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Abstract Quantitative empirical software engineering research benefits mightily
from processing large open source software repository data sets. The diversity of
repository management tools and the long history of some projects, renders the
task of working those datasets a tedious and error-prone exercise. The Alitheia
Core analysis platform preprocesses repository data into an intermediate format
that allows researchers to provide custom analysis tools. Alitheia Core automat-
ically distributes the processing load on multiple processors while enabling pro-
grammatic access to the raw data, the metadata, and the analysis results. The tool
has been successfully applied on hundreds of medium to large-sized open-source
projects, enabling large-scale empirical studies.

Keywords quantitative software engineering · software repository mining

1 Introdution

During the last decade, the availability of open source software (oss), has changed
not only the software development landscape (Spinellis and Szyperski 2004), but
also the way software is being studied. oss projects make their software configu-
ration management (scm), mailing lists and bug tracking systems (bts) publicly
available. Researchers have tapped on the availability of such rich process and
product data sources to investigate empirically a number of important research
questions; (see for instance Mockus et al 2002; Samoladas et al 2004). However,
research with software repositories is not a trivial process. Collecting and prepro-
cessing data, calculating metrics, and synthesizing composite results from a large
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corpus of project artifacts is a tedious and error prone task lacking direct scien-
tific value (Robles 2005). To make the results credible and generic, the formulated
hypotheses must be validated against data from multiple projects (Perry et al
2000).

In this paper, we present Alitheia Core, an extensible platform that enables
large-scale software engineering quantitative studies with data from software repos-
itories. The design of Alitheia Core facilitates researchers to deal with the chores of
analyzing data from software repositories. To do so, it provides a software platform
that implements large parts of the required data preprocessing functionality while
remaining extensible to new data and analysis types. In addition, it can handle the
large-scale data processing involved, by exploiting multi-core and multi-machine
hardware configurations.

The objective of this paper is to present our approach toward conducting large-
scale quantitative software engineering studies through Alitheia Core. We describe
the domain’s challenges, the design and implementation of Alitheia Core and in-
vestigate its performance and applicability on the problem domain it was designed
for. The first version of the Alitheia Core design, input data and plug-in design
have been reported in other work (Gousios and Spinellis 2009). Since then, Alitheia
Core has been used to study developer contribution in oss projects (Kalliamvakou
et al 2009), behavioural characteristics of developers (Lin et al 2010) and the evolu-
tion of security properties of software projects (Mitropoulos et al 2012). The main
contributions of this work are the introduction of an extensible platform that en-
ables large-scale software engineering studies and the presentation of Alitheia Core
as its main data processing component. Alitheia Core is also evaluated through
comparison with existing approaches, extensive performance analysis and a case
study through which we demonstrate that such large-scale experimentation is in-
deed possible. We also discuss the shortcomings of our approach and present the
lessons learned while building it.

2 Problem Statement

According to several authors (Basili 1996; Wohlin and Wesslen 2000; Perry et al
2000; Sjøberg et al 2005), software engineering is an empirical science, as both the
studied artifacts and the developed methods are (or are applied on) real, existing
systems. Currently, there is a growing interest in software engineering research
to use data originating from software repositories. The developed techniques and
tools are referred to as techniques for Mining Software Repositories (msr), after
the name of the eponymous series of workshops and conferences. The wealth of
combined process and product data residing in oss repositories has attracted the
interest of many researchers, as this is the first time in the history of software engi-
neering that large-scale empirical studies can be performed with real data outside
the walls of large software development organizations. However, even though they
are free to use, oss data come with a cost for researchers.

– Each project uses its own combination of scm, mailing list, bts and other
project management tools, such as Wikis and documentation systems (Robles
2005). Without the appropriate abstractions, it is challenging to build tools
that can process data from multiple projects at the same time.
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– Empirical studies are often conducted in several phases, and a diverse set of
tools can be applied in each phase (Robles et al 2004). Intermediate results
must be stored and retrieved efficiently in formats suitable for use by chains
of tools (Fischer et al 2003; Bevan et al 2005).

– During a lifetime spanning multiple decades, several oss projects have amassed
gigabytes of data worth studying (Mockus 2009). The computational cost
for processing such large volumes of data is not trivial. For fast analysis
turnaround, researchers must design their analysis tools to exploit modern
multiprocessor machines. However, those efforts are often not enough, as the
capacities of single machines are easily saturated by the processed data vol-
umes.

Perhaps as a result of the above, several studies (Zelkowitz and Wallace 1997;
Sjøberg et al 2005; Zannier et al 2006), show that empirical studies in software
engineering neither take full advantage of the data on offer nor (or at least, seldom)
base their experimental results on artifacts of prior studies. The same studies urge
software engineering researchers to validate their models more rigorously, as this is
what drives the general applicability of the performed studies (Perry et al 2000).

It is widely believed that software engineering as a discipline should strive
toward more rigorous experimentation (Tichy et al 1995; Basili 1996; Seaman 1999;
Glass et al 2002; Deligiannis et al 2002; Shaw 2003; Sjøberg et al 2005; Zannier
et al 2006; Šmite et al 2010). Data from oss projects present unique opportunity in
that respect, as they provide researchers with access to rich historical process and
product data originating from some extensively used, often high quality software
projects (Mockus et al 2002; Samoladas et al 2004; Spinellis 2008). Existing studies
only partially take advantage of the existing wealth of data, thus rendering the
presented results vulnerable to falsification and precluding their re-use in other
studies.

The main problem we are trying to tackle with this work is how software engi-
neering researchers can utilize the vast quantities of freely available data efficiently,
while allowing fast analysis turnaround. For this, we propose an open research
platform specifically designed to facilitate experimentation with large software en-
gineering datasets derived from diverse data sources. Our idea is based upon four
basic principles.

– Rigorous testing of software engineering research theories, models, and tools
with empirical data is a prerequisite for obtaining credible research results.

– Large volumes of empirical data do exist and are freely available.
– Sharing of research tools and data accelerates research innovation.
– User ecosystems are formed around software platforms.

The research platform idea is not new; in several other empirical science fields
either shared infrastructures (e.g. the Large Haldron Colider and the Interna-
tional Space Station) or common datasets (e.g. dna sequences) have been used for
decades, because producing and maintaining those is resource intensive and ex-
pensive. In the field of computer science, research platforms exist in several fields
(e.g. JikesRVM (Alpern et al 2000) for virtual machine research, llvm (Lattner
and Adve 2004) for compiler research, Weka (Witten and Frank 2005) for machine
learning research), especially in cases where exploring novel ideas requires a signif-
icant amount of groundwork. Few works (Gasser and Scacchi 2008) have discussed
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the need for common experimentation infrastructures in the context of software
engineering research, even though the need for more rigorous experimentation has
been identified multiple times.

The research platform whose principles we outlined forms part of a long term
research effort aiming to improve the quality of software engineering studies. In
the following sections, after presenting the requirements for the envisaged platform
and the existing work in the field of tool support for software engineering research,
we report on the core component, the data processing and analysis tool.

3 Requirements

Platforms (Gawer and Cusumano 2002), as opposed to concrete tool implementa-
tions, have distinct requirements that govern their design and use. In the case of
the platform we propose, the most important requirement is that it must provide
the foundation for conducting arbitrary studies by integrating and abstracting
various data sources in an extensible, yet concise intermediate representation for
metadata. Currently, oss projects use a variety of tools to manage their project
repositories. Consequently, analysis tools that researchers use must be re-written
for each repository management tool. Moreover, semantic data integration re-
quires project-specific information (Robles and Gonzalez-Barahona 2005; Canfora
and Cerulo 2006; Ratzinger et al 2008; Goeminne and Mens 2011). For exam-
ple, when matching developer identities across data sources, both project-specific
naming rules, generic name abbreviation patterns and company-specific username
generation patterns might apply (Goeminne and Mens 2011). Therefore, in order
to enable cross-project examination and comparisons, an analysis tool must rec-
oncile the semantic differences between diverse systems managing the same data.

The size of the data to be processed imposes scaling challenges. Currently,
long-lived projects, such as gnu Emacs and Freebsd, have repositories that con-
tain more than 20 years of history, and their data sizes exceed the gigabyte mark.
On a larger scale, Mockus (2009) reported on a gathered data set exceeding a ter-
abyte in size. In order to cope with the vast data sizes a research platform aiming to
integrate data from many projects must be scalable through multiprocessing and
distributed processing. Fortunately, many analysis methods in software engineer-
ing research are trivially parallelizable, as they usually apply a tool on independent
states of a project’s data and aggregate selected results. However, some analysis
methods must be applied serially; in such cases, parallelism can be achieved by
running the analysis method on multiple projects concurrently. A large-scale anal-
ysis platform must provide the appropriate process abstractions that will enable
efficient scheduling of analysis tasks on available processors, dependencies among
tasks to preserve the correct order of execution, automatic resource management
and clustering capabilities that will enable load distribution on a cluster of local
or cloud-based computers.

Scalable processing and data integration form the basis on which software
analysis platforms should be built; the platform should then offer useful generic
services to researchers, so that they can easily implement their analysis tools.
Such services can include

– programmatic access to both raw and intermediate representations of platform
data,
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– extensible data processing workflows that allow developers to inject their cus-
tom analysis code,

– automation of the experimentation process through workflows,
– source code parsers to analyze syntactic and semantic properties of the source

code.

Analytics platforms must also assist with data exploration. Generating the
data through efficient and scalable mechanisms may be beneficial for research,
but creates problems in data analysis efficiency (Buse and Zimmermann 2012).
Platforms should have support for visualizing datasets, either through extensible
visualization frameworks or through apis that provide the analysis data in easy to
digest formats for external tools.

Finally, platforms need to be open to the community of other researchers.
For that, platforms must be fully documented, while they should be distributed
as open source software, in order to enable independent replication and inspection
of the data processing algorithm implementations. Datasets should be distributed
along with research platforms, in the platform’s native data format.

