatives of static analysis tools and how they
can be reduced is an issue that has already been discussed
in the literature (see Section 2). In addition, reported secu-
rity bugs may not be applicable to an application’s typical
use context. For instance, FindBugs could report an sql in-
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jection vulnerability [32] in an application that receives no
external input. In this particular context, this would be a
false positive alarm.

Furthermore, given that our analysis is done on open-
source projects written in the Java programming language
and hosted on Maven, a threat to the external validity of
our work is the fact that our results may not be applicable
to other programming languages, ecosystems, and develop-
ment cultures. In particular, a large class of security prob-
lems such as buffer overflows [21] do not apply in our study
since Java enforces bound checking at runtime.

4. RESULTS AND ANALYSIS
Our findings can be analysed at two levels. First, we dis-

cuss some primary observations concerning the security bugs
of the Maven repository as a whole. Then, we provide a
comprehensive analysis of the results and highlight our key
findings.

4.1 Overview and Initial Results
FindBugs separates software bugs into nine categories (see

Table 2). Two of them involve security issues: Security and
Malicious Code. From the total number of releases, 4,353
of them contained at least one bug coming from the first
category and 45,559 coming from the second.

Our first results involve the most popular bugs in the
Maven repository. Figure 3 shows how software bugs are dis-
tributed among the repository. Together with the Bad Prac-
tice bugs and the Style bugs, security bugs (the sum of the
Security and Malicious Code categories - 0.21% + 21.81%)
are the most popular in the repository (≥ 21% each). This
could be a strong indication that programmers write code
that implements the required functionality without consid-
ering its many security aspects; an issue that has already
been reported in literature [37].

Another observation involves bugs that we could call Se-
curity High and they are a subset of the Security category.
Such bugs are related to vulnerabilities that appear due to
the lack of user-input validation and can lead to damag-



Table 2: Bug Categorisation According to FindBugs
Category Description
Bad Practice Violations of recommended and essential coding practice.
Correctness Involves coding misting a way that is particularly different from the other bug

sakes resulting in code that was probably not what the developer intended.
Experimental Includes unsatisfied obligations. For instance, forgetting to close a file.
Internationalization (i18n) Indicates the use of non-localized methods.
Multi-Threaded (mt) Correctness Thread synchronization issues.
Performance Involves inefficient memory usage allocation, usage of non-static classes.
Style Code that is confusing, or written in a way that leads to errors.
Malicious Code Involves variables or fields exposed to classes that should not be using them.
Security Involves input validation issues, unauthorized database connections and others.

Table 3: Number of Project Releases that Contain at Least One “Security High” Bug
Bug Description Number of Project Releases
hrs: http cookie formed from untrusted input 151
hrs: http response splitting vulnerability 1,579
pt: absolute path traversal in servlet 103
pt: relative path traversal in servlet 57
sql: non-constant string passed to execute method on an sql statement 1,875
sql: a prepared statement is generated from a non-constant String 1,486
xss: jsp reflected cross site scripting vulnerability 18
xss: Servlet reflected cross site scripting vulnerability in error page 90
xss: Servlet reflected cross site scripting vulnerability 142

ing attacks like sql injection and Cross-Site Scripting [32].
To exploit such vulnerabilities, a malicious user does not
have to know anything about the application internals. For
almost all the other security bugs (coming from the Mali-
cious Code category and the rest of the Security category
bugs), another program should be written to incorporate
references to mutable objects, access non-final fields, etc.
Also, as bug descriptions indicate,4 if an application has
bugs coming from the Security High category, it might have
more vulnerabilities that FindBugs doesn’t report. Table 3
presents the number of releases where at least one of these
bugs exists. In essence, 5,501 releases (≈ 4, 77%), contained
at least one severe security bug. Given the fact that other
projects include these versions as their dependencies, they
are automatically rendered vulnerable if they use the code
fragments that include the defects. The remaining bugs of
the Security category are grouped together with the bugs of
the Malicious Code category in another subcategory that we
call Security Low. This category contains for the most part,
bugs that imply violations of good oop (object-oriented pro-
gramming) design (i.e. keeping variables private to classes
and others). The above categorization was done specifically
to point out the behaviour of bugs that currently top the
corresponding lists of most security providers.5

