
Solutions Streaming Assignment

Wouter Zorgdrager

December 2017

Task 1: Parsing JSON into Flink tuples (10 pts).

I used the json4s library to parse the raw data into Scala case classes. I added the following dependencies
to my pom.xml to use this library:

<dependency>

<groupId>org.json4s</groupId>

<artifactId>json4s-native_2.10</artifactId>

<version>3.6.0-M2</version>

</dependency>

<dependency>

<groupId>org.json4s</groupId>

<artifactId>json4s-jackson_2.10</artifactId>

<version>3.6.0-M2</version>

</dependency>

To parse the JSON, I first created some case classes to store parts of the data. Not every field is necessary
to store, since we won’t use it in later exercises.

//set default formats e.g. dates

implicit val formats = DefaultFormats

//case classes used to parse, type with backticks because type is a reserved keyword

//payload is still set to a parsed type, since that one differs per event (so we can parse it

after a filter)

case class Event(id: String, ‘type‘: String, actor: Actor, repo: Repo, payload: JObject,

created_at : Date, public : Boolean);

case class Actor(id: Integer, login: String, gravatar_id: String, url: String, avatar_url:

String);

case class Repo(id: Integer, name: String, url: String);

Then I created a simple method to parse each line into the Event case class:

/**

* Converts JSON (event) string to event.

* @param in input string.

* @return event class

*/

def strToEvent(in : String) : Event = {

val json = parse(in); //parse to json

val event : Event = json.extract[Event]; //extract to case class

return event;

}

1

http://json4s.org/

Finally I set up the Flink streaming environment and parsed all the lines into their case classes.

def main(args: Array[String]) {

// set up the execution environment

val env = StreamExecutionEnvironment.getExecutionEnvironment

// read file

val file:DataStream[String] = env.readTextFile("github-okt1-5.10.2017.gz");

//parse all the lines

val streamer = file.map(strToEvent(_));

//start the environment

env.execute();

}

Task 2: Filtering events of interest (10pts)

This task is quite simple, basically you just use the ’filter’ method. For example if you want to filter on the
IssuesEvent, you use the following code:

//parse all the lines and filter

val streamer = file.map(strToEvent(_))

.filter(event => event.‘type‘ == "IssuesEvent");

Task 3: Defining Event-time (20pts)

I just realized the assignment stated that there is no guarantee the stream comes in-order.
However I did assume this while making the solutions by using the assignAscendingTimestamps
method. In practice it turned out only a few events are out of order. So, assignAscending-
Timestamps can be seen as correct as long as the student understands that this might be a
problem if the whole stream is out of order.

For some useful information on (event)times and (sliding) windows in Flink, check the following resources:
event time and windows. First of all we have to set the time characteristic in the main. There are several
options: processing, ingestion and event time. We will need the latter.

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

Then from the events we need to ’extract’ the timestamps we want to use as event-time. In our case this is
the created at field which is a default field in each event. The code for that looks like this:

//parse all the lines and filter

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "IssuesEvent"). //filter on particular event

assignAscendingTimestamps(event => event.created_at.getTime); //get time of the date timestamp

2

https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/windows.html

Task 4: Computing Aggregates over (Sliding) Windows (30pts)

Every hour, report the count the unique issues that have been opened per repos-
itory during the last 2 days (10pts).

I started by creating a method which extracts the payload from the event.

//issue case class

case class Issue(action: String, issue: IssueId);

//issue id case class

case class IssueId(id: Integer)

/**

* Extract issue from the payload.

*

* @param event the input event.

* @return tuple with (repo_name, Issue)

*/

def toIssue(event : Event) : (String, Issue) = {

(event.repo.name, event.payload.extract[Issue])

}

I assume that each opened issue is unique. As for the window I used a sliding window. Then the actual code
to execute this task:

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "IssuesEvent"). //filter on particular event

assignAscendingTimestamps(event => event.created_at.getTime). //get time of the date timestamp

map(x => toIssue(x)). //map to issue

filter(issue => issue._2.action == "opened"). //filter on opened

map(x => (x._1, 1)). //map to a simple map reduce form

keyBy(0). //key by repo name

window(SlidingEventTimeWindows.of(Time.days(2), Time.hours(1))). //window 2 days, slide 1hour

sum(1); //sum the issues per repo

Part of the output:

(HawkRidgeSystems/HRS-Main,2)

(idno/idno,1)

(silverstripe/silverstripe-framework,1)

(SimpleLance/simplelance.github.io,1)

(angular-ui/bootstrap,1)

(WayofTime/BloodMagic,1)

(mbasaglia/Melanobot,1)

(miwarin/netbsd-gnats-memo,1)

(NodeBB/NodeBB,1)

(EKGAPI/webAppEKGAPI,3)

Every day, report the number of commits per that repository that have been
pushed that very day (10pts).