4 Existing Approaches

Two areas of research on software engineering tools are related to our work: plat-
forms for mining software repositories and large scale software engineering research
facilities. We focus our description on platforms. Platforms, as opposed to tools or
combinations of tools in the form of scripts, have at least the following distinctive
characteristics.

– They provide well-documented open interfaces.
– They offer extensible data representations to accommodate varying require-

ments.
– They automate tool chain invocations and regulate access to data and other

platform subsystems.
– They anticipate future developments by featuring well defined extension points

for the workflows they support.

We therefore do not include in our overview tools that perform data transfor-
mations or constitute proof of concept implementations of algorithms.

4.1 MSR Platforms

Researchers working with empirical data understood early on that standalone
product data measurements do not suffice. A variety of tools have been developed
to automate the process of extracting and processing data from software process
support systems. The Release History Database (rhdb) (Fischer et al 2003) was
the first to combine data from more than one data sources, namely from bug
tracking and scm systems. The rhdb tool uses the cvs log to extract and store to
a database information about the files and versions that changed. The cvsanaly
tool (Robles et al 2004), converts information from scm repositories to a relational
format. cvsanaly works in three steps; it first parses the cvs log, then it cleans the
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data and extracts semantic information from it, and finally it produces statistical
data about the project. A similar tool is SoftChange (German and Hindle 2005).
SoftChange extracts data from additional datasources (change log files) and infers
facts from the source code once the data extraction is finalised. The tools presented
here do not constitute platforms in the definition we provide above; however, they
were early efforts in the field to use intermediate data formats, which could then
be reused.

The Hackystat tool (Johnson et al 2005) was the first effort that considered
both process and product metrics in its evaluation process. Hackystat is based
upon a push model for retrieving data, as it requires tools (sensors) to be installed
at the developers’ toolchains. The sensors monitor the developers’ use of tools and
update a centralized server. Since Hackystat was designed as a progress monitoring
console rather than a dedicated analysis tool, it is not suitable for post-mortem
analyses, like the ones performed on oss repositories. However, it provides valuable
information about the software process while it is developed.

The Hipikat tool (Cubranic et al 2005) was designed to act as an automated
store of project memory. It provides artifact-based search for project related ar-
tifacts. For instance, it combines structural relationships with relationships found
by measures of textual similarity applied on source code commits. It can therefore
retrieve context related data based on previous project behavior, which it then
presents to developers in the form of recommendations within their development
environment.

The Kenyon tool (Bevan et al 2005), is a platform that pre-processes data from
various types of scm repositories in a unified schema and then exports the database
to other tools, which are invoked automatically. The Kenyon metadata database
is specifically tuned for studying source code instability factors. Kenyon was the
first platform to abstract repository and source code data in the form of runtime
models, against which analysis tool results are stored. Alitheia Core’s data model is
more comprehensive, including models for email and bug database analysis, while
it can be extended by plug-ins. The Sourcerer project (Linstead et al 2009) built a
software analysis platform for extracting facts from Java programs that can then
be used for indexing and searching over large collections of projects.

A tool similar to Alitheia Core is Evolizer (Gall et al 2009). Evolizer is a plat-
form that enables software evolution analysis within the Eclipse ide. It leverages
Eclipse’s Java parsers to provide in-depth static analysis information for Java pro-
grams. Except from source code, modules exist to import metadata from software
repositories (scm and bts) into a relational database. Alitheia Core improves over
Evolizer by providing a generic metadata schema that abstracts diverse reposi-
tory management systems, by enabling the analysis of mailing lists and by being
designed to run without user intervention on many projects. However, it lacks
Evolizer’s data linking facilities.

Tesseract (Sarma et al 2009) is an interactive framework for exploring socio-
technical relationships in software development. At the heart of Tesseract lies a tool
that analyzes and links data from Subversion and Bugzilla repositories, as well as
emails. Its intermediate format can support several projects in the same database,
while its analysis is mostly directed to recovering links between communication
and source code artifacts.

Moose (Nierstrasz et al 2005) is a meta-platform for software analysis. At its
core, Moose supports the specification of models representing various aspects of
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the software development process. Researchers can re-use existing models, such as
famix (Demeyer et al 1999), for describing the static structure of object oriented
systems), or use Moose’s meta-modelling facilities to create new models for custom
analyses. The services offered by Moose include parsers for various languages (at
various levels of maturity), data visualizations and importers for various data
formats. Moose differs from Alitheia Core in that it promotes abstraction and
meta-facilities over pre-defined processing workflows and data formats. In effect,
Moose is a superset of Alitheia Core (in fact, of all presented repository mining
platforms). Moose’s open ended platform architecture spawned a number of tools
and has seen significant use in the Smalltalk language community.

Through the Hismo extension (Gı̂rba and Ducasse 2006), Moose gains the abil-
ity to model and process software histories. Hismo provides a representation of a
project’s revision log, in each entry of which famix models can be attached. From
an abstract point of view, Hismo’s and Alitheia Core’s history and code repre-
sentation models are very similar: they both model project history as a stream of
consecutive events (originating in revisions in the project’s scm tool) and allow the
attachment of code models to each event. However, Alitheia Core’s modeling is
more fine-grained: apart from the revisions, the file structure and the code struc-
ture are also individually versioned. This permits Alitheia Core to store metadata
of a project’s history more efficiently and also to optimize tool invocations based
on the exact data that changed from revision to revision.

Churrasco (D’Ambros and Lanza 2010) is an example of the msr tools that
spawned out of the Moose community. Churrasco was designed to support col-
laborative software evolution analysis. It can process data from svn and Bugzilla
repositories, link them and store them in a metadata database. It also supports the
generation of famixmodels for the latest version of the analyzed project. Churrasco
automates the acquisition of data from oss project repositories through its web
interface, while providing interesting visualizations and collaborative annotation
of the data exploration process. The Small Project Observatory (Lungu et al 2010)
attempts to analyse software ecosystems rather than simple projects. Similarly to
Alitheia Core, it can store several projects in the same database, while it has been
shown to scale to the order of hundreds of projects. In addition to Alitheia Core,
all the above mentioned platforms offer visualizations of ecosystem evolution and
individual developer activity. Both however lack support for pluggable analysis
tools and associating measurements with artifact versions.

All tools presented above share a few underlying design principles. First, they
process raw data and extract metadata, which are stored in a relational schema
and then processed further. In addition, the newest of those tools can incorporate
and reference metadata from multiple repositories. Apart from scm data, they can
also process and link together other types of data such as source code and bugs.
A more detailed analysis of the similarities and the differences among the tools is
presented in Section 6.1.

4.2 Scaling Research

The need for large-scale research facilities has been identified by many authors (Zelkowitz
and Wallace 1997; Sjøberg et al 2005; Zannier et al 2006). Current practice focuses
on making specific tools scale (Livieri et al 2007; Shang et al 2011) or providing
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pre-processed datasets (Howison et al 2006; Herraiz et al 2009; Linstead et al
2009; Tempero et al 2010). In addition, initial work has provided requirements for
e-Science platforms and workflows (Howison et al 2008; Gasser and Scacchi 2008)
for large-scale quantitative software engineering research.

On the tools front, Livieri et al (2007) modified the ccfinder code cloning
identification tool to work on a cluster of machines. The throughput gained enabled
them to process very large projects in a fraction of the time required in the case of
single machines. Shang et al (2010), attempted to combine large-scale, distributed
processing paradigms, specifically MapReduce (Dean and Ghemawat 2004), with
existing tools in order to facilitate research with large software repositories. This
effort was later expanded (Shang et al 2011), where the authors explore the use
of Pig language and associated tools over Hadoop as a runtime for a standalone
tool (j-rex) on a large collection of data. They found that only inherently data-
parallel analysis algorithms can efficiently exploit the MapReduce paradigm, while
porting existing tools to Hadoop requires significant amounts of tool modifications
and glue code.

Along similar lines Boa (Dyer et al 2012) leverages the Hadoop implementa-
tion of the MapReduce framework to allow the execution of software repository
queries on a cluster. We already outlined the difficulties Shang et al encountered
in expressing repository analysis tasks in a form that lends itself to efficient ex-
ecution on a Hadoop cluster. Boa’s developers propose to solve this problem by
providing a domain-specific language, modelled after Sawzall (Pike et al 2005),
whose constructs are powerful enough to express queries on software artifacts and
can at the same time be efficiently executed on the cluster.

Similarly to other big data fields, large-scale software engineering research can
be facilitated by appropriate datasets.

In the flossmole project Howison et al (2006) collected metadata from oss

projects hosted on the Sourceforge site and offered both the dataset and an on-
line query interface. The dataset consists of metadata about the software pack-
ages, such as numbers of downloads or the employed programming language.
The flossmetrics project (Herraiz et al 2009) provides a dataset consisting of
source code size, structure and evolution metrics from several oss projects. The
Sourcerer project (Linstead et al 2009), apart from the analysis tools, provides a
pre-processed dataset of code structure metrics from thousands of Java projects.
Finally, the Qualitas corpus project (Tempero et al 2010), provides a curated col-
lection of different versions of Java projects, in source code form.

In the recent years, the Promise repository has become a prime source of
data for software engineering studies. The repository started as a container for
the datasets published in the homonymous working conference, but its use has
since expanded. It currently contains more than 100 datasets of various sizes, the
majority of which lie in the areas of defect and effort prediction.

5 The Alitheia Core Analysis Platform

To fulfill the requirements presented in Section 3, we designed and implemented
Alitheia Core, an integrated platform for analyzing data from software reposito-
ries. Alitheia Core integrates data and process datasets, a relational database for
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metadata and tool results, parsers for several repository formats, and tool abstrac-
tions that can be extended to provide custom analysis methods. In this section,
we present the architecture and implementation of the Alitheia Core platform.