Linus’s Law states that “given enough eyeballs, all bugs
are shallow”. In a context like this, we expect that the
project versions that are dependencies to many other projects
would have a small number of security bugs. To examine
this variation of the Linus’s Law and highlight the domino
effect [39] we did the following: during the experiment we re-
trieved the dependencies of every version. Based on this in-
formation we created a graph that represented the snapshot

4http://findbugs.sourceforge.net/bugDescriptions.
html
5http://cwe.mitre.org/top25/index.html

of the Maven repository. The nodes of the graph represented
the versions and the vertices their dependencies. The graph
was not entirely accurate. For instance, if a dependency was
pointing only to a project (and not to a specific version), we
chose to select the latest version found on the repository.
Also, this graph is not complete. This is because there were
missing versions. From the 565,680 vertices, 191,433 did
not point to a specific version while 164,234 were pointing
to missing ones. The graph contained 80,354 nodes. Ob-
viously, the number does not correspond to the number of
the total versions (see Section 3.2). This is because some
versions did not contain any information about their de-
pendencies so they are not represented in the graph. After
creating the graph, we ran the PageRank algorithm [5] on it
and retrieved all PageRanks for every node. Then we exam-
ined the security bugs of the fifty most popular nodes based
on their PageRank. Contrary to Linus’s Law, thirty three
of them contained bugs coming from the Security Low sub-
category, while two of them contained Security High bugs.
Twenty five of them were latest versions at the time. This
also highlights the domino effect.

4.2 Analysis
Here, we present our key findings concerning the evolution

of security bugs.

4.2.1 How Security Bugs Evolve Over Time
The relation between bugs and time can be traced from

the number of bugs per category in each project version.
We can then calculate the Spearman correlations between
the defects count and the ordinal version number across all
projects to see if bigger versions relate to higher or lower
defect counts. The results are shown in Table 4. Although
the tendency is for defect counts to increase, this tendency
is extremely slight.

The zero tendency applies to all versions of all projects



together. The situation might be different in individual
projects. We therefore performed Spearman correlations
between bug counts and version ordinals in all projects we
examined. These paint a different picture from the above
table, shown in Figure 4. The spike in point zero is ex-
plained by the large number of projects for which no cor-
relation could be established—note that the scale is loga-
rithmic. Still, we can see that there were projects where a
correlation could be established, either positive or negative.
The Security High category is particularly bimodal, but this
is explained by the small number of correlations that could
be established, nine in total.

Overall, Table 4 and Figure 4 suggest that we cannot
say that across projects defect counts increase or de-
crease significantly across time. In individual projects,
however, defect counts can have a strong upwards or down-
wards tendency. There may be no such thing as a “project”
in general, only particular projects with their own idiosyn-
crasies, quality features, and coding practices.

Another take on this theme is shown in Figure 5, which
presents a histogram of the changes of different bug counts in
project versions. In most cases, a bug count does not change
between versions; but when it does change, it may change
upwards or downwards. Note also the spectacular changes
of introducing or removing thousands of defects; this may
be the result of doing and undoing a pervasive code change
that runs foul of some bug identification rule.

Table 4: Correlations between Version and Defects
Count

Category Spearman Correlation p-value
Security High 0.08 � 0.05
Security Low 0.02 � 0.05
Style 0.03 � 0.05
Correctness 0.04 � 0.05
Bad Practice 0.03 � 0.05
MT Correctness 0.09 � 0.05
i18n 0.06 � 0.05
Performance (0.01) 0.07
Experimental 0.09 � 0.05

4.2.2 Persistence of Security Bugs
To examine the relation between the persistence of dif-

ferent kinds of bugs, and of security bugs in particular, we
used as a persistence indicator the number of versions a bug
remains open in a project. To “tag” a bug we created a bug
identifier by using the type of the bug, the method name and
the class name in which the bug was found in. We chose not
to use the line number of the location of the bug since it
could change from version to version and after a possible
code refactoring. We grouped the persistence numbers by
bug categories and then performed a Mann-Whitney U [16]
test among all bug category pairs. The results are presented
in Table 6 (at the end of this paper). Cells in brackets show
pairs where no statistically significant difference was found.