For this taskes I first created some case classes and a parse method for a PushEvent:

//push case class, size is amount of commits

3

https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/windows.html#sliding-windows

case class Push(size: Integer);

/**

* Extract push event from the payload.

*

* @param event the input event.

* @return tuple with (repo_name, Push)

*/

def toPush(event: Event) : (String, Push) = {

(event.repo.name, event.payload.extract[Push]);

}

The code for the actual stream is quite similar to the first task. Filtering and parsing on a push event, then
a simple map reduce using a tumbling window. The actual code:

//parse all the lines and filter

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "PushEvent"). //filter on particular event

assignAscendingTimestamps(event => event.created_at.getTime). //get time of the date timestamp

map(x => toPush(x)). //map to push event

map(push => (push._1, push._2.size)). //map to (repo_name, amount_of_commits)

keyBy(0). //key by repo name

window(TumblingEventTimeWindows.of(Time.days(1))). //tumbling window of 1 day

sum(1); //sum the commits per repo

Part of the output:

(davidjhulse/davesbingrewardsbot,2)

(xndcn/d-statistics,3)

(ingydotnet/zilla-dist-pm,3)

(su-github-machine-user/github-nagios-check,24)

(350dotorg/megamap-data,1)

(JordanMussi/IRC,1)

(jsr-software/openspace-android-sdk,6)

(iamandrebulatov/BC-Category-Page-Color-Swatch,11)

(WSCU/Robotics,1)

(prabhash1785/DataStructures,1)

Count the number of issues per project, which have not received any updates
(i.e., closed, opened, etc.) for more than one day. Is this a session win-
dow?(10pts)

Note: This question is a bit ambiguous, I assumed that this query should output if a issue had
no activity for one day after a certain action. Multiple interpretations are correct (as long
they give a good reasoning).

We will re-use the issue case classed defined above. First we parse everything to a (repo name, issue id,
1) to count the amount of ’updates’ per issue within 1 day. We indeed use a session window for that, because
that helps us to check for a gap of 1 day. Finally we do a summation on the amount of events per issue per
day, filter out the ones with only 1 event and count the amount of issues per repo. The actual code:

//parse all the lines and filter

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "IssuesEvent"). //filter on particular event

4

https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/windows.html#tumbling-windows
https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/windows.html#session-windows

assignAscendingTimestamps(event => event.created_at.getTime). //get time of the date timestamp

map(x => toIssue(x)). //map to push event

map(issue => (issue._1, issue._2.issue.id, 1)). //map to (repo_name, issue_id, 1)

keyBy(0, 1). //key by repo name and issue id

window(EventTimeSessionWindows.withGap(Time.days(1))). //session window of 1 day

sum(2). //sum the amount of events per repo_name/issue_id combination

filter(issue => issue._3 == 1). //filter out the ones with only 1 event

map(issue => (issue._1, 1)). //remove the issue_id

keyBy(0).sum(1); //simple map reduce

Part of the output (it also outputs intermediate results):

(HawkRidgeSystems/HRS-Main,1)

(HawkRidgeSystems/HRS-Main,2)

(silverstripe/silverstripe-framework,1)

(SimpleLance/simplelance.github.io,1)

(minillinim/sammy,1)

(CTC-CompTech/delivery,1)

(antonioortegajr/beerfind.me,1)

(MiYa-Solutions/sbcx,1)

(RainLoop/rainloop-webmail,1)

(WebDevStudios/custom-post-type-ui,1)

Task 5: Extracting Patterns (30pts)

For this tasks you need the CEP library.

Output all the repository/pull-request combinations that have been opened and
closed. (15pts).

Once again, we create some case classes and an extractor method:

//pr case class

case class PR(action: String, number: Integer);

/**

* Extract PR event from the payload.