5.1 Data

Raw data Alitheia Core works with data originating from three classes of external
systems, namely scm systems, bts and mailing lists. It requires raw data to be
accessible on the host filesystem; data retrieval from the project hosting sites is
delegated to external tools and mirroring processes. Alitheia Core expects the data
for each project to be stored in a directory, which is organized as follows:

SCM data Alitheia Core supports two distinct types of scm data sources: cen-
tralized systems (Subversion) and decentralized systems (Git). To mirror the
repositories, standard tools such as svnmirror for Subversion and git clone in the
case of Git can be used.

Mailing List data Alitheia Core can process data from mailing list archives, using
the maildir format (Bernstein 2000) for storing email messages, in a directory
per mailing list configuration. Emails can be retrieved from Mailman archives
from mbox mailboxes, or by subscribing to the a mailing list and using fetchmail

rules to route them to the appropriate mailing list subdirectory.
Bug Data Currently, there are two widely used systems in oss, namely Bugzilla

and Jira. Both offer roughly the same functionality to end users, and both
can be extended with project-specific fields. Alitheia Core currently supports
Bugzilla; automated scripts can download and maintain a mirror of bugs from
a Bugzilla installation that supports the remote procedure call protocol. Bugs
are downloaded as xml files, one file per bug.

Metadata Alitheia Core uses a relational database management system (rdbms)
to store metadata about the processed projects (see Figure 1). The role of the
metadata is not to create replicas of the raw data in the database, but to provide
a set of entities against which analysis tools work, while also enabling efficient
storage and fast retrieval of the project state at any point of the project’s lifetime.
Moreover, the storage schema is designed to include the minimum amount of data
required in order to abstract the differences between raw data of various systems.

An indicative example of the metadata representation’s parsimony is that of
processing svn revision information to record changes to project files through
commits. svn keeps track of changes to files as a sequence of four allowed operations
(add, mofidy, delete and copy) along with the textual difference that was created
by the operation on the file. Alitheia Core maps those operations to corresponding
entries in the ProjectFile table. Therefore, for each new commit, Alitheia Core
will create an entry in the ProjectVersion table along with as many entries in the
ProjectFile table as the number of file changes reported by the commit. The same
approach is also followed when analyzing the source code to extract changes in
classes and methods; Alitheia Core will only record a new version of a method if
the commit affected code in the method’s body, instead of recording all methods
as changed due to a new version of the file.

The role of the metadata schema is pivotal in disengaging analysis tool imple-
mentation from raw data formats. Using the metadata schema, analysis tools can
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Fig. 2 The Alitheia Core tool architecture

process version control system logs, project files, mailing list threads and other
entities without resorting to the raw data stores. This allows analysis tools to be
written faster, to be compact and, more importantly, to be broadly applicable.
The intermediate data approach may not be novel (Kenyon, Hipikat, Evolizer,
Sourcerer and Moose use it at various granularity levels), however this is the first
time that an intermediate schema can integrate data from many projects and all
major raw data formats, including both distributed and centralized scms, in a
space conserving manner.

5.2 Architecture

Alitheia Core is modeled as a set of co-operating services, all attached on a shared
bus (see Fig. 2). Each service performs a well defined set of operations and is acces-
sible to the rest of the system through a service interface. The osgi plug-in model
is used as the basis for Alitheia Core; consequently all service plug-ins are modeled
as osgi bundles. osgi provides Alitheia Core plug-ins with service discovery and
service versioning functionalities while also functioning as a lightweight application
server to host the plug-ins at runtime. The basic services are the following:

DB Service The DB service is central to the system as it serves the triple role of
abstracting the underlying data formats by storing the corresponding meta-
data, storing metric results, and providing the entities used throughout the
system to model project resources. It uses object relational mapping (orm) to
eliminate the barrier between runtime types and stored data and has integrated
transaction management facilities. orm facilitates plug-in implementation by
transparently converting simple queries to method calls and hiding complex
queries inside model navigation methods.

Data Accessors Data accessors provide a two level abstraction of the data man-
aged by Alitheia Core. The low-level part of the accessors stack exposes an
abstracted view of the raw data formats; this is done by modeling abstract
classes of systems and providing drivers that convert the underlying data to
the common representation. Its function is reminiscent of the virtual file system
layer found in many operating systems (Spinellis 2007). The raw data accessor
is extensible via plug-ins.
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The upper layer encapsulates common non-destructive actions done on data
stores. It combines raw data with metadata, while optimizing common access
patterns and managing resources. Examples of such optimizations include in
memory checkout reconstructions (with pointers to raw data), project timeline
views across all types of data for each project and multiple concurrent on disk
checkouts.

Job Scheduler One of the important functions Alitheia Core performs is the split-
ting of the processing load on multiple CPUs. Although one might be tempted
to run all analysis workflow steps run in parallel, in practice algorithmic or data
constraints may hinder the scheduler’s ability to parallelize the work. The job
scheduler service maintains a task queue and a configurable size worker thread
pool and assigns tasks from the task queue to idle workers. Tasks in Alitheia
Core are co-operative; at any point, a task can yield its execution to allow
space for dependent tasks to execute. The scheduler will automatically resume
the yielded task when dependencies have finished execution. This allows for
MapReduce-like functionality to be implemented in memory.

Activator The activator service initiates analysis plug-in calculations. More details
can be found in Section 5.3.

Cluster Service The cluster service regulates the operation of Alitheia Core on a
cluster of machines. Currently, it supports project-level distributed processing
by means of associating projects with specific cluster nodes.

Interfaces Alitheia Core has two types of interfaces; a simple web-based interface
allows the addition of projects and the initiation of data analysis operations.
In addition, a rest api provides read-only access to the data stored in the
Alitheia Core database. More details can be found in Section 5.5.

5.3 The plug-in mechanism

To cope with the availability of a large number of data formats and data analysis
methods, Alitheia Core was designed from the ground up to be extensible. The
Alitheia core engine can be extended by plug-ins that perform various types of data
analyses and by plug-ins that provide accessor mechanisms to new data formats.

Data accessor plug-ins provide Alitheia Core with interfaces to external sys-
tems (more specifically, their data stores). Alitheia Core models abstract classes
of such systems, based on their function and their operations. Currently, the mod-
eled systems include version control, bug tracking and mailing list management
systems; specifying new ones is a matter of extending the accessor service with
abstract definitions of behavior and data. Moreover, to cater for the semantic
differences between various implementations of classes of services, for example be-
tween centralized and distributed version control systems, the metadata updaters
are extensible, too. Usually, data plug-ins include both new data accessors and new
metadata updaters for the processed data format. The list of data and metadata
updaters currently in Alitheia Core is presented in Table 1.

Analysis plug-ins process raw data or metadata and extract measurements or
other bits of information, referred to as metrics. Each analysis plug-in in Alitheia
Core is associated with a set of activation types. An activation type indicates
that the analysis must be performed in response to a change to the correspond-
ing project asset; this is the name of the database entity that models the asset.
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Table 1 Data and metadata processing plug-ins in Alitheia Core

AlgorithmPhase Input Output Description

svnmap mi Subversion
repository

ProjectVersion,
ProjectFile,
Developer,
DeveloperAlias

Parses Subversion revisions to a rela-
tional format.

gitmap mi Git reposi-
tory

ProjectVersion,
ProjectFile,
Developer,
DeveloperAlias

Parses Git revisions and stores meta-
data, linking them to raw revisions.

bugmap mi Bugzillaxml
data

Bug, BugRe-
port, Developer,
DeveloperAlias

Stores selected bug and developer
metadata

mailmap mi maildir
archives

MailingList,
MailMessage,
Developer,
DeveloperAlias

Extracts email metadata and devel-
oper information from email mes-
sages organized in mailing lists.

idresolv mri Developer,
Developer-
Alias

Developer,
DeveloperAlias

Uses heuristics to consolidate devel-
oper identities across data sources.

threadresolv mri MailMessage MailThread Parses mail messages and re-
organizes them into threads.

modresolv mri ProjectFile ProjectFile Identifies directories as source code
modules based on whether they con-
tain source code files.

javaparse p ProjectFile Namespace, Ex-
ecutionUnit, En-
capsulationUnit

Parses Java source code and extracts
information about changed packages,
classes and methods.

pythonparse p ProjectFile Namespace, Ex-
ecutionUnit, En-
capsulationUnit

Parses Python source code and ex-
tracts information about changed
classes, methods and modules.

mi Metadata Import, mri Metadata Relationship Inference, p Parsing

Therefore the metric is activated each time a new entry is added to the database
table (for example, a new entry in the ProjectFile table will automatically trigger
the project size metric to calculate a result). Alitheia Core can automatically cal-
culate the set of entities per activation type for which a specific analysis plug-in
has not been run for and consequently can schedule jobs for invoking the analysis
plug-in on those entities. An analysis plug-in can define several metrics, which are
identified by a unique short name (mnemonic). Results are stored in the system
database either in predefined tables or in plug-in specific tables. The retrieval of
results is bound to the metadata entry the metric was calculated against.

5.4 Data Processing Workflow

When Alitheia Core processes a new project it typically performs the following
actions.

Project data mirroring The project data is mirrored locally. Alitheia Core does
not provide any support for retrieving or mirroring project data, but it is dis-
tributed with scripts that a system administrator can install to setup mirroring.

Metadata import The appropriate raw data processor (“updater” in Alitheia
Core) syncs the data in the project mirror to the metadata in the Alitheia
Core database.
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Source code parsing The configured source code parser analyzes the project’s
source code and extracts information about changed namespaces, modules and
functions. Multiple source code parsers can exist per project.

Metadata relationship inference At this stage, analysis tools can extract relation-
ships between metadata entities. Examples include linking of bug reports to
source code commits and resolution of developer identities. Metadata inference
tools might modify metadata in place or store the extracted relationships in
new locations.

Analysis plug-in invocation Analysis plug-ins extract interesting facts about ei-
ther the raw data or the metadata and store them into the database.