In general, although the average number of versions bugs
in different bug categories that remained open was statisti-
cally different in many cases, the difference is not spectac-
ular. In all cases a bug persists on average between
two and three versions, with the difference being in the
decimal digits.

4.2.3 The Relation of Defects with the size of a JAR
We explored the relation between defects with the size

of a project version, measured by the size of its jar file
by carrying out correlation tests between the size and the
defect counts for each project and version. The results, all
statistically significant (p � 0.05) can be seen in Table 5.
The Security High category stands out by having a
remarkably lower effect than the other categories,
even Security Low that nearly tops the list. As we mentioned
earlier, bugs that belong to the Security High category are
related with user-input validation issues. Hence, even if a
programmer adds code to a new version, if this code does not
requires user input the possibility of such bug is minimal.

Table 5: Correlations between jar size and Defects
Count

Category Spearman Correlation p-value
Security High 0.19 � 0.05
Security Low 0.65 � 0.05
Style 0.68 � 0.05
Correctness 0.51 � 0.05
Bad Practice 0.67 � 0.05
MT Correctness 0.51 � 0.05
i18n 0.53 � 0.05
Performance 0.63 � 0.05
Experimental 0.36 � 0.05

4.2.4 Security Bugs VS Other Bug Categories
To see whether bugs flock together we performed pair-

wise correlations between all bug categories. We calculated
the correlations between the number of distinct bugs that
appeared in a project throughout its lifetime, see Figure 6.
We found significant, but not always strong, correlations
between all pairs. In general, the Security High category
showed the weakest correlations with the other categories.
Our results show that in general bugs do flock together.
We do not find projects with only a certain kind of bug;
bugs come upon projects in swarms of different kinds. Bugs
of the Security High category, though, are different: they
are either not associated with other bugs, or only weakly
so. Perhaps it takes a special kind of blunder to make it a
security hazard.

5. CONCLUSIONS AND FUTURE WORK
We analysed more than 260GB of interdependent project

versions to see how security bugs evolve over time, their
persistence, their relation with other bug categories, and
their relationship with size in terms of bytecode.6

Our primary hypothesis was that security bugs, and espe-
cially severe ones, would be corrected as projects evolve. We
found that, although bugs do close over time in particular
projects, we do not have an indication that across projects
they decrease as projects mature. Moreover, defect counts
may increase, as well as decrease in time. Contrary to our
second research hypothesis, we found that security bugs are
not eliminated in a way that is particularly different from the

6Our data and code are available online at: https://
github.com/bkarak/evol_security_publication_2012
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Figure 4: Histograms of correlations between bug counts and version ordinals per project. In brackets the
total population size and the number of no correlation instances.
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Figure 5: Changes in bug counts between versions.
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Figure 6: Correlation matrix plot for bug categories

other bugs. Also, having an average of two to three versions
persistence in a sample where 60% of the projects have three
versions, is not a positive result especially in the case of the
Security High bugs. Concerning the relation between severe
security bugs and a project’s size we showed that they are
not proportionally related. Given that, we could say that it
would be productive to search for and fix security bugs even
if a project grows bigger. Furthermore, the pairwise cor-
relations between all categories indicated that even though
all the other categories are related, severe bugs do not ap-
pear together with the other bugs. Also, it is interesting
to see that security bugs were one of the top two bug cate-
gories existing in a large ecosystem. Finally, we highlighted
the domino effect, and showed evidence that indicates that
Linus’s Law does not apply in the case of the security bugs.