*

* @param event the input event.

* @return tuple with (repo_name, PR)

*/

def toPR(event: Event) : (String, PR) = {

(event.repo.name, event.payload.extract[PR]);

}

We use 3-tuple for the pattern; (repo name, pr id, pr action). The pattern checks for an opened event
followed by an closed event using Non-Deterministic Relaxed Contiguity (see documentation). The
actual pattern in code:

val pattern = Pattern.

begin[(String, Integer, String)]("start").

where(_._3 == "opened").

followedByAny("end").

where(_._3 == "closed");

5

https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/cep.html#combining-patterns

Then we use this code to setup the correct stream:

Note: in order for this stream query to work, I had to remove the timestamp assignment + removing the
stream time characteristic.

//parse all the lines and filter

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "PullRequestEvent"). //filter on particular event

map(x => toPR(x)). //map to PR event

map(pr => (pr._1, pr._2.number, pr._2.action)). //map to (repo_name, pr_id, pr_action)

keyBy(0, 1); //key by repo and pr combinations

Finally I created a PatternStream on which I selected and collected the results.

val patternStream = CEP.pattern(streamer, pattern); //create the patternstream

val result = patternStream.select[(String, String)]{ //select from the patternstream

(map : scala.collection.Map[String, Iterable[(String, Integer, String)]]) =>

val startEvent = map.get("start").get.head; //get the start event

val endEvent = map.get("end").get.head; //get the end event

(startEvent._1, endEvent._2.toString); //return a (repo_name, pr_id) tuple

};

Part of the output:

(TeamGabriel/gabriel,1)

(uw-it-aca/jira-hook,2)

(SageMantis/SeniorProjectGrouple,71)

(vanceavalon/cassandra,1)

(fishulla/Torque3D,41)

(SirCmpwn/ChatSharp,14)

(raorao/groceries,3)

(captainkirkby/Gears,29)

(DamageStudios/rims,83)

(veravera/dots,6)

Count all issues that have been opened, closed, and re-opened in less than 48
hours (15pts).

We will re-use the Issue case classes we already set up before. For the pattern we again use a 3-way tuple
(repo name, issue id, issue action). We will use the same contiguity as for the pattern in the last task, but
this time we also add a time constraint of 48 hours.

val pattern = Pattern.begin[(String, Integer, String)]("start").

where(_._3 == "opened").

followedByAny("middle").

where(_._3 == "closed").

followedByAny("end").

where(_._3 == "reopened").

within(Time.hours(48));

Then we use this code to setup the correct stream:
Note: we add the stream time characteristic and timestamp assignment again.

6

//parse all the lines and filter

val streamer = file.map(strToEvent(_)).

filter(event => event.‘type‘ == "IssuesEvent"). //filter on particular event

assignAscendingTimestamps(x => x.created_at.getTime).

map(x => toIssue(x)). //map to issue event

map(i => (i._1, i._2.issue.id, i._2.action)). //map to (repo_name, issue_id, issue_action)

keyBy(0, 1); //key by repo and issue combinations

Finally we create a PatternStream on which we select and collect the results as we did in the previous task.
Finally we do a simple map reduce, to get the count per repository (this part is a bit open to interpretation
since the assignment asks for just a count).

val patternStream = CEP.pattern(streamer, pattern); //create the patternstream

val result = patternStream.select[(String, String)]{ //select from the patternstream

(map : scala.collection.Map[String, Iterable[(String, Integer, String)]]) =>

val startEvent = map.get("start").get.head; //get the start event

val middleEvent = map.get("middle").get.head; //get the middle event

val endEvent = map.get("end").get.head; //get the end event

//it doesnt really matter which event we pick, since repo_name and id will be the same

(startEvent._1, endEvent._2.toString); //return a (repo_name, issue_id) tuple

}.map(x => (x._1, 1)).keyBy(0).sum(1); //map reduce

Keep in mind that since we are doing a pattern matching on windows and then a ’global’ map-reduce it
outputs intermediate results. Part of the output is:

(emberjs/data,1)

(magento/magento2,1)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,1)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,2)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,3)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,4)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,5)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,6)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,7)

(yoyoHoneyS1ngh/OgniDon-tGoInHere-,8)

7