All plug-ins in the Alitheia Core workflow can have dependencies to other
plug-ins or to whole workflow phases. Alitheia Core uses this information to topo-
logically sort the plug-in executions before scheduling them on the workqueue. If
no dependencies exist, processing occurs in parallel for plug-ins within the same
phase. Alitheia Core also provides mechanisms for parallelizing the work within the
context of a workflow step. Consider the bug to commits linking scenario, where
N bugs need to be checked against M commits for references. The job schedul-
ing mechanism can be used to spawn M jobs each of which analyzes all N bugs
retrieved by the linking process during initialization.

All steps of the workflow are idempotent by convention (in case of analysis
plug-ins, by design), meaning that results are only calculated once and subsequent
invocations of tools will not change them. Idempotence allows tool invocations
to be stopped at any stage of processing and be restarted without requiring to
recalculate the analysis state up to the stop point. The work scheduler relies on
idempotence properties of analysis plug-ins to query the database schema for miss-
ing results and only schedule jobs for missing results. This means that if plug-ins
must re-run for an already calculated result, then the this result must be cleared
externally. On the other hand, plug-ins can be non-idempotent; apart from efficient
job scheduling, no other practical consequences arise.

Alitheia Core’s workflow is not atypical with respect to the workflows defined
by other tools. However, Alitheia Core’s workflow is extensible via plug-ins, while
all steps are automatically parallelizable, provided that dependencies have been
satisfied.

5.5 The REST API

The rest api allows accessing the stored metadata and analysis tool results in a
hierarchical manner over the http protocol. The Alitheia Core metadata model
(see Figure 1) provides the basic entities which are then mapped onto Uniform
Resource Locators (urls). Clients can retrieve lists of resources, or navigate among
resource relationships by calling the appropriate urls. Results can be returned in
either xml or json data formats. An indicative list of calls supported by the rest

api is presented in Table 2.
The rest api enables external clients to use the data without knowledge of the

intricacies of the Alitheia Core plug-in mechanism. Fig. 3 presents an example of
an ajax client made possible by the rest api. Using standard Javascript libraries
(jquery, jqplot) and html5, the client implements a capable metrics browser for
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Table 2 Example rest api calls and their result.

Call Result
/api/project Get list of all projects

/api/project/2 Get information on project 2
/api/project/2/versions Get list of versions for project 2

/api/project/2/version/14/files Get list of project files for version 14
/api/project/2/version/14/files/changed Get list of project files that changed in version

14
/api/metrics Get list of installed metrics

/api/metrics/by-id/8/result/1,3,5 Get result of application of metric 8 on entities
identified as 1, 3 and 5. As metrics know the
type of entity they store results against, they
interpret the provided entity identifiers as keys
to the appropriate result table.

Fig. 3 A client to the Alitheia Core rest api, displaying file and version bound metrics for a
small oss project.

the data offered through our servers in 500 lines. Other types of clients that can
be based on the rest api include clients that synchronize data between different
Alitheia Core installations, ide clients that annotate source code based on the
results of analysis tool runs, or visualization clients.
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5.6 Implementation

Alitheia Core posed a significant implementation challenge, with performance get-
ting from the outset a high priority. Although no special data structures have
been developed for Alitheia Core, we took extreme care to use the appropriate
containers that would allow for lock free multiprocessing. Also, we took advantage
of the multiversion concurrency control (mvcc) capabilities (Bernstein and Good-
man 1983) present in modern databases to enable contention free execution at all
performance critical paths of Alitheia Core, leaving the details of data synchro-
nization to the database. After initial implementation, Alitheia Core performance
has been carefully profiled and several changes were made to the data schema
and data semantics to make it scalable. Examples of such refinements include the
following.

– The incremental approach to data storage, as described in Section 5.1. Similarly
to other existing systems, such as Evolizer, the initial implementation stored
the full project tree in the database, for each project version. This optimization
conserves more than 90% storage space in case of large projects while not being
slower to query.

– The augmentation of the rdbms schema with in memory data structures that
facilitate data analysis. For example, it is often useful for plug-ins to browse the
project’s file tree or filter specific files (e.g. all Java files or all documentation
files) before retrieving those from the repository. In-memory checkouts and
filtering work by reconstructing the project’s filesystem structure in memory,
using data from the rdbms only. For projects with about 10,000 revisions, both
operations complete in less than a second, thereby providing very fast access
to the required data.

– The fact that workflow and metric plug-ins can add their custom entities to the
schema. This allows for efficient joins between data formats that the plug-ins
understand and generic entities that Alitheia Core offers. The initial implemen-
tation expected plug-ins to store all custom information in a common key-value
table for all plug-ins, leading to suboptimal query performance and more com-
plex query behaviour, because joins had to be performed in the plug-in code.

The result is a system whose performance characteristics are mainly limited by
external factors, namely the availability of computing resources, the performance
of the employed rdbms and the algorithmic complexity of the experimental process.

The complexity of Alitheia Core proved to require a substantial amount of
implementation effort. Alitheia Core is under development for more than three
years and currently consists of more than 28 thousand lines of executable code
(kloc). From those, 5.4 kloc are devoted to the data model and operations on
it, 2 kloc are test cases and 1.5 kloc are framework overhead (namely, osgi
activators). Metrics, data plug-ins and parsers sum up to 10 kloc. The Alitheia
Core design went under two major revisions that had a significant impact on
reducing the number of lines in the system: during the first, we replaced the web
services stack then employed to retrieve data from the core and the corresponding
frontend with a functionally equivalent lightweight combination of a rest api with
a Javascript-based web front end. This reduced total code footprint by more than
40%. In the second revision, we replaced boilerplate analysis plug-in setup code
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with Java annotations and an annotation processor class. This reduced code by
more than 10% and simplified the analysis tool implementation.

Alitheia Core benefits from the extensive use of existing mature oss compo-
nents: Equinox as the osgi platform, Hibernate for orm, log4j for logging, Resteasy
for the rest api, Jetty as the embedded web server and several libraries for ac-
cessing the raw data sources. From the total 21mb of the Alitheia Core binary
distribution, only 0.8mb represents code developed for Alitheia Core, a metric
indicative of the value that third party components bring to Alitheia Core.

6 Evaluation

In this section, we provide evidence on Alitheia Core’s ability to answer the main
challenges researchers face, as presented in Section 2 and to address the require-
ments set forth in Section 3. Initially, we compare Alitheia Core’s features to other
existing tools presented in the literature. We also evaluate the platform’s perfor-
mance and demonstrate its scalability using data from real world projects. Finally,
we present the execution of an example case study using Alitheia Core.

In the descriptions below, we frequently refer to our project data mirror. The
mirror contains data from more than 700 oss projects, from various oss project
repositories, such as SourceForge.net, and the Gnome ecosystem along with large
self-hosted projects, such as kde and Freebsd. Not all available data is mirrored
for all projects, but for most projects, the mirror contains up to date versions
of the source code repository, archived and relatively current versions of mailing
lists and, for more than half of the projects, archived versions of their bug report
databases, up to early 2009. Also, the mirror does not currently contain any data
from Git repositories, because when it was assembled, Alitheia Core lacked Git
support. The data size of the project mirror is currently 290gb. An overview of
the distribution of the sizes for all projects in the mirror can be seen in Fig. 4.

6.1 Comparison with Existing Platforms

In Table 3, we present a feature comparison of tools that were identified as msr

platforms in Section 4. The comparison is split into six categories, which corre-
spond to the high level platform requirements we identified in Section 3. Specifi-
cally, we examine the services each platform offers to extension writers, the data
analysis facilities supported by each tool and the interfaces offered. We also exam-
ine peripheral features, such as the scaling mechanisms each platform offers and
its interfaces.

On the data sources front, all platforms offer support for acquiring data from
a source code version control system. Typically, this support includes the file tree
versioning paradigm offered by Subversion and cvs. The content management
paradigm exposed by Git is a radical departure (Bird et al 2009) from file trees and
requires significant changes to the data model each tool supports. Alitheia Core’s
data schema has been recently extended to support Git. Most tools also offer bug
data import, exploiting the ubiquity (in the open source world) of the Bugzilla data
schema. Only Hipikat and Alitheia Core support importing of emails, albeit each
for a different purpose; Alitheia Core’s mail support is generic and aims to act as
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Table 3 Platforms used in empirical software engineering research and their features.

Platform Hipikat Kenyon Moose
with
Hismo

Evolizer spo Churra-
sco

Alitheia
Core

Data Sources

Centralized scm cvs cvs, svn,
Clearcase

cvs cvs, svn svn svn svn

Distributed scm — — — — — — git
bts Bugzilla — — Bugzilla Bugzilla Bugzilla Bugzilla
E-mails X — — — — — X

Others text files — — — — —
Data acquisi-
tion support

— — — — — X —

Services

Pluggable work-
flows

— X — — — — X

Analysis plug-
ins

— X X △ — — X

External tool
wrappers

— X — — — — X

Data plug-ins — X X — — — X

Source code
parsers

Java — SmallTalk,
Java,
C++

Java — △ Java,
Python

Automated tool
invocations

— X — — — △ X

Data Analysis

Intermediate
representation

X X X X X X X

Link bts issues
to commits

X — — X — X —

Link emails to
commits

X — — — — — —

Link emails to
bts issues

X — — — — — —

Developer iden-
tity resolution

? — — X ? ? X

Fine-grained
change analysis

— — — X — — —

Source code
meta-model /
versioned?

— — famix/X famix/— — famix/? Custom
ast/X

Scaling

Multi-project
support

— X — — X X X

Computational
model

— Concurrent
processes

— ? ? ? Scheduler,
Jobs

Multicore sup-
port

? X — — ? X X

Cluster Support — △ — — ? ? △

Interfaces

Administration
Interface

— — X — — ? X

rest api — — — — — — X

Analysis results
gui

ide inte-
gration

— X — web-
based

web-
based

web-
based

Visualizations — — X X X X —
Availability

Source code — — — — — — X

Executable
code

— — X X — — X

Datasets — — — — — — X

Documentation △ — X △ — △ X

Demo installa-
tion

— — — — — X X

Data current at: 17/10/2012
Source Cubranic

et al
(2005)

Bevan
et al
(2005)

Nierstrasz
et al
(2005)

Gall et al
(2009)

Lungu
et al
(2010)

D’Ambros
and
Lanza
(2010)

— No support, △ limited or partial support, X full support, ? No information available
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a source of process information, while Hipikat indexes email contents in its search
engine to provide developers with context oriented help. Finally, despite most tools
work with oss data, only Churrasco includes support for retrieving them from the
original repository, thereby potentially simplifying analysis; all others expect a
local data mirror.