Contrary to the approaches that examine versions formed
after every change that has been committed to the reposi-
tory, our observations are made from a different perspective.
The versions examined in this work were actual releases of
the projects. As a result we do not have an indication of
how many changes have been made between the releases.
In essence, these jars were the ones that were or still are,
out there in the wild, being used either as applications, or
dependencies of others.

Furthermore, the fact that projects have their own id-
iosyncrasies concerning security bugs, could help us answer
questions like: what are the common characteristics of the
projects where security bugs increase over time? In addition,
by examining source code repositories more closely we could
see how different development styles (i.e. size of commits,
number of developers) affect projects.

By selecting an large ecosystem that includes applications
written only in Java, we excluded by default measurements
that involve vulnerabilities like the infamous buffer overflow
defects [21]. Still, by examining software artefacts with simi-
lar characteristics facilitates the formation of an experiment.
Thus, future work on our approach could also involve the ob-
servation of other ecosystems, that serve different languages,
in the same manner such as, Python’s PyPY (Python Pack-
age Index), Perl’s cpan (Comprehensive Perl Archive Net-

work), and Ruby’s RubyGems.
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Table 6: Bug Persistence Comparison

Security High
(0.04, p = 0.97

2.72, 2.36
243, 35048)

2.22, p < 0.05
2.72, 2.12
243, 49043

(−0.51, p = 0.61
2.72, 2.50
243, 12905)

2.77, p < 0.01
2.72, 2.11
243, 49324

(1.02, p = 0.31
2.72, 2.48
243, 10227)

(−1.19, p = 0.23
2.72, 2.74
243, 10718)

(−1.00, p = 0.32
2.72, 2.65
243, 23598)

(−0.33, p = 0.74
2.72, 2.85
243, 2686)

Security Low
20.27, p� 0.05

2.36, 2.12
35048, 49043

−3.59, p� 0.05
2.36, 2.50
35048, 12905

25.17, p� 0.05
2.36, 2.11
35048, 49324

5.59, p� 0.05
2.36, 2.48
35048, 10227

−7.55, p� 0.05
2.36, 2.74
35048, 10718

−8.19, p� 0.05
2.36, 2.65
35048, 23598

(−1.39, p = 0.17
2.36, 2.85
35048, 2686)

Style
−17.96, p� 0.05

2.12, 2.50
49043, 12905

5.66, p� 0.05
2.12, 2.11
49043, 49324

−6.84, p� 0.05
2.12, 2.48
49043, 10227

−20.61, p� 0.05
2.12, 2.74
49043, 10718

−26.18, p� 0.05
2.12, 2.65
49043, 23598

−8.30, p� 0.05
2.12, 2.85
49043, 2686

Correctness
21.38, p� 0.05

2.50, 2.11
12905, 49324

7.44, p� 0.05
2.50, 2.48
12905, 10227

−3.57, p� 0.05
2.50, 2.74
12905, 10718

−2.91, p < 0.01
2.50, 2.65
12905, 23598

(0.40, p = 0.69
2.50, 2.85
12905, 2686)

Bad Practice
−10.02, p� 0.05

2.11, 2.48
49324, 10227

−23.63, p� 0.05
2.11, 2.74
49324, 10718

−30.32, p� 0.05
2.11, 2.65
49324, 23598

−9.98, p� 0.05
2.11, 2.85
49324, 2686

MT Correctness
−10.17, p� 0.05

2.48, 2.74
10227, 10718

−10.83, p� 0.05
2.48, 2.65
10227, 23598

−4.03, p� 0.05
2.48, 2.85
10227, 2686

i18n
(1.29, p = 0.20

2.74, 2.65
10718, 23598)

2.46, p < 0.05
2.74, 2.85
10718, 2686

Performance
(1.92, p = 0.05

2.65, 2.85
23598, 2686)

Security Low

Style

Correctness

Bad Practice

MT Correctness

i18n

Performance

Experimental

The matrix presents pairwise Mann-Whitney U test results between the different bug categories. Each cell contains the test result (the value of U), the p-value, the
average for each category and the sample size for each category. Cells in brackets show pairs where no statistically significant difference was found.