Moving to services and data analysis support, a common theme is the support
of intermediate representations at various granularity levels. Some platforms can
also process source code and extract its structure to either the Moose-oriented
famix metamodel or to a custom ast in the case of Alitheia Core. The advan-
tage of the famix metamodel is that the representation can encapsulate several
object-oriented languages in the same intermediate format; it is however open to
investigation whether it can also support functional or mixed functional/object-
oriented languages (e.g. Scala) whose use has been increasing. A notable mention is
Evolizer, whose change distilling capabilities (Fluri et al 2007) can help researchers
identify changes on the ast level. Alitheia Core is does not offer as comprehensive
support as other platforms for linking data among data sources, even though no
part of its architecture precludes the implementation of such analysis.

An important part of all software platforms is their support for external tools.
Alitheia Core, being designed from the ground up as an integration platform,
offers the most comprehensive feature set on this front. It can wrap existing tools
(see next section for an example), automatically parallelize their invocations using
its job based abstraction and store their results in its internal database, using
simple result wrappers. It also enables external tools to access its internal database
remotely, using a rest api. All other platforms rely on tools designed specifically
for them.

Summarizing, Alitheia Core offers stronger platform features than competing
tools, but it lacks the built-in analysis algorithms other platforms offer. Specifically,
Alitheia Core provides comprehensive data source support, including beta-quality
support for distributed scm systems, an extensible analysis workflow, while being
fully open and documented. All source code related resources in Alitheia Core have
attached versions stemming from commits and metrics can be attached to them.
Alitheia Core also offers a computational model, which it exploits to automatically
parallelize the submitted workloads. The open-ended architecture of Alitheia Core
allows missing data integrations to be implemented as plug-ins to the analysis
workflow, and depending on their nature, to use the versioning capabilities of the
data model. Alitheia Core is lacking on the results visualization front, even though
the rest api can be used as a rich data source for visualization clients.

6.2 Performance and Scaling

Import Performance To illustrate the ability of Alitheia Core to handle large data-
sets, we conducted an analysis with five oss projects of increasing sizes: JConvert,
JodaTime, Gnome-vfs, Evolution and Freebsd. We run the analysis on our ref-
erence hardware platform, the specifications of which are listed in Table 4. The
examined projects were selected from our project data mirror based on their cu-
mulative data sizes and their placement in the size distribution chart (see Fig. 4),
to test the performance properties of Alitheia Core. We imported the projects
starting from smaller (JConvert) to bigger (Freebsd). To simulate realistic work-
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Fig. 4 Project size distribution for projects in our project data mirrors. Marked are the
projects selected for benchmarking.

Table 4 Hardware and software configuration for the machine used for measuring performance

Item Description

Computer Custom-made 4U rack-mounted server
cpu 4 × Dual-Core Opteron, 2.4ghz
ram 16 gb 400 mhz with ecc
Raw data storage 6 × 500gb, sata ii, 7.2k rpm, hardware raid

10
Database storage 4 × 300gb, sata ii, 10k rpm, hardware raid

10
Operating System Debian Linux stable 5.0, kernel 2.6.26-1-

amd64
Database MySQL 5.1.53 64-bit
Database Configuration Innodb engine, 7gb buffer pool, no binary log-

ging, read committed transaction isolation
Alitheia Core Configuration 16 worker threads, 3gb heap

Table 5 Key size metrics and time required to process data from various oss projects

Project JConvert JodaTime Gnome-VFS Evolution FreeBSD
Size

Num. Revisions(mb) 220 (2.3) 1,570 (27) 5,551 (207) 25,248 (1,305) 180,332 (5,868)
Num. Emails(mb) — — 3,102 (33) 79,722 (1,256) 1,879,058 (13,364)
Num. Bugs(mb) — — 2,167 (18) 60,624 (739) —
Total data size (mb) 2.3 27 258 3,300 19,232
Processing Results

Total File Revisions 624 11,042 25,119 169,223 782,940
Num. Bug Comments — — 13,301 226,357 —
Uniq Developer Ids 1 10 2,217 35,092 89,309
Performance

Total time to import 0:00:08 0:02:20 0:20:40 2:02:12 22:48:32
Time to import scm 0:00:08 0:02:20 0:20:40 2:02:12 22:48:32
Time to import emails — — 0:00:18 0:09:20 2:37:18
Time to import bts — — 0:00:30 0:47:06 —
Revisions/s (MB/s) 27 (0.28) 11.2 (0.22) 4.44 (0.17) 3.46 (0.17) 2.20 (0.08)
Emails/s (MB/s) — — 172.2 (1.8) 142.3 (2.2) 199.2 (1.4)
Bugs/s (MB/s) — — 72.3 (0.6) 21.4 (0.26) —
MB/s 0.28 0.19 0.20 0.45 0.25
GB/hour 1.08 0.69 0.70 1.62 0.89
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load conditions, we did not clean the database after each project was processed;
should we have cleaned the database, the results would have been better as virtual
memory pressure exerted by the database to the operating system would have been
minimized (at least in our Mysql-based setup). As a consequence, if the report
order was reversed, the results would have been slightly better for bigger projects.
Finally, we only evaluate the second stage of the data processing workflow; specif-
ically, we run the plug-ins svnmap, bugmap and mailmap (see Table 1).

The results of these experiments can be seen in Table 5. From the projects
we analyzed, both Evolution and (especially) Freebsd lie at the top of the size
scale in the oss project ecosystem. Specifically, 93% of the projects in our mirror
have a data footprint smaller than Evolution. The time to complete the metadata
import is in all cases dominated by the time to process scm entries. This result
stems from the fact that the Subversion scm system is used by all projects in
our dataset. Subversion uses an event sourcing architecture that stores revision
differences incrementally, and therefore it is not straightforward to process them
afterwards in parallel. On that front, the Git scm design represents good oppor-
tunities for optimization, as branches, which are very common when developing
with Git, can be processed in parallel, until a merge point is reached.

On the other hand, emails and bug reports are independent from each other,
so Alitheia Core can process those concurrently. Combined with the fact that
processing emails and bugs is a relatively simple operation as no change history
is maintained for either entity, concurrent processing makes a big difference in
the throughput rate: in the case of Evolution, emails can be processed more than
10 times faster than data from scm repository. This difference in throughput also
explains the inconsistencies in the scaling of the overall data processing rate. If
the time needed to process data in parallel (email and bts issue processing) is
close to the time required to process scm data then the overall throughput will be
correspondingly higher.

The overall results show that the data import performance in Alitheia Core
degrades gracefully as data sizes increase. The best performance, in terms of data
processed per unit of time, is demonstrated on medium to large datasets. This
happens because those projects have very large email and bug datasets, which can
be processed in parallel, so the overall throughput increases.

Scaling To evaluate the scaling capability of Alitheia Core, we conducted an exper-
iment where we varied the number of worker threads, while processing the same
project using the same pipeline. Specifically, we selected the JodaTime project
for which we processed 1,570 Subversion revisions (11,042 file changes), then used
the Java parser to extract method-level change information and finally run the
project size and code structure (McCabe and Halstead) metrics on. Apart from
the Subversion import phase, all other tools can be run in parallel. The runtime
behaviour of all employed analysis tools contains both several i/o sessions, to read
raw data from the project’s repository and to query the database, and a compu-
tation operation to calculate the metric results. This means that since analysis
tool executions are mapped onto worker threads, the operating system should be
able to interleave execution i/o intensive parts with cpu-bound parts during all
metric runs. Alitheia Core was run on our reference host (see Table 4). To ensure
that Alitheia Core will not compete from resources with the database server, we
run the database server on another machine (2 cpus, 2 gb ram, high performance



22 Georgios Gousios, Diomidis Spinellis

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  2  4  6  8  10  12

T
im

e 
(s

ec
on

ds
)

Number of worker threads

SVN Import
Java Parser

Size Metrics
McCabe-Halstead Metrics

(a) Time per processing phase

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 6 8 10 12

T
im

e 
(s

ec
on

ds
)

Number of worker threads

McCabe-Halstead Metrics
Size Metrics

Java Parser
SVN Import

(b) Contribution of each processing phase to the total time

Fig. 5 Time to execute various processing phases versus the number of worker threads used.
The test machine has 8 physical cores.

i/o). The chosen configuration was deliberately underpowered to demonstrate the
effect of external tools on the performance of Alitheia Core.

The results can be seen in Figure 5. Overall, by increasing the number of
cores, the total time required for analyzing a medium repository decreased by
76% at a scaling ratio of 4.3 times. The individual tools scaling behaviors varied
according to their dependence on the external database. For example, the size
metrics plug-in which calculates metrics such as number of files per version by
means of aggregation queries, saturated the database server at 8 worker threads.
On the other hand, the Java parser tool, which only used the database to store
final results improved its performance up to 11 concurrent threads. Nevertheless,
all tools benefit from the automatic workload parallelization of Alitheia Core’s
design, effectively decreasing the required execution time by 72%–82%.

An interesting finding of the analysis is that the size metrics plug-in executes
slower than the Java parser plug-in. While this may contradict common sense,
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Table 6 Comparing Alitheia Core against simple invocations of external tools.

Project JConvert JodaTime Gnome-VFS Evolution FreeBSD
sloccount

Alitheia Core 0:00:06 0:03:02 0:09:35 5:16:24 72:35:45
sloccount 0:03:32 0:33:12 3:05:32 59:16:12 >400 hours
Speedup 94% 90% 84% 89% > 80%
FindBugs

Alitheia Core 0:28:12 0:14:15 — — —
FindBugs script 1:07:33 00:55:51 — — —
Speedup 63% 72% — — —

given that parsing is considered a non-trivial task, it is actually a result of im-
plementation choices of the corresponding plug-ins and optimizations enabled by
Alitheia Core. Specifically, the Java parser has been implemented using a hand-
tuned Java language grammar using the antlr parser generator (Parr and Quong
1995); while the constructed abstract syntax tree is accurate enough to calculate
most known metrics, it skips costly steps such as type resolution. Moreover, using
Alitheia Core facilities, the Java parser plug-in can select the Java files that have
changed in every specific revision. This leads to a very small number of files being
parsed very fast; on average each file takes less than 100ms to be parsed on our
reference server, while an average revision is processed in less than a second. On
the other hand, the size metric plug-in uses a complicated database query (in-
cluding a 5-table join) to calculate aggregate project size counts per revision; this
leads to significant load on our Mysql database. Using a database that handles
complicated joins more efficiently or more capable database server hardware could
improve the size metric plug-in results.

Use of External Tools To demonstrate how the incremental tool invocation and
automatic workload parallelization approach Alitheia Core takes pays off, we
compared Alitheia Core against a simple script that loops over all revisions of
a provided repository and invokes an external analysis tool. We selected two tools
to compare Alitheia Core against, namely sloccount (Wheeler 2010) and Find-
Bugs (Hovemeyer and Pugh 2004). The sloccount tool processes a source code tree
and calculates the number of executable statements for many known programming
languages. On the other hand, FindBugs processes Java bytecode and identifies
potential bugs by comparing it against a predefined list of know bug patterns. Both
tools require a project checkout; in addition, FindBugs requires each project revi-
sion to be built first. Fortunately, the two Java projects we examined contained ant

and maven build scripts, so each revision could be build using the respective build
tool. To invoke the tools, we developed a script that performed an initial project
checkout at revision 0, run either sloccount or FindBugs, and then updated to the
next available revision. In the case of FindBugs, it also invoked maven or ant first.
If the build failed (due to compilation failures or missing dependencies), the ver-
sion was skipped from analysis through FindBugs. In all cases, the measurements
where taken from the trunk directory.

Within Alitheia Core, we used the project size metrics plug-in to compare
against sloccount. Both the Alitheia Core plug-in and sloccount already calculated
roughly the same metrics, namely the number of executable lines, the number of
comments, the number of files and their aggregations per project version. In the
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case of FindBugs, we created a new analysis tool plug-in that checked out (using
the Alitheia Core facilities) a revision, run maven or ant, and if the build was suc-
cessful, it then run FindBugs, parsed the results and stored them in the database.
The plug-in was implemented in 500 lines of code, the majority of which where
devoted to starting, monitoring and reading the output of external tools. Both
experiments where run on our reference host, using the configuration presented
in Table 4. For this experiment, Alitheia Core was configured with four worker
threads.

The results can be seen in Table 6. Independently of the size of the project it
was tested with, Alitheia Core finished the provided task in less that 80% (sloc-
count) and 63% (FindBugs) of the time it took for a competing simple shell script
to run. This outcome is the result of optimizations at various levels of the workflow.
In the case of the line counting experiment, file contents are never written to disk;
instead, when a plug-in requires access to the contents of a file in a specific project
revision, Alitheia Core will retrieve it directly from the repository into a memory
buffer. Even though, as described above, the aggregation of size metric results per
version is done in a suboptimal manner, the fact that no files need to be read from
disk leads to a significant performance improvement. Indeed, for revision 1000 of
the Jodatime project, sloccount requires two seconds to calculate its results. The
corresponding query executes in less than one second on our database, while four
such queries can be run in parallel without affecting database performance.1

In the case of FindBugs, an additional optimization originates from the fact
that the plug-in can query the database to verify whether a specific version contains
a Maven/Ant build file before checking it out on the disk. This enables Alitheia
Core to quickly skim through the earlier versions of Jodatime, where an older,
incompatible version of the Maven tool was used.

Assessment The results indicate that Alitheia Core can handle very large projects
on modest, by today’s standards, servers. At an average rate of 1gb/hour and with
an average project size of 500mb, one can import metadata from about 500 projects
in 10 days on a single machine, a process that only needs to be performed once.
Various types of analysis can then be performed on or with those metadata and the
performance will mostly depend on the number of total available processors. Due
to the automatic distribution of the workload on multiple processors, any analysis
will take on average significantly less time on Alitheia Core than by performing the
same experiments using simple shell scripts, irrespective of whether the analysis
tools were developed specifically for Alitheia Core or not. In turn, this indicates
that it may be beneficial for tools to be written for or ported to Alitheia Core.
As the scaling experiment shows, in its current form, Alitheia Core’s performance
and scaling is mainly restricted by the performance of the database used.

In the following example, we also present evidence of Alitheia Core working on
multi-project datasets, using a small cluster of four machines.

1 Recall that Alitheia Core was configured with four worker threads, thereby leaving 4 idle
cores to Mysql.
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6.3 Case Study Example: Development Teams and Maintainability

Software maintenance is a crucial part of the software life cycle. It is widely re-
ported that maintenance operations can take up to 70% of the total costs of the
software (Boehm 1987). Consequently, maintainability is one of the top-level crite-
ria in the iso software quality model (ISO/IEC 2004) and its assessment has been
the topic of study of numerous works (Oman and Hagemeister 1994; Deursen and
Klint 1998; Muthanna et al 2000; Heitlager et al 2007).

As software development is primarily a human oriented task, one would think
that development teams play a significant role in affecting maintainability. Intu-
itively, one might expect that teams staffed with highly skilled individuals will
produce higher quality and, consequently, more maintainable code. A question
that arises is whether peer-pressure among colleagues can affect maintainability.
For example, Raymond (2001) has argued that the oss development model can
tame complexity through shared increased source code awareness by developers
and end users. Does this improvement reflect itself in software maintainability? Is
the size of the team working on the same project, and the consequent applied peer
pressure, an enabling factor for producing maintainable software? The counterar-
gument based on the non-linear scaling of the communication overhead in large
projects (Brooks 1975) is also valid, especially in the eyes of practitioners. One
would argue that the more people work on a module, the worse its maintainability
will be, as miscommunicated ad-hoc modifications and spurious coding practices
would prevail over organized, clean, structured code.

The objective of this case study is to present how Alitheia Core can simplify
large-scale research through the examination of the potential correlation between
team size and software maintainability. For that, we formulate the following two
simple hypotheses:

H1 Team size correlates with maintainability at the project level.
H2 Team size correlates with maintainability at the source module level.

6.3.1 Method of study

To evaluate maintainability, we use the Maintainability Index (mi) metric (Oman
and Hagemeister 1994; Welker and Oman 1995), a composite metric that attempts
to quantify maintainability by combining several low level measurements such as
Halstead’s Volume (Halstead 1977), McCabe’s Extended Cyclomatic Complex-
ity (McCabe 1976), the number of lines of code and number of lines of comments.
The metric is a result of statistical analysis on metric data from large c and Pascal
language projects. The suggested method of calculation is on source code direc-
tories (Oman and Hagemeister 1994) even though it can also work at the project
level. As with any composite metric, the mi metric has faced criticism (Luijten
et al 2010), while other similar polynomial (Muthanna et al 2000) or hierarchi-
cal (Heitlager et al 2007) models have emerged. Therefore, we only consider the
mi metric adequate for the purpose of demonstrating the functionality of Alitheia
Core.

To implement the mi metric, we used Alitheia Core’s compositional approach to
building analysis tools. Consequently, we broke down the implementation into four
plug-ins, each of which produces measurements that can be stored and retrieved
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Fig. 6 The Maintainability Index metric plug-in dependencies on other metric plug-ins.

independently (see Fig. 6). The structure metrics plug-in implements the full set
of McCabe and Halstead metrics for c and Java, at the individual source file level.
At the time the study was done, Alitheia Core lacked proper parser functionality
and therefore metrics were implemented using ad-hoc parsers, based on regular
expressions. The size metrics plug-in calculates various size metrics, such as the
number of executable statements (or lines of code — loc) and the number of lines
of comments (locom), at both the source file and project-wide level. The module
metrics plug-in uses the results of the file level size metrics to calculate module
sizes. As c lacks direct namespace declarations, we considered a module to be a
directory with source code files. The module metrics plug-in also marks directories
as source directories if they contain any source files (sets the issrcmod metric to
one). If one or more source code files contained in a module change, then a new
module revision (and its measurement) is added to the result set.

All that is left for the mi metric to do for each project version is to retrieve the
source code directories by querying the module metrics plug-in, and for each one of
them to retrieve the metric formula’s four measurements required by querying the
corresponding plug-ins. Alitheia Core offers abstractions that hide the complexity
of querying metric results and browsing version files and directories behind simple
method calls. These help reduce the code required for implementing the mi metric
plug-in to less than 250 source lines of code. This number includes the calculation of
the metric per module and its aggregation per version. As a comparison, command
line tools used to calculate mi in two other studies (Samoladas et al 2004; (Spinellis
2006, Section 7.1.1)) are more than 1500 lines long.

To calculate the number of developers per resource, we also implemented a new
plug-in that queries the database for the number of developers that were active in a
time window of one, three and six months. As active, we considered all developers
that committed to the scm repository at least once in each corresponding time
window. We chose to look at specific window sizes, because, in common with
other studies (Anvik et al 2006), looking for developers active within a small time
window provides a realistic measure for the churning developers contributing to
an open source project.

We run the described metrics on a dataset comprising of 142 projects, whose
primary language (in terms of lines of code in their latest revision) is c. For projects
containing mixed c and other languages source files, the metrics were only applied
on the c portion of the code base. Prior to running the metrics, the full history
of the projects was imported into the database. This comprised a total of 588,241
project versions and 7,516,327 file versions, including 607,390 module versions. We
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Fig. 7 Query used to extract the results for the maintainability index and number of devel-
opers (“eyeballs”) metrics per module revision for the project gnome-vfs.

s e l e c t MI .MODMI, EYEBALL .MODEYEBALL
from

( s e l e c t pfm . PROJECT FILE ID as ID , pfm .RESULT as MODMI
from STORED PROJECT sp , PROJECT VERSION pv , PROJECT FILE pf ,

PROJECT FILE MEASUREMENT pfm , METRIC m
where pfm .METRIC ID=m.METRIC ID

and p f . PROJECT FILE ID=pfm . PROJECT FILE ID
and pv . PROJECT VERSION ID=pf . PROJECT VERSION ID
and pv . STORED PROJECT ID=sp . PROJECT ID
and m.MNEMONIC=”MODMI” and sp .PROJECT NAME=”Gnome−VFS”

) as MI ,
( s e l e c t pfm . PROJECT FILE ID as ID , pfm .RESULT as MODEYEBALL

from STORED PROJECT sp , PROJECT VERSION pv , PROJECT FILE pf ,
PROJECT FILE MEASUREMENT pfm , METRIC m

where pfm .METRIC ID=m.METRIC ID
and p f . PROJECT FILE ID=pfm . PROJECT FILE ID
and pv . PROJECT VERSION ID=pf . PROJECT VERSION ID
and pv . STORED PROJECT ID=sp . PROJECT ID
and m.MNEMONIC=”MODEYBALL”
and e x i s t s (

s e l e c t pfm1 . PROJECT FILE ID
from PROJECT FILE MEASUREMENT pfm1 , METRIC m1
where pfm1 . METRIC ID=m1.METRIC ID

and m1.MNEMONIC=”ISSRCMOD”
and pfm . PROJECT FILE ID=pfm1 . PROJECT FILE ID
and pfm1 .RESULT=”1”

)
and sp .PROJECT NAME=”Gnome−VFS”

) as EYEBALL
where

MI . ID = EYEBALL . ID

run the analysis on a four machine cluster containing in total 12 2ghz class cpus,
16 1ghz class cpus and a combined total of 34 gb of memory. The database was
run on our reference server, but shared resources with an instance of Alitheia Core
running on the same host. The total working set comprised of about 33 million
jobs. Running the size and structural metrics plug-ins proceeded at an average rate
of 90 jobs per second. Similarly, the mi plug-in, whose performance mostly relies
on database querying speed and executes simple index based queries, calculated
results at the rate of more than 120 jobs per second.

6.3.2 Results

To validate our hypotheses, we extracted and correlated measurements from the
mi and developer team size plug-ins and analyzed them statistically. As metrics
are stored against module or project versions, it is straightforward to extract them
with an sql query, such as the one shown in Figure 7. As Alitheia Core does not
currently employ any mechanisms for statistical analysis, the results were extracted
from the database into text files.

To analyse the results, we used the Maximal Information Coefficient (mic) met-
ric from the Maximal Information-based Nonparametric Exploration (mine) suite
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(Reshef et al 2011). This newly proposed bivariate correlation suite of metrics
has two important properties: it works well on discovering associations other than
linear, and it does not make any assumptions on the distribution underlying the
data. Similarly to the most well known tests, mic reports the strength of correla-
tion between two variables as a number in a range from 0 (no correlation) to 1
(strong correlation). The significance of the correlation is not reported by the mic

algorithm, but can be calculated using matrices; as a rule of thumb, with more
than 350 data points, any mic result greater than 0.28 has p < 0.01, while any
mic result less than 0.21 has p > 0.05. As mic can capture relationships that are
functionally different from linear, its score can be very different from a Pearson or
Spearman correlation test on the same sample; in fact, its equitability properties
can be exploited to compare relationships of the similar strength across different
functional forms. Apart from mic, which effectively measures the strength of the
correlation, the mine suite reports the derivation from monotonicity of the cor-
relation (mas), the degree to which the dataset appears to be sampled from a
continuous function (mev) and the complexity of the association (mcn). mic has
been shown to work well on empirical data from software repositories, especially
when sample sizes grow (Posnett et al 2012).

At the project level, we examined the correlation against time windows of one,
three and six months within which we determined developer activity by checking
if a developer committed a change to the project’s scm. At the module level, we
calculated the size of the team for the specific revision of the module as the number
of all developers that committed changes in files residing in the specific module.
In both cases, we filtered out projects with a single developer. We also filtered out
projects with less than 350 data points to obtain statistically significant results.
We did not do any further processing of the data (i.e. filtering out developers that
committed only few times).

The results of the statistical analysis can be seen in Table 7. Overall and across
all projects, we did not find any significant correlations, either at the module or
at the project level, so both our hypotheses must be rejected. This result suggests
that the number of people working on an open source project does not seem
to affect an important aspect of software quality, maintainability, as measured
by the mi metric. Consequently, maintainability may be driven by other factors,
such as developer competence or processes that encourage adherence to project
development guidelines.

6.3.3 Replicating with Other Platforms

To provide a comparative evaluation of Alitheia Core in a real world repository
mining scenario, we attempted to replicate the case study described above with
an external platform. From the platforms examined in Table 3, only Evolizer and
Moose were available online. Our goal was to implement the same metrics as exten-
sions to all platforms, without modifying the platform’s internals. To understand
how the platforms work, we browsed each platform’s source code and used the
available online documentation. We describe our experiences for each tool below.

To examine version histories of projects in c, Moose requires the Hismo (scm
import) and inFusion (c parser) tools to be installed. Hismo can attach famix

models to the history models it creates. Moreover, basic source code metrics, such
as the ones we use, come with famix models. However, extracting models from
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(a) One month (b) Three months

(c) Six months (d) Per module

MIC MAS MEV MCN
Project Level

1 month 0.35431 0.07141 0.35431 8.189824
3 months 0.36088 0.08216 0.36088 11.40301
6 months 0.36713 0.08847 0.36705 10.42511
Module level 0.33618 0.25779 0.33618 11.60547

Table 7 Correlation analysis between number of developers (horizontal axis) and maintain-
ability index score (vertical axis). All results are at p < 0.01.

inFusion and attaching them to Hismo is a manual process, that has to be carried
out per each project revision. Also, Hismo does not model history for project files
nor does it save developer related information per file revision.

Evolizer does not support attaching arbitrary metrics to file or project versions
in its database. Metric implementations in Evolizer rely on famix models, and
Evolizer is only able to compute such models for the latest project version and
only for Java projects. Moreover, metrics in Evolizer are only evaluated on the fly.
This means that in order to save them or link them to specific entities, Evolizer
must be modified to use a database similarly to Alitheia Core. Moreover, Evolizer
does not feature an automated, workflow-based analysis process. Specifically, due
to its deep integration with Eclipse, it requires projects to be checked out within
the ide before being submitted for analysis. Finally, Evolizer could not save more
than one project in a particular database.
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7 Applicability and Limitations

In the following section, we discuss aspects that affect Alitheia Core’s applicability
on the problem domain it was designed for.

7.1 Advantages over Existing Tools

By combining metadata abstractions with transparent multiprocessing, Alitheia
Core offers a wealth of services to researchers working with data from software
repositories.

– Alitheia Core simplifies the task of implementing custom analysis plug-ins or in-
tegrating external tools by requiring plug-ins to implement just a single method
for each supported data type. The process of creating the necessary files and
integrating plug-ins to the runtime is automated through Alitheia Core’s build
system, while the extensibility points feature stable interfaces and are fully
documented.

– Researchers can insert custom processing phases to the data processing work-
flow. This feature enables custom analysis algorithms to resolve and store links
between diverse types of data either across projects or across repositories be-
fore the analysis tools are invoked. Using Alitheia Core, a researcher can devise
algorithms that, for example, link bug reports to project versions based on the
appearance of bug report numbers in a commit number or identify and mark
commit operations based on the type of refactoring they induced. Algorithms
can be run incrementally on projects, without requiring recalculation of de-
pendent results or later phases of the analysis.

– Alitheia Core allows cross repository and cross project analysis. As data from
multiple projects are imported into a single metadata schema, data retrieval
operations can be performed either progammatically or by means of sql state-
ments.

– Alitheia Core features fast analysis turnaround. The time required to execute
large case studies is roughly proportional to the size of the analyzed repository,
as Table 5 shows. Scaling for tools developed for Alitheia Core is only affected
by external subsystem performance, while plug-ins driving external tools can
offer a significant performance increase. We argue that fast turnaround and
analysis automation is an enabling factor for experimentation, because re-
searchers can develop their analysis algorithms on large datasets and promptly
derive feedback from their input.

7.2 Suitability

In developing Alitheia Core, the focus was to enable researchers to leverage data
from multiple oss repositories in a common intermediate format, while also per-
mitting distribution of processing load on multiple processors. As a result, Alitheia
Core could be a suitable tool in the following research cases.

Scaling Research Large-scale research is increasingly being deemed a requirement
for producing credible studies. Within the msr research community, Alitheia
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Core can be most useful for medium to large-scale quantitative studies, which
might benefit from the data integration and workload distribution possibilities
provided by the tool. Alitheia Core has been demonstrated in this and other
works (Gousios and Spinellis 2009; Kalliamvakou et al 2009) to be able to
handle large volumes of data, albeit with externally imposed limits to the
volumes it can process.

Reproducibility The issue of reproducibility of research results has received in-
creasing attention during the last years in the field of empirical software engi-
neering (Shull et al 2008; González-Barahona and Robles 2012). Alitheia Core’s
shared data and code repositories and standardized formats it provides might
be a first step toward this goal.

Driving External Tools It is common for researchers to use external command-
line tools to process data from repositories. As we have shown in the FindBugs
experiment, Alitheia Core can wrap external tools and offer a significant perfor-
mance increase while making it possible to store the results for future reference.
In principle, any tool with idempotent execution can be used efficiently with
Alitheia Core.

Software Process Monitoring Even though Alitheia Core was developed in a re-
search context, it can also be used as the basis of an online team perfor-
mance monitoring and software quality analysis process. External analysis and
visualization tools can use Alitheia Core’s rest api to retrieve data, while
Alitheia Core’s processing engine can be connected to the team’s repositories
and can also be extended to custom data types. Such a setup could potentially
achieve the benefits of project telemetry (Johnson et al 2005), without requir-
ing changes to the developer’s tooling. In previous work (Kalliamvakou et al
2009), we have shown that it is possible to use software repositories to extract
team performance indicators, while in this work we presented an example of
measuring maintainability over very large code bases.

On the other hand, Alitheia Core may not be suitable for all kinds of analyses
involving software repositories. Some cases where Alitheia Core might not be a
suitable tool are listed below.

Experiments Research with software repositories is usually done post-hoc. A re-
searcher can thus not vary parameters of interest in a controlled way to study
cause-effects, i.e. conduct experiments. Although large-scale case studies can re-
duce sampling bias, researchers can find a large number of correlations without
having contextual information to investigate whether the correlations represent
cause-effects or are spurious. This is a known limitation of the field, and also
one affecting research being done with Alitheia Core.

Qualitative Studies While qualitative studies are certainly possible within the
field of empirical software engineering (Seaman 1999), they are not very com-
mon (Glass et al 2002; Sjøberg et al 2007). Alitheia Core does not include sup-
port for conducting qualitative studies, for it does not provide the appropriate
qualitative study abstractions, such as questionnaires or interview tabulation.

Data Analysis Alitheia Core does not include any mechanisms for statistical data
processing. While it is possible to include a statistics or data mining tool as
a late stage analysis plug-in, the default implementation does not yet offer
such functionality, possibly making the results analysis process more involved.
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Moreover, Alitheia Core does not include any provisions for visualizing data,
delegating the task to external tools.

7.3 Data Integrity

As Alitheia Core integrates data from various sources, processes them and pro-
duces metadata, an issue that emerges is that of data integrity; how can we ensure
that the data Alitheia Core produces is accurate? The question has not been ex-
plored in depth by the repository mining community, but is critical for trusting
the results of empirical studies.

In data processing applications, data integrity should be scrutinized at loca-
tions where data transformations occur. In the context of Alitheia Core, most data
transformations occur in three cases: i) when importing raw data to the metadata
database, ii) when inferring relationships between the metadata and iii) when
metrics are run. In the first case, as the metadata is merely a stripped down ver-
sion of the raw data,2 comparing the two representations can be fully automated
through a test suite, and this test suite can be both exhaustive and very accurate.
The later two cases apply more complex transformations, such as combinations
of selections, aggregations or joins, and consequently their outcome is in principle
not traceable to the original data. While automated unit tests can be helpful in
isolating problems during development, they cannot guarantee the transformation
correctness, and therefore must be augmented by human inspection. We believe
that the inspection can become a community effort through a web site that enables
researchers to rate the data processing accuracy.

During the development of Alitheia Core, automatic validation of the pro-
cessed data was, regretfully, not a major concern. However, having learned from
our painstaking experiences with manual validation, we are now following an au-
tomated approach in the development of newer subsystems. For example, for the
development of the Git plug-in, we have created a test harness suite that auto-
matically imports to the Alitheia Core database and compares to the source (both
revision and file tree entries) any given Git repository. This approach not only
allowed us to find bugs in our code early on, but also revealed a serious bug in the
Git repository access library we use.

7.4 Privacy

While the participation of developers to oss projects does not come with privacy
guarantees, the mass processing and the interconnection of data from multiple
projects has begun to raise eyebrows in the repository mining community (Robles
and Gonzalez-Barahona 2005; Godfrey et al 2009). In common to most other
repository analysis systems, Alitheia Core does not take any measures to protect
the developers’ identities. However, given the so-called “social coding” and search
facilities provided by modern repository hosting sites, like GitHub, we feel that
targeted compromises of developer privacy are considerably more likely to occur

2 More formally, the transformation is an injective one to one function with domain set the
raw data and target set the metadata.
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through such sites than through platforms that aggregate repository data, such as
Alitheia Core.

8 Lessons Learned

The main lessons we learned from developing and applying Alitheia Core concern
the value of large-scale empirical research and the many issues that arise from
trying to perform it on large, real world datasets. Researchers are already aware of
the former (Zelkowitz and Wallace 1997; Sjøberg et al 2005; Zannier et al 2006);
in this section, we present what we learned on the latter.

8.1 Efficient and Robust Data Processing

The most important lesson we learned is that when dealing with large volumes
of diverse data, näıve and brute force approaches to data analysis do not work.
Before processing large quantities of data, a researcher must fully understand their
format and, especially, their interactions. This knowledge is required for designing
efficient storage schemata, extracting parallelism from common operations on data
or for computing the execution order of calculations. Knowledge of the data can
be acquired by building prototypes or by studying other analysis tools. Moreover,
even in cases where data formats are standardized, processing algorithms will al-
most certainly need to handle special cases. As an example, one of the problems
we have dealt with on that front, concerned email message processing. The format
for email messages is documented in the rfc-5322 (Resnick 2008) de facto stan-
dard. However, a number of email clients, interpret the standard liberally when
formatting several headers (notably, the Date and References headers). Such is-
sues complicate implementation and hinder application of generic data processing
algorithms, and must be expected from researchers.

8.2 Scaling

Another important lesson that we learned is that scaling is the result of good sys-
tem design, not optimization. For example, in early prototype versions of Alitheia
Core, components used uncooperative threads for implementing parallelism. The
problems with this approach were that the machine became easily saturated due
to the threads competing for resources and the fact that errors could not be iso-
lated and correlated with the input data. Higher-level abstractions, such as jobs,
workers and task queues, allowed us not only to take full advantage of machine
resources but also to distribute the load to multiple machines.

On the other hand, researchers aiming to scale their analysis algorithms to
thousands of projects should be aware that relying on relational databases will
be a roadblock rather than an enabling solution. At a medium scale (up to 200
medium size projects), a relational database would indeed help a researcher import,
extract and manipulate data at an adequate rate. However, the database layer in
a tiered architecture is usually the most difficult and most expensive resource to
scale, and its performance profile is typically a black box for the developer. In
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our experience, the key to database performance is to limit the amount of data
manipulation the database has to do. For example, complex aggregation queries
can be replaced by range queries and data filtering at the requesting node site.
Even so, the load exerted for a cluster of machines can easily saturate even the
most powerful database server. Distributed database clusters or data warehousing
might be possible solutions (Pavlo et al 2009) on that front.

Looking forward, we believe that, in common to other big data processing
systems, new generation software repository analysis systems might gain by be-
ing designed on top of distributed, schema-less data stores. Such data stores can
automatically distribute storage, retrieval and data filtering operations on mul-
tiple nodes on a cluster, effectively distributing the processing load at the ex-
pense of atomicity, consistency, isolation and durability (acid) guarantees (Bunch
et al 2010). While acid properties are critical to ensure consistency in concur-
rent read-write transaction processing workloads (Pavlo et al 2009), most data
analytics tasks depend on read-only performance, where schema-less data stores
excel (Thusoo et al 2010). Work has already started by others in evaluating soft-
ware repository analysis with schema-less databases (Shang et al 2011).

8.3 Failures

A high volume application should be designed to isolate the effects of errors and
recover from them, not to anticipate and correct them. It is usually not possible to
estimate all possible system states when designing the system, and moreover it is
not economical (in terms of development time or system performance) to develop
workarounds within the system. If an unexpected error occurs, the system must
be able to stop processing before errors reach persistent data stores and to resume
processing from known good states. Alitheia Core has been very successful on that
front, as a result of combining the thread pool processing pattern, transactions by
default on all database operations and extensive, multi-level logging. The thread
pool pattern allows us to split the workload into small pieces, each associated with
a uniquely identifiable data chunk (a project version, an email message, etc.). If
processing fails, the event along with the failing data entity is recorded. This allows
the researcher to examine the precise conditions, such as data format errors and
missing pre-requisites, that caused the failure. Processing failures do not affect the
database, because the use of transactions ensures that the database can be rolled
back to a consistent state.

9 Conclusions and Future Work

As with any empirical science, research in software engineering aims to under-
stand the behavior of existing systems in order to extract models, theories and
best practices that can be generalized and applied to similar occasions. Currently,
most research efforts in software engineering are using data from oss projects, on
a relatively limited scale. This fact leads to conclusions that at best cannot be
generalized and at worst may be wrong. Furthermore, the lack of standardized
experimentation toolkits renders cross validation of the published research results
almost impossible.
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Alitheia Core was designed from the ground up to enable researchers to design
and conduct large-scale quantitative research. The platform can readily process
hundreds of projects, with data storage system performance being currently the
only obstacle toward scaling it in the order of thousands. In addition to validating
our approach, our work on Alitheia Core indicates that, given the appropriate
data abstractions, large-scale experimentation is a practical proposition. Alitheia
Core forms part of an ongoing research effort to improve empirical software en-
gineering research studies through standardization on experimentation platforms
and datasets. Alitheia Core as a tool can be improved on a number of fronts: one
obvious improvement is the provision of workflow plug-ins for intra-repository data
linking. The results querying interface is spartan in its current form, which, in our
view, limits the potential of Alitheia Core as a data analysis tool. What is needed
is a graphical user interface that will allow for hierarchical graphical exploration
of the data and enable the construction of interesting data visualizations. Also,
Alitheia Core’s metadata and results storage subsystem has begun showing its
limits; currently, we are investigating alternative ways to remove our reliance on
sql databases, without breaking the data abstractions we have built. Finally, the
move of many open source projects to new data-rich repositories, such as Github
and Bitbucket, presents unique opportunities in standardizing the data acquisition
and processing process, an important step to achieving scale. On this front, we are
working toward making Alitheia Core compatible with the exposed data formats.
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aueb.gr/repositories.

This research has been co-financed by the European Union (European Social
Fund — esf) and Greek national funds through the Operational Program “Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework
(nsrf) — Research Funding Program: Thalis — Athens University of Economics
and Business — Software Engineering Research Platform.
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